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Emerging international policy aimed at reducing carbon emissions from deforestation and forest degra-
dation (REDD+) in developing countries, has resulted in numerous studies on above-ground live carbon
(AGC) in tropical forests. However, few studies have addressed the relative importance of disturbance,
topography, climate, soil and methods for stem measurement, on the estimation of AGC, or the costs
of improving AGC estimates by altering sample regimes. We established 18 one hectare plots containing
7201 stems, stratified along forested elevation gradients in Tanzania. We recorded a broad set of physical,
climatic and edaphic predictors of AGC and tree stature. AGC estimates using stem diameter, height and
wood density, gave a mean value of 174.6 t ha�1, compared with 229.6 t ha�1 when height was excluded.
Regression models revealed that stems were tallest for a given diameter at mid-elevation (1000–1250 m),
on south-facing slopes, and without past logging. High AGC was strongly associated with shallow slopes,
followed by intermediate elevation, elephant absence, low potential evapotranspiration and low soil pH.
Further regression models to investigate the structural habitat features associated with AGC, revealed
significant positive influence of basal area, stem density, and height:diameter ratio, rather than the mean
wood density of species present. Large stems (P70 cm dbh; 4.6% of stems) contained 52% of AGC in all
plots, declining to 36% in lowland plots. We discuss the cost:benefit of different measurements and rec-
ommend a tiered approach to AGC monitoring, depending on available resources. AGC assessments in
African forests could exclude small stems, but should aim to record disturbance, topography and species.
Stem height is vital for AGC estimation and valuation; when excluding height our 55 t ha�1 over-estima-
tion of AGC would have over-valued the carbon resource by 24% (US$3300 ha�1).

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Tropical forests contain approximately 17–25% of the carbon in
the terrestrial biosphere (Bonan, 2008; IPCC, 2001) on only �10%
of the land surface (Lewis, 2006). The biome is in flux, on the one
hand tropical deforestation is estimated at 476,000 ± 49,000
km2 yr�1 (0.5%; Hansen et al., 2010), releasing 2.9 ± 0.5 Pg C yr�1

into the atmosphere – more than one third of global carbon emis-
sions (Pan et al., 2011). On the other, forest regeneration in tropical
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areas is removing 1.6 ± 0.5 Pg C from the atmosphere, in part off-
setting the emissions from deforestation (Pan et al., 2011).

Carbon has become a major consideration for the conservation
of tropical forests, with carbon payment schemes aiming to miti-
gate climate change through reduced deforestation (Ebeling and
Yasue, 2008; Kindermann et al., 2008). Since most of the world’s
biodiversity hotspots lie within tropical forest regions (Myers
et al., 2000), payments could not only secure carbon storage, but
also reduce conversion of biodiverse regions, and potentially assist
economic and social development (CCBA, 2008; Nelson et al., 2009;
Gardner et al., this issue). Reliable and practical methods for
monitoring, reporting and verifying carbon stocks are therefore
a necessary component of a functioning international policy to
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‘‘Reduce Emissions from Deforestation and Degradation’’ in devel-
oping countries (REDD+; Goetz et al., 2010).

Carbon stock estimation requires a combination of ground-
based and remote-sensing methods (Gibbs et al., 2007; Saatchi
et al., 2011). While remote methods provide broad geographic cov-
erage, they are reliant on good quality ground-truthing data for
calibration and verification (Mitchard et al., 2011) and may not al-
ways be available to developing nations. As such, development of
good practice for both methods is necessary to assist prioritising
efforts towards metrics that are accurate, precise and cost-effective
(Herold et al., 2006).

Most studies on tropical forest carbon have been conducted in
South America and south-east Asia, with far fewer in Africa (but
see Lewis et al. (2009) for ground-based approaches, and Mitchard
et al. (2009a,b) for remote-sensing approaches). Africa contains
over one-third of all tropical forests (using the FAO forest defini-
tion: Lewis et al., 2009) and 25% of the tropical forest carbon stock
(Saatchi et al., 2011). The rate of deforestation is estimated at
3.4 Mha yr�1 (FAO, 2010). Human activities have further degraded
37.2% of African humid tropical forests such that canopy cover is
below 50% (Asner et al., 2009b). The resulting carbon emissions
in Africa through deforestation and degradation was 0.59 Pg yr�1

(2000–2007; Pan et al., 2011).
Knowledge of the environmental predictors of carbon and tree

stature will help to prioritise data collection for future assessments
and for extrapolation to larger areas. There is little consensus on
the relative impact of climate, soil or forest structure on spatial
patterns in above-ground live carbon (AGC) in tropical forests (Bar-
aloto et al., 2011). Studies across broad elevation ranges are partic-
ularly valuable because they show high variation in environmental
Fig. 1. Location of 18 one hectare plots for assessing above-ground carbon in Tanzania (U
conditions. Above-ground biomass typically decreases with eleva-
tion (and hence also temperature; Girardin et al., 2010), but water
stress and precipitation have the biggest influence on the presence/
absence of tropical forests (Zelazowski et al., 2011). The relation-
ship between soil and biomass is less consistent, and has shown
high variation between studies and regions (Slik et al., 2010; Baral-
oto et al., 2011).

The stature or ‘‘architecture’’ of tropical trees may follow many
models or forms (Hallé et al., 1978; Philip, 1994). Individual tree
height does not correlate with diameter in a simple manner
(Nagendra, 2012) but instead the ratio is related to species, precip-
itation, temperature and region (Feldpausch et al., 2011; Banin
et al., 2012), and typically decreases with elevation (Bruijnzeel
and Veneklaas, 1998; Aiba and Kitayama, 1999). Yet measures of
tree height are not always included in estimates of biomass and
carbon. This is primarily due to a lack of height data and reported
similarity between biomass estimates with and without the inclu-
sion of height (Brown, 2002; Lewis et al., 2009). The precision of
biomass estimates has however been shown to improve when
using height data (Chave et al., 2005), and in disturbed areas of
South America, the inclusion of height estimates reduced biomass
estimates by 3.6–11.0% (Nogueira et al., 2008b).

Increased frequency and severity of disturbance (e.g. logging,
storms, fire) has been observed to decrease AGC (Smithwick
et al., 2007). Vegetation structure and species composition are also
impacted by elephants across sub-Saharan Africa (Guildemond and
van Aarde, 2007) but this has not been studied previously in moist
forests. Moreover, disturbance does not always occur indepen-
dently from environmental gradients, e.g. some elevations may
be more accessible than others (Waide et al., 1998; Lovett, 2006).
dzungwa, n = 11; East and West Usambara, n = 7). Adapted from Platts et al. (2011).
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The present study was conducted in the Eastern Arc Mountains
of Tanzania (Fig. 1), a region of global importance for biodiversity
(Myers et al., 2000) with a large elevation range and varied climate
(121–2636 m; rainfall 158–3814 mm yr�1; Platts et al., 2010,
2011). Anthropogenic disturbance and clearance for agriculture
have impacted the forest extent of the region, particularly at low
elevations (Hall et al., 2009). AGC estimates range between 74
and 517 t ha�1 (Munishi and Shear, 2004; Zahabu, 2006). Reducing
the high level of uncertainty in AGC estimates is becoming increas-
ingly important in Tanzania, which is piloting methods for imple-
menting REDD + policy (Burgess et al., 2010) and where
projections for AGC loss due to land use change are between 4
and 25% (2000–2025; Swetnam et al., 2011).

Here we aim to determine the most important environmental
and structural measurements for estimating and monitoring AGC
in tropical forest via (1) the first estimate of AGC by internationally
recognised methods for the Eastern Arc Mountains, (2) develop-
ment of plot-specific allometric equations, (3) calculation of the ef-
fect of stem height data on the estimation of AGC, (4) empirical
modelling of stem stature and AGC to compare the influence of
physical, climatic and edaphic variables, (5) further modelling to
identify the structural traits most associated with AGC stocks, (6)
calculation of AGC per stem size class (and hence an estimate of
monitoring efficiency).

2. Methods

2.1. Vegetation plots

One hectare permanent sample plots were positioned in the Ud-
zungwa Mountains (n = 11; Mwanihana, Gologolo and Magombera
forests) and Usambara Mountains (n = 7; Amani-Zigi, Mazumbai-
Baga and Ambangulu forests) between March 2007 and March
2008. Positioning of plots near the latitudinal extremes of the re-
gion maximised geographical coverage and captured a range of
environmental conditions (Fig. 1). Plots were placed using random-
ised co-ordinates stratified by elevation (271–2021 m) in predom-
inantly closed-canopy forest. Plot selections were rejected if within
1 km of another plot, had discontinuous canopy, or occurred in
dangerous locations. The plot network encompassed several forest
types (White, 1983; Lovett et al., 1988; Table A.1): Zanzibar-
inhumbane lowland forest (n = 5; <750 m), transitional/submon-
tane forest (n = 5; 750–1200 m), and afromontane forest (n = 8;
>1200 m).

Plot methods followed internationally accepted protocol for col-
lection of AGC data (Kuebler, 2003). The diameters of stems
P10 cm diameter at breast height (dbh; 1.3 m) were measured
within 25 sub-plots (20 � 20 m). Smaller stems were not sampled
as they we are expected to hold �5% of AGC in mature African trop-
ical forests (Chave et al., 2008; Lewis et al., 2009). Stem heights
were measured from the tree base to the highest point from the
ground (parallel to the main trunk), across the full range of size
classes (10–19, 20–29, 30–39, 40–49 and P50 cm dbh), using a la-
ser rangefinder (Bushnell Yardage Pro 700; accuracy ±1 m). We
aimed to measure at least 10 stems per size class, with the number
reduced in some instances by time, a lack of stems or the density of
vegetation (mean 10.6 [95% confidence 9.9–11.3]) – a common
problem in tropical forests (Jørgen and Karsten, 1994). Height esti-
mates for 20 stems were verified by correlation with more time-
consuming trigonometric measurements (Pearson r2 = 0.977;
height 8–36 m). The rangefinder could not measure distances be-
low 8 m, for which we instead used a pole of known length.

Trees were identified following taxonomy of the Africa Plant
Phylogeny Group (Bremer et al., 2003). Where there was doubt
in field identification, voucher specimens were collected for verifi-
cation at the Royal Botanic Gardens (Kew, London).
2.2. Above-ground carbon estimation

AGC was estimated for each stem with a commonly used moist
forest biomass equation, and assuming 50% of biomass is carbon
(moist forest equation in Chave et al., 2005). We calculated bio-
mass (B; metric tonnes, t) both including and excluding stem
height estimates. The first equation using dbh (cm) and taxon-spe-
cific values of wood specific gravity (WSG; g cm�3):

Bd ¼WSG� expf�1:499þ ½2:148� dbh� þ ½0:207� dbh2�

� ½0:0281� ðlogndbhÞ3�g;

the second equation incorporating the height (m) of each stem in
order to discern its influence on biomass (and AGC) estimates:

Bh ¼ exp½�2:977þ lognðWSG� dbh2 � heightÞ�:

WSG was estimated as the mean value for each species from a data-
base of 2961 records from 844 species (Zanne et al., 2009). Where
WSG data were not available for a species, we took the mean value
for all records of the nearest taxonomic unit (genus, family), or
where these were unavailable, the mean of all remaining taxa in
the same plot. WSG data were available to at least genus level for
66.9% of stems (44.1% to species level), and to at least family level
for 96.4% of stems.

Statistical analyses were carried out using R (version 2.12.1;
http://cran.r-project.org). Two alternative height–diameter allo-
metric equations were used to estimate height for those stems
not measured: (1) a log-linear ordinary least squares regression
of height versus logn(dbh) for each plot, and (2) an exponential
model, selected because of low bias and high precision compared
to 30 other models (Hest = Hmin + {[Hmax � Hmin] � [1 � exp(�c �
{dbh � 10})]}; Fang and Bailey, 1998), where Hmin and Hmax were
the minimum and maximum measured heights per plot, and c
was the rate of change in height versus dbh for each plot.

The most effective of the two height–diameter allometric equa-
tions was selected according to the minimum residual sum of
squares (RSS). For this model we also investigated the effect of
reducing the number of stem heights measured, through boot-
strapped selection of samples from 10 down to 1 stem per dbh
class (50 iterations, 999 bootstraps), each time calculating the root
mean square error (RMSE = square root[RSS/n]). We did not ex-
plore separate equations for species-specific, functional or struc-
tural groups due to small sample sizes.

The differences between the two estimates of AGC (derived
from Bd and Bh) were also correlated against the height–diameter
relationship (height:logn[dbh], square transformed to remove
skew; hereafter ‘‘height–diameter slope’’), to determine how any
disparity could have arisen. All summary data are presented as
mean ±95% confidence interval (CI; 999 bootstrapped samples).

2.3. Environmental influence on AGC and stature

2.3.1. Data collation and refinement
In order to model variation in the total AGC per plot and the

height–diameter slope, we selected a broad set of ‘‘environmental’’
predictor variables describing physical, climatic and edaphic factors.

The subset of physical variables included slope and aspect, mea-
sured using a clinometer and compass in each sub-plot, and aver-
aged for each plot. The aspect of each sub-plot was first cosine
transformed to remove circularity (i.e. 0� = 360�), giving a measure
of ‘‘northness’’ (Roberts and Cooper, 1989). Presence/absence of
topographic features representing the microhabitat of each plot
were noted, including presence of a ridge, presence of running
water within 50 m, and presence of rocks >1 m diameter in at least
two sub-plots. Presence/absence of disturbance was also recorded,
including evidence of past logging of timber within 100 m, and

http://cran.r-project.org
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signs of cut stumps or elephants inside each plot (e.g. dung, foot-
prints, damage).

Climatic variables were selected based on empirical associa-
tions with plant species distributions in East Africa (Platts et al.,
2010; Marshall et al., 2012). Mean, minimum and range in annual
temperature (tmean, tmin, trange) were obtained from WorldClim
and annual surface-received orographic precipitation (ppt) was de-
rived from the Tropical Radar Measuring Mission (for methods and
sources see Platts et al. (2010) and Marshall et al. (2012)). Potential
evapotranspiration (PET), an estimate of the amount of evapora-
tion expected given sufficient water (closely related to tempera-
ture), was calculated following Thornthwaite (1948). An annual
moisture index (AMI) was calculated by dividing mean annual pre-
cipitation by PET, and a maximum water deficit was calculated as
the highest cumulative deficit in mean monthly precipitation (def-
icit defined as <100 mm month�1).

Soil samples for edaphic variables were collected using a 30 cm
depth corer from the four corners and centre of each plot, and then
air dried for around 6 weeks. The H2O and 0.1 M KCl methods of
Rowell (1994) were used to measure pH, from which we used
the former because it had the most even distribution. Bray’s phos-
phorus (P) was derived following Weaver et al. (1994). Exchange-
able aluminium (Al) and exchangeable cations, namely calcium
(Ca), magnesium (Mg), sodium (Na) and potassium (K), were de-
rived following Allen et al. (1974). Percentage nitrogen (%N) and
carbon (%C) were derived following Quesada et al. (2010), using a
Eurovector EA elemental analyser, calibrated using IRMM443-4
(Eurosoil 4), containing 1.45%C and 0.16%N and checked using
B2152 Low Organic Content Soil Standard OAS.

2.3.2. Statistical modelling
Before modelling, variables with strong skew were transformed

as follows: ppt, Mg, K, Al, %C, %N, basal area P90 cm (square root);
P (fourth root); AMI, PET (seventh root); trange (power 10).

Because of the large set of predictor variables, and to reduce
intercorrelation, we then used Pearson correlation and Variance
Inflation Factors (VIF) to assess covariation between all predictor
variables (Zuur et al., 2010), first within the three subsets (physical,
climatic, edaphic), and then between subsets. In the event of high
covariation between predictor variables (Pearson r P 0.7 and/or
VIF 6 5.0), the variable with the strongest univariate relationship
with the response variable was retained.

Generalised linear models (GLM) with a Gaussian error function
were used to investigate the influence of predictor variables on AGC,
and on height–diameter slope. Models were first run on the three
subsets separately (physical, climatic, edaphic), before combining
the reduced subsets into ‘‘holistic’’ GLM models. Elevation was ex-
cluded from at least one holistic model for each response variable,
due to intercorrelation with both climatic and edaphic variables.

Minimum adequate models were obtained using backward–for-
ward stepwise selection based on the Akaike Information Criterion
(Murtaugh, 2009). Where trends deviated from linear relation-
ships, quadratic terms were introduced. Final models were vali-
dated through observation of residual spread. Analyses of
deviance (likelihood ratio tests) were used to test the probability
that the amount of deviance explained was not reduced from full
(unreduced) models (p[D]; Crawley, 2005; Zuur et al., 2010). For
all minimum adequate models we determined the probability that
the slope estimate (b) of each variable (i) was significantly different
from zero, based on a t distribution (where ti = bi/SE(bi); Quinn and
Keough, 2002). For these slope estimates we employed the False
Discovery Rate (FDR; Benjamini and Hochberg, 1995) correction
of alpha values for repetitive testing, resulting in a 95% significance
alpha cut-off value of 0.0225 for models of height–diameter slope
versus environmental variables, and 0.020 for models of AGC ver-
sus environmental variables.
2.4. Structural determinants of AGC

A set of non-intercorrelated ‘‘structural’’ predictor variables was
selected for identifying the structural attributes of forests associ-
ated with variation in AGC, and hence to determine the features
important for future monitoring. Given the parameters used to esti-
mate biomass (dbh, height and WSG), changes in AGC could feasibly
result from changes in stem shape, size, number and/or species (the
latter through WSG variation between species). Structural variables
therefore included the number of stems, height–diameter slope (to
indicate stem shape/stature), two variables indicating the size of
stems (mean dbh, basal area of large stems [P90 cm dbh]), and
two variables indicating the influence of species composition on
wood density (mean WSG per species, mean WSG per species
P90 cm dbh [power 6 transformed to remove skew]). Using the
same procedure as for environmental variables, a Gaussian GLM
was used to determine the relationship between structural vari-
ables and total AGC, with an FDR adjusted alpha of 0.050.

AGC estimates were also calculated per plot and per dbh size
class. To assess the consistency of carbon distribution across stem
size classes, and hence determine variation in work effort in differ-
ent habitats, we employed chi-squared goodness-of-fit tests of AGC
per size class between forest types and presence/absence of past
logging.

3. Results

3.1. AGC estimation

The 18 plots contained 7201 stems (mean 400 stems ha�1 [95%
CI 358–445]) from 308 species (mean 37.2 species ha�1 [33.0–
41.3]), with mean basal area 33.3 m2 ha�1 [28.9–37.9], mean dbh
25.8 cm ha�1 [24.2–27.4], and mean stem WSG per plot
0.62 g cm�3 ha�1 [0.60–0.64]. A total of 967 stem heights were
measured (13.4% of stems), ranging from 3 m to 55 m. Of the two
allometric equations, the log-linear model produced the better fit
(mean RSS 1177.3, versus 1276.8; Fig. A.1), explaining 67% [62–
73] of the variance in height. Using the logarithmic equation for
each plot, height was estimated for all unmeasured stems, giving
a mean stem height of 15.2 m [13.7–16.5] per plot (maximum
55 m). Bootstrapped reduction in sample size for modelling heights
revealed that the mean RMSE of height estimates changed little be-
yond 4–6 stems per dbh size class (RMSE 3.3–1.7% below 10
stems), but mean precision (95% CI) continued to improve with
increasing sample size (e.g. 4 stems 42.8%, 8 stems 8.3%; Fig. A.2).

Mean AGC per plot was estimated at 174.6 t ha�1 [144.8–205.5],
including height estimates (AGCh). The estimate of AGC was
55.0 t ha�1 [41.1–70.6] or 37.5% [27.5–48.5] higher when estimated
without height (AGCd; 229.6 t ha�1 [196.1–268.7]). The overesti-
mate in AGC when excluding height varied significantly amongst
plots (Table A.1), and was positively related to plot height–diameter
slope (r = 0.740, p = 0.00044). AGCh was greater in Usambara
(214.5 t ha�1 [170.9–246.4]; n = 7) than in Udzungwa (149.3 t ha�1

[113.1–193.8]; n = 11). AGCh was higher in transitional mid-eleva-
tion forest (205.2 t ha�1 [130.7–268.9]; n = 5), compared with low-
land forest (127.0 t ha�1 [106.9–153.2]; n = 5) and montane forest
(185.3 t ha�1 [138.6–225.9]; n = 8; Table A.1) but the differences
were not significant (Kruskal–Wallis v2 = 3.4, p = 0.18).

3.2. Environmental and structural influences on AGC and stature

Total AGCh per plot was best modelled by physical variables
slope, elevation and the presence/absence of elephants, by climate
variable PET, and by soil pH (Table 1). Physical variables were the
strongest predictors, with slope and elevation explaining 63.7% of
the variation in AGCh. However, holistic models resulted in



Table 1
Generalised linear models of total above-ground live carbon (AGCh) versus physical, climatic and edaphic predictor variables. Statistics
include the probability of deviation from a slope of zero (p[t]), direction of the trend (positive +, negative �), percent deviance explained
(%D) and probability of decreased deviance explained from the full model (p[D]). Bold type indicates significant variables following FDR
correction (alpha = 0.0175). See methods for abbreviations and transformations.

Model name (and variables tested) Minimum adequate model

Physical Slope (simple, �): p[t] = 0.0036
(elevation, slope, aspect, elephants, rocks, water, ridge, cutting, logging) Elevation (quadratic, �): p[t] = 0.0098

(AIC = 194.5, %D = 63.7, p[D] = 0.81)

Edaphic pH (simple, �): p[t] = 0.048
(pH, P, K, %C) (AIC = 204.3, %D = 22.2, p[D] = 0.87)

Climatic PET (simple, �): p[t] = 0.059
(ppt, PET) (AIC = 204.7, %D = 20.5, p[D] = 0.29)

Holistic 1 Elephants (simple, �): p[t] = 0.0041
(slope, aspect, elephants, rocks, logging, ppt, pH, K, %C) pH (simple, �): p[t] = 0.0090

Slope (simple, �): p[t] = 0.039
K (simple, +): p[t] = 0.078
(AIC = 193.16, %D = 70.0, p[D] = 0.77)

Holistic 2 Slope (simple, �): p[t] = 0.0063
(slope, aspect, elephants, rocks, ppt, PET, Mg, K) PET (simple, �): p[t] = 0.0071

Elephants (simple, �): p[t] = 0.036
(AIC = 191.46, %D = 69.5, p[D] = 0.65)

Holistic 3 Slope (simple, �): p[t] = 0.0036
(carbon, elevation, slope, aspect, elephants, rocks, AMI, MWD, pH) Elevation (quadratic, �): p[t] = 0.0098

(AIC = 194.5, %D = 63.7, p[D] = 0.53)
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Fig. 2. Plots showing the four strongest predictor variables, (a) slope2, (b) elevation, (c) elephant presence, and (d) pH, for total above-ground live carbon (AGCh). Trendlines
are univariate Gaussian generalised linear models (including a quadratic term where curved). Dashed line represents an alternative univariate model excluding the potential
outlier indicated (Cook’s distance < 0.1).
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minimum adequate models with a combination of either physical
and climate variables, or physical and edaphic variables explain-
ing the highest variation in AGCh (physical + climate 70.0%,
physical + soil 69.5%). Relationships were mostly linear, with the
exception of elevation, for which AGCh peaked at 1200–1600 m
(Fig. 2). A potential outlier in high elevation elfin forest did not
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Fig. 3. Relationship between elevation and the stem height–diameter slope
(height:logn[dbh]2). The trendline is from a univariate Gaussian generalised linear
model with a quadratic term (AIC = 184.8,%D = 73.2, p = 0.000064).
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have high leverage in the multiple GLMs (Cook’s D� 1.0). A uni-
variate GLM of AGCh versus elevation without the potential outlier
produced a less significant, positive, linear relationship (Percentage
deviance explained, %D = 29.1, p = 0.0254; Fig. 3b). Our results are
compared to the published literature in Table A.2, indicating inter-
correlations between predictors that were used to reduce subsets
of variables for modelling (Tables 1 and 2).

Tree stature (height–diameter slope) was best modelled by
physical variables elevation, aspect and logging, and by climate
variable tmin, but soil variables could not produce a stable model
(Table 2). When variables were combined into two holistic models,
physical variables were the strongest predictors (93.6% variance
explained; Table 2). Relationships were mostly linear, with the
exception of elevation and the correlated variable tmin, for which
the height–diameter slope peaked at 1000–1250 m and 12–15 �C
(Fig. 3).

In our ‘‘structural’’ analysis, we found that AGCh did not have a
strong univariate relationship with the height–diameter slope
(Gaussian GLM: AIC = 205.5, %D = 16.6, p = 0.094; Fig. A.3a). How-
ever, a multivariate GLM showed that 93.1% of variation in AGCh

was explained by the height–diameter slope in conjunction with
Table 2
Generalised linear models of the slope of the stem height–diameter
variables. Statistics include the probability of deviation from a slope of
deviance explained (%D) and probability of decreased deviance from
following FDR correction (alpha = 0.0225). See methods for abbreviatio

Model name (and variables tested)

Physical
(elevation, slope, aspect, elephants, rocks, water, ridge, cutting, log

Edaphic (P, Na, K, Al)

Climatic
(AMI, tmin, MWD)

Holistic 1
(slope, aspect, elephants, rocks, ridge, logging, AMI, tmin, Na, K)

Holistic 2
(elevation, slope, aspect, elephants, rocks, ridge, logging, AMI, Na,
stem size and number (minimum adequate model AIC = 166.7,
%D = 93.1, p[D] = 0.24: basal area of stems >90 cm dbh p =
0.000052, mean dbh p = 0.00024, number of stems p = 0.00070,
height:log(dbh) slope p = 0.00081). Species-related variables were
not retained in the reduced models. When modelled alone, the
strongest predictor, i.e. basal area of stems > 90 cm dbh, was
found to explain 64.5% of variation in AGCh (AIC = 190.2,
%D = 64.5, p = 0.000059; Fig. A.3), but explained significantly less
than the minimum adequate model (analysis of deviance:
p[D] = 1.2 � 10�11).

3.3. AGC per size class

The majority of AGC was attributed to the largest stems. Stems
P90 cm dbh comprised 34.3% of total AGCh in only 2.1% of stems
measured (n = 151; Table A.3), while stems 10–19.9 cm dbh com-
prised only 4.4% of total AGCh in 56.3% of stems (n = 4052;
Table A.3). Furthermore, stems P70 cm dbh comprised more than
half of total AGCh (52.0%) in only 4.7% of stems (n = 338). The num-
ber of species observed was also greatly reduced for stems
P70 cm dbh (57 versus 308 species identified overall [18.5%]).

The distribution of AGCh among stem size classes did not vary
between transition and afromontane forest (chi-squared good-
ness-of-fit v2 = 2.04, p = 0.98), but differed in lowland forest, where
the proportion of AGCh in stems P90 cm was lower (15.9% versus
37.7% [transition v2 = 32.1, p = 0.00050] and 34.5% [afromontane
v2 = 33.1, p = 0.00050]; Table A.4). The class distribution of AGCh

did not differ between plots with or without signs of past logging
(v2 = 1.65, p = 0.99; Table A.5).

4. Discussion

The results indicate a number of considerations for the measur-
ing and monitoring of AGC, particularly the importance of (1) dis-
turbance, topographic and climatic influences on AGC, (2) stem
height for accurate measurement of AGC, and (3) large stems as
the dominant pool of AGC. The consistently small size of 95% con-
fidence limits (e.g. Tables A.3–A.5) suggests that sample size has
not seriously hindered the conclusions, however 18 plots is a mod-
est number with which to draw firm conclusions. We use our find-
ings and previous work to propose a system for prioritising field
data collection for assessing AGC depending on available resources
slope (height:logn[dbh]2) versus physical, climatic and edaphic
zero (p[t]), direction of the trend (positive +, negative �), percent
the full model (p[D]). Bold type indicates significant variables

ns and transformations.

Minimum adequate model

Elevation (quadratic, �): p[t] = 0.0000012
ging) Logging (simple, �): p[t] = 0.00036

Aspect (simple, �): p[t] = 0.0018
(AIC = 163.0, %D = 93.6, p[D] = 0.90)

None found

Tmin (quadratic, �): p[t] = 0.00031
AMI (simple, +): p[t] = 0.078
(AIC = 189.5, %D = 68.8, p[D] = 0.65)

Tmin (quadratic, �): p[t] = 0.00036
Elephants (simple, �): p[t] = 0.0041
Logging (simple, �): p[t] = 0.063
Aspect (simple, �): p[t] = 0.098
(AIC = 175.9, %D = 88.2, p[D] = 0.97)

K) Elevation (quadratic, �): p[t] = 0.0000012
Logging (simple, �): p[t] = 0.00036
Aspect (simple, �): p[t] = 0.0018
(AIC = 163.0, %D = 93.6, p[D] = 0.60)
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(Fig. 4) using three tiers for consistency in line with existing guide-
lines on the monitoring of greenhouse gasses and biodiversity
(IPCC, 2006; Gardner et al., this issue).

Our estimate of 174.6 t ha�1 [144.8–205.5] AGC in live trees is
comparable to a quality-controlled set of plots from more pristine
forest across Africa (202 t ha�1 [174–244]; n = 79; Lewis et al.,
2009). Some of our plots were impacted by anthropogenic and nat-
ural (elephant-related) disturbance, but were located predomi-
nantly in closed-canopy forest, and thus the mean AGC for the
Eastern Arc Mountains is likely to be lower than our estimates. Con-
versely, our estimate is towards the lower end of previously pub-
lished estimates for the same region (74–517 t ha�1; Munishi and
Shear, 2004; Zahabu, 2006). However, it is unclear if all trees were
correctly measured above buttresses in these studies, and conse-
quently the upper estimate appears unlikely given the quality-con-
trolled range across Africa (65.5–397.8 t ha�1; Lewis et al., 2009).

4.1. Environmental influences

4.1.1. Environmental influences on AGC
AGCh was greatest at mid-elevation, on shallow slopes, where

PET and pH were low, and where elephants were absent. Elevation,
disturbance and slope are also consistently the strongest predictors
in the biomass literature (Table A.2). Steep slopes may reduce AGC
due to high soil erosion and leaching of nutrients (Pimentel et al.,
1995). The mid-elevation peak in AGC may have resulted from a
more complex combination of respiration, photosynthesis and
disturbance.

At higher elevations, growth can be limited by water shortage,
exposure, reduced temperature, reduced transpiration rates, and
poor soil quality (Bruijnzeel and Veneklaas, 1998; Way and Oren,
2010; Moser et al., 2011). Respiration costs increase with temper-
ature (Lloyd and Farquhar, 2008), and hence may reduce growth at
low elevation. Mid-elevations may therefore occupy a ‘‘Goldilocks’’
environment, where respiration costs are lower, yet photosynthe-
sis is not yet inhibited by low air temperatures. Disturbance of
all types can also be greatest at both low and high elevation, result-
Fig. 4. Proposed tiers for field assessment of above-ground live carbon (AGC). Tier 1 indi
information is collected on physical threats. Tier 2 indicates improved resources such tha
consistent environmental predictors (see Table A.2). Tier 3 indicates maximum resource
ing in a mid-elevation peak in biomass (Waide et al., 1998) and can
mask the effects of temperature (Sierra et al., 2007). However, hu-
man disturbance can be hard to quantify, because signs of cutting
can quickly decay (95% of dead tropical forest wood can decay
within 22 years; Yang et al., 2010). In the study area, tree stumps
were cut mostly between 15 and 30 years prior to our surveys
and were rarely evident.

The suspected mid-elevation peak in AGC is supported by an
early study of basal area in the region (Lovett et al., 2006), yet is
inconsistent with studies from other tropical forests, where biomass
declines with elevation (Girardin et al., 2010). Our single plot from
elfin cloud forest suggests that the high elevation decline in AGC
is quite rapid, although more data are required given that the
mid-elevation peak was non-significant with removal of this plot
(Fig. 3b). Similarly more data are required to explore the microhab-
itat influence on AGC at a finer scale (e.g. rocks, water, ridge), which
did not show any relationship with AGC at our one hectare scale.

While elephants have positive impacts on habitats, for example
as seed dispersers (Helm et al., 2011), a large volume of literature
indicates that the net impact of savanna elephants on the abun-
dance of woody vegetation is negative (Guildemond and van Aarde,
2007). In the Udzungwa Mountain moist forests, savanna elephant
populations have increased, posing a difficult tropical forest man-
agement scenario that must balance biodiversity conservation
with animal and human welfare (Marshall, 2007). Elephant impact
upon habitat structure in nearby areas has led to a call for their
temporary exclusion (Bonnington et al., 2009). However, the nega-
tive impact of elephants is disputed in some areas due to the col-
lective influence of other large browsers (White and Goodman,
2009), which were mostly absent from our study area.

As recently seen for biomass in South America (Baraloto et al.,
2011), soil properties were not found to be the strongest predictors
of AGC. Spatial and temporal variabity in tropical forest soils can be
high, and hence difficult to measure (Quesada et al., 2009). Accord-
ingly, results from studies correlating soil properties to tropical
forest biomass have produced highly variable results (Table A.2).
However, our study took place in mostly evergreen forest habitats
cates minimal resources that permit only basic estimation of AGC, but ensuring that
t priority can be placed upon ensuring precise measurement of stems and the most
s enabling full consideration of biomass and environmental measurement.
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on sandy-loams overlaying crystalline bedrock, and hence may not
have represented a sufficient range of soils for the identification of
significant soil-AGC relationships.

4.1.2. Environmental influences on tree stature
Stems were tallest for a given diameter at mid-elevation, on

south-facing slopes and where evidence of logging was low. The
observed strong quadratic relationship between elevation and
height–diameter slope (%D 73.2) suggests that stems show taller
stature at mid-elevation. This deviation from the near pantropical
trend in decreasing stature with elevation adds to a few previous
anomalies in the literature (Lovett et al., 2006; Sahu et al., 2008).
Precipitation, dry season length, stem density and mean annual
temperature are all key drivers of variation in height:diameter
relationships at pantropical and regional scales (Feldpausch et al.,
2011; Banin et al., 2012). Secondary forest trees are also often taller
for a given diameter (Montgomery and Chazdon, 2001). Therefore
tall stature at mid-elevation has most likely resulted from a bal-
ance of disturbance, slope and climate as discussed for AGC.

4.1.3. Cost:benefit analysis for prioritising environmental
measurements

While some of our environmental variables are likely to be
proximate rather than ultimate causes of AGC, the consistent
retention of more than one variable in minimum adequate models
also emphasises the value of measuring multiple predictors,
including physical, edaphic and climatic variables. We cannot be
certain which variables had the ultimate influence on AGC, because
most were intercorrelated, including various climatic and edaphic
intercorrelations with elevation and PET. Typically slope also influ-
ences soil nutrients, exposure and erosion, aspect is related to solar
radiation and exposure, while elephants may be attracted by sec-
ondary vegetation associated with human disturbance. Only log-
ging has an unambiguous direct impact on carbon.

Inclusion of cost-effective environmental predictors in monitor-
ing programmes will facilitate improved understanding of AGC dis-
tribution, and hence input to national and international policy. A
cost:benefit assessment of the various predictors is therefore
shown in Table A.2. Climatic and physical variables include the
strongest predictors and are easily gathered during the routine
process of planning and establishing AGC plots (respectively 6.5
and 1.5 days plus US$415 and $1000 equipment costs for 18 plots).
Basic disturbance data are vital for assessing the success of conser-
vation measures and can be gathered without extensive technical
expertise (Tier 1; Fig. 4), while elevation and climatic variables re-
quire technical input (Tier 2–3). However the cost for equipment
purchase besides that required for establishing plots was only
US$15 (Table A.2). The computational methods for measuring cli-
matic variables were largely independent of sample size, but
would increase if measured on the ground.

Edaphic variables were the least cost-effective (approximately
US$270 per sample), as they required laboratory fees, permits
and specialised equipment beyond that required for establishing
plots. Costs required for edaphic variables would also increase with
sample size, particularly for the transportation of material. To-
gether with their inconsistent effectiveness for the prediction of
carbon, edaphic variables may therefore not be a priority for car-
bon monitoring projects unless soil expertise/analysis is readily
available (Tier 2–3; Fig. 4). However, the influence of edaphic vari-
ables on AGC has been under-researched and warrants further con-
sideration following improved data. Notable successes in
explaining AGC variation using multiple alternative edaphic vari-
ables (Quesada et al., 2009; Slik et al., 2010), suggests that soil
has not been adequately addressed by the literature. Furthermore,
a lack of data has precluded an estimation of soil carbon stocks,
which are likely to be substantial.
4.2. Measuring and monitoring AGC

4.2.1. Importance of height for estimating AGC
The observed variation in tree stature has further implications

for the estimation of biomass. Our observation of a 55 t ha�1

(24%) overestimate of carbon when not incorporating height was
consistent across all plots (95% CI: 27.5–48.5% overestimate).
Therefore previously observed accuracy of biomass models based
on diameter alone (Brown, 2002; Lewis et al., 2009) does not hold
for all locations. We assume that biomass equations incorporating
height are the most likely to be accurate, as they incorporate more
information on the size of stems than equations based on diameter
alone. A pantropical analysis of allometry in destructively sampled
trees lends further support to this assumption (Chave et al., 2005).

4.2.2. Importance of structure for estimating AGC
Our observation that structural variables explain greater varia-

tion in AGC than environmental variables (93.1% versus 70.0%) is
consistent with previous studies (Baraloto et al., 2011), and is ex-
pected given that structural measurements are components of the
biomass equations. Strong correlation between the height–diame-
ter slope and the difference in AGCh and AGCd emphasises that in
the absence of height, AGC was most considerably over-estimated
at mid-elevation, where the slope was steepest. Although AGC
was related to the height–diameter slope, our structural model
emphasises that high AGC is not necessarily found where stems
are tallest for a given diameter. Instead the basal area of large stems,
the number of stems, and mean dbh, all influence the amount of
AGC. This observation is consistent with trends in AGC being ac-
counted for by the number of large stems (Clark and Clark, 1996;
Chave et al., 2003; Alves et al., 2010) and may have implications
for the design of rapid (Tier 1; Fig. 4) assessments of carbon stocks.

The majority of AGC of carbon was stored in stems P70 cm dbh
and was measured in just over one tenth of the time taken to mea-
sure all stems. Similarly, the reduced number of species P70 cm re-
quired only 18% of botanical collection/identification time.
Allowing for travel, plot establishment, and other logistical con-
straints, for surveys of tropical forest AGC we estimate that mea-
surement and herbarium time could be reduced by half when
measuring only stems P70 cm dbh. The choice to employ this form
of survey does however assume there is sufficient prior information
on the composition of size classes to extrapolate AGC estimates, and
reduces their value for biodiversity monitoring (see below).

For lowland forest, the proportion of AGC in large stems was re-
duced, and stems P50 cm dbh would be required to measure the
majority of carbon (64% AGC in 11% of stems; Table A.4). Our habitat
types defined by elevation should be treated with caution as forests
in the region have shown a consistent elevation continuum in species
composition, rather than distinct species zones (Lovett, 1996; Lovett
et al., 2006). However, the narrow width of confidence limits for AGC
per size class in lowland forest suggests that the relative contribution
was consistent between plots. A reduction in the contribution of large
stems would also be expected for habitats that are younger, drier, or
more heavily logged (Chave et al., 2003; Faria et al., 2009; Glélé Kakaï
and Sinsin, 2009; Baraloto et al., 2011) and thus Tier 2–3 surveys
should aim to incorporate all size classes (Fig. 4).

4.2.3. Further implications of stem measurement for monitoring
The observed AGC deficit of 55 t ha�1 when comparing calcula-

tions including and excluding height measurements has potential
economic implications. The European Union Emission Trading
Scheme trades CO2 at €10.40 t�1 (US$13.89; www.pointcarbon.
com [accessed 7th October 2011]), and hence a carbon trade value
of US$ 50.93 (CO2 � 3.667). Therefore the biomass equation
excluding height (Bd) over-valued AGC by US$2801 ha�1 (24%).
The more widely accepted ‘‘social cost’’ of carbon (the estimated

http://www.pointcarbon.com
http://www.pointcarbon.com
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cost of the physical impact of climate change associated with car-
bon loss) could range from US$49–71 t�1 (mean of peer-reviewed
estimates; Tol, 2008), giving an over-valuation of US$2695–
3905 ha�1 (mean $3300).

A growing body of evidence suggests that biological, social and
economic measures should all be central to conservation planning
(Rapport et al., 1998; Wiegand et al., 2010), and hence REDD+ will
require a relatively holistic approach to monitoring. While social,
cultural and economic assessments require methods beyond the
scope of this study, methods for monitoring biodiversity are com-
patible with methods for measuring AGC (Gardner et al., this is-
sue). Species composition has influenced variability in biomass
across a broad range of habitats and is also predicted for tropical
forests (Bunker et al., 2005). However, without species-specific
biomass equations, and where height and diameter are measured
directly, the only influence of species on AGC estimation is through
species variation in WSG.

Following destructive sampling of 2410 neotropical trees, it was
shown that WSG is the second most important measurement for
the estimation of biomass after diameter (Chave et al., 2005). How-
ever our observation that WSG per species was not retained in mod-
els of AGC concurs with previous work in Borneo (Slik et al., 2010),
suggesting that identification may be less important than stem stat-
ure, size and number. Use of a community average WSG may there-
fore be sufficient in some cases (Brown, 1997; Fearnside, 1997; but
see also Chave et al., 2006), potentially including the current study
where the observed variation in WSG was low (0.62 [0.60–0.64],
range 0.21–0.98). Where variation in WSG is high (e.g. Fearnside
(1997): range 0.14–1.21), species identification remains important
for the estimation of AGC, even for Tier 1 surveys (Fig. 4).

Given that species identification is also vital for monitoring bio-
diversity and ecosystem function, we do not advocate carbon mon-
itoring schemes that do not incorporate this. Biodiversity is an
assumed co-benefit of REDD+ and is a requirement of all voluntary
standards (Waldon et al., 2011). However, large tree species rich-
ness may not be representative of overall biodiversity (Gentry and
Dodson, 1987; Platts et al., 2010). Hence, our suggestion for rapid
AGC surveys based on large stems alone would have seriously re-
duced value for biodiversity assessment (e.g. only 18.5% of species
had stems P70 cm dbh) and should only be considered an option
under Tier 1 surveys where minimal resources are available (Fig. 4).
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Fig. A.1. Height versus logn diameter (DBH) relationships for tree stems in 1 ha plots,
1177.3 [95% CI 951–1415], r2 = 0.67 [0.62–0.73].
5. Conclusion

Future measurement of AGC would benefit from the inclusion of
height and the development of locally-specific height–diameter
equations. In Africa, fieldwork that focuses on the largest stems
may improve efficiency of AGC estimates where resources are lim-
ited. However, in using the largest stems, periodic checks would be
required to support assumptions regarding forest structure and
biodiversity, particularly for younger, drier, or more disturbed hab-
itats. Species identification is considered important, for which ex-
pert taxonomic input should be sought. Climatic, edaphic,
topographic and disturbance data can all be used to explain the
distribution of AGC and hence extrapolate to broader areas for
making management plans. Among these data, climatic and topo-
graphic variables are more consistent predictors of AGC with re-
duced cost over edaphic variables, and more easily measured
than both edaphic and disturbance variables. While more work is
needed to improve both accuracy and precision, and to understand
carbon stocks beyond AGC in tree stems, we see AGC estimation
based on ground surveys as vital for forest management.
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Appendix A

See Figs. A.1–A.3 and Tables A.1–A.5.
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Fig. A.2. Effect of sample size per diameter (dbh) class on model fit (mean standardised residuals; RMSE ± 1000 bootstrapped confidence intervals) for the estimation of
height using logn(dbh).
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Fig. A.3. Predictors of above-ground live carbon (AGCh) from Gaussian GLMs, (a) height–diameter (HD) slope (height:logn(dbh)2; %D = 16.6, p = 0.094; line dashed as slope not
significant), and (b) basal area of trees greater than 90 cm dbh (%D = 64.5, p = 0.000059).

Table A.1
Above-ground live carbon (AGC) estimates for 18 one hectare vegetation plots in the Eastern Arc Mountains.

Elevation Range Forest type AGCh AGCdbh Difference

271 Udzungwa Zanzibar-inhumbane lowland 132.1 203.5 +71.3
587 Udzungwa Zanzibar-inhumbane lowland 104.9 148.2 +43.3
670 Udzungwa Zanzibar-inhumbane lowland 176.7 217.0 +40.3
595 Udzungwa Zanzibar-inhumbane lowland 103.3 179.6 +76.3
809 Udzungwa Lowland-montane transition 82.0 122.4 +40.4

1450 Udzungwa Afromontane 175.8 242.9 +67.1
1456 Udzungwa Afromontane 203.1 267.5 +64.4
1175 Udzungwa Lowland-montane transition 154.3 184.3 +30.0
1124 Udzungwa Lowland-montane transition 301.3 307.7 +6.4
1772 Udzungwa Afromontane 160.9 236.3 +75.5
2021 Udzungwa Afromontane (elfin) 47.6 92.4 +44.9

995 Usambara Lowland-montane transition 235.1 245.6 +10.5
985 Usambara Lowland-montane transition 253.3 267.4 +14.1
595 Usambara Zanzibar-inhumbane lowland 118.0 158.7 +40.7

1494 Usambara Afromontane 170.0 223.9 +53.9
1709 Usambara Afromontane 275.0 412.8 +137.8
1806 Usambara Afromontane 236.3 361.9 +125.7
1294 Usambara Afromontane 214.0 261.0 +47.0
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Table A.2
Cost:benefit assessment of the predictor variables used to model the distribution of above-ground live carbon(AGCh) for 18 one hectare plots in the Eastern Arc Mountains. Costs
include staff time (rather than salary, as this varies hugely between regions and individuals) and financial expenses (equipment purchase and fees), with parentheses denoting
costs that were already in place under the routine planning and establishment of plots. The benefits are the relative contributions of each variable to the prediction of AGC or
biomass in this study and the peer-reviewed literature (high = strongest predictor in at least one study, moderate = significant predictor, low = very weakly significant or
inconsistent predictor, none = no statistical evidence).

a–eVariables sharing the same letters were intercorrelated in the present study. Among the physical variables, there were no strong intercorrelations (Pearson correlation:
0.000 � |r|� 0.621). Among the climate variables, ppt was correlated with AMI and MWD (r = �0.863, �0.713) and tmean correlated strongly with trange, tmin and PET
(r = �0.740, 0.986, 0.987). Among the edaphic variables, pH correlated strongly with Ca, Mg and Al (r = 0.904, 0.891, �0.761), and Na and Al both correlated strongly with %N
and %C (r[Na] = 0.773, 0.808, r[Al] = 0.791, 0.798). Between these three subsets, elevation, tmin and Al were strongly intercorrelated (0.874 � |r| � 0.952).
⁄ Pimentel et al. (1995), Laurance et al. (1999), Lovett et al. (2006), Mahli et al. (2006), Guildemond and van Aarde (2007), Sierra et al. (2007), Nogueira et al. (2008a,b), Paoli

et al. (2008), Asner et al. (2009a), Quesada et al. (2009), Alves et al. (2010), Girardin et al. (2010), Slik et al. (2010), Baraloto et al. (2011), Pan et al. (2011), Marshall et al. (this
study). Parentheses show results from only one study, or a small minority of studies.
⁄⁄ The cost for equipment to measure physical/climate variables was only $15 for a clinometer, because other equipment (computer, GPS, compass, tape measure) were

already available for the establishment of plots. Time costs were equivalent for most climate variables as they were mostly available for free download (except for AMI and
MWD). Edaphic costs included collecting/drying samples, equipment purchase (corer, collection bags), and lab fee $112 per sample (required only once for all soil variables).
Transport/export permit acquisition for soil samples incurred no extra cost beyond that already required for plant specimens collected for identification, but would be
expected to increase with larger sample sizes.
⁄⁄⁄ In most published studies on the influence of temperature on biomass, it is not explicit, rather implied from observed strong relationships with elevation.
⁄⁄⁄⁄ Available water content = time in which less than 20% water was attained.

Table A.3
Mean (and 95% bootstrapped confidence interval) above-ground live carbon (AGCh) and stem/species number, per one hectare plot (n = 18), for each stem diameter size class in
the Eastern Arc Mountains. Mean percentage of total per one hectare plot for each measure are given in italics.

Size (cm) AGCh (t) Stem number Species richness

10–19.9 7.7 (6.2–9.4) 225 (193–257) 28.9 (25.5–32.7)
4.4 (3.6–5.4) 56.3 (48.3–64.2) 77.8 (68.5–87.8)

20–29.9 12.7 (9.9–15.5) 76.8 (63.8–90.4) 16.7 (14.3–19.0)
7.3 (5.7–8.9) 19.2 (16.0–22.6) 44.9 (38.5–51.1)

30–39.9 14.8 (12.2–17.4) 37.0 (31.7–42.1) 12.2 (10.3–13.9)
8.5 (7.0–9.9) 9.2 (7.9–10.5) 32.8 (27.8–37.5)

40–49.9 17.0 (13.8–20.2) 21.9 (18.4–25.6) 9.2 (7.6–10.8)
9.7 (7.9–11.6) 5.5 (4.6–6.4) 24.8 (20.3–29.1)

50–59.9 16.4 (12.8–19.6) 12.5 (10.4–14.6) 5.9 (4.8–7.0)
9.4 (7.4–11.2) 3.1 (2.6–3.6) 15.8 (13.0–18.8)

60–69.9 15.2 (12.4–17.9) 8.0 (6.6–9.5) 4.6 (3.7–5.6)
8.7 (7.1–10.2) 2.0 (1.6–2.4) 12.4 (10.0–14.9)

70–79.9 17.8 (12.9–22.7) 6.7 (4.9–8.5) 3.4 (2.7–4.2)
10.2 (7.4–13.0) 1.7 (1.2–2.1) 9.3 (7.2–11.3)

80–89.9 13.0 (9.0–17.5) 3.7 (2.6–4.9) 2.2 (1.7–2.7)
7.4 (5.1–10.0) 0.9 (0.7–1.2) 6.0 (4.5–7.3)

P 90 60.0 (38.5–85.2) 8.4 (6.1–11.1) 3.6 (2.7–4.6)
34.3 (22.0–48.8) 2.1 (1.5–2.8) 9.7 (7.3–12.4)
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Table A.4
Mean (and 95% bootstrapped confidence interval) stem density and above-ground carbon (AGCh) per stem diameter size class per one hectare plot, for different forest types.
Percentage contributions are given in italics.

Size class (cm) Lowland (n = 5) Transition (n = 5) Afromontane (n = 8)

Stems AGCh (t) Stems AGCh (t) Stems AGCh (t)

10–19.9 196 (133–262) 5.9 (3.3–8.4) 254 (221–288) 8.7 (7.1–10.2) 225 (178–298) 8.2 (6.4–10.9)
53.0 (47.8–58.3) 4.6 (3.0–6.7) 60.5 (49.8–70.6) 4.9 (3.3–6.4) 54.3 (48.1–59.9) 5.9 (3.1–9.7)

20–29.9 71.6 (51.4–96.0) 10.6 (7.0–15.0) 74.2 (43.0–106.6) 14.1 (7.2–20.9) 81.6 (63.0–96.5) 13.2 (10.0–16.3)
19.9 (17.4–21.8) 8.4 (6.1–12.0) 16.7 (10.7–22.8) 7.1 (4.0–10.4) 19.9 (16.0–23.3) 9.2 (5.4–15.0)

30–39.9 36.8 (27.2–47.2) 13.5 (8.6–18.6) 35.4 (22.4–47.8) 16.0 (8.9–21.4) 38.1 (31.1–44.9) 14.8 (11.9–17.7)
10.3 (9.6–10.9) 10.8 (7.2–15.4) 8.1 (5.5–10.4) 7.5 (5.5–9.6) 9.7 (7.8–11.7) 9.8 (6.3–14.7)

40–49.9 21.4 (17.0–25.8) 15.6 (12.9–18.5) 22.2 (16.4–28.4) 18.9 (12.6–25.2) 22.0 (16.1–28.8) 16.6 (11.4–21.9)
6.2 (5.0–7.6) 12.4 (11.1–14.4) 5.2 (3.9–6.5) 9.3 (7.9–10.8) 5.4 (4.0–6.9) 9.6 (6.6–12.4)

50–59.9 14.0 (11.2–16.4) 19.1 (16.4–22.2) 12.0 (8.0–17.0) 16.1 (9.5–22.8) 11.9 (8.6–15.5) 15.0 (10.1–19.9)
4.3 (3.0–5.5) 16.0 (11.3–18.9) 2.8 (1.9–3.7) 7.4 (5.7–9.2) 3.0 (2.2–3.8) 8.6 (5.9–11.5)

60–69.9 8.0 (6.0–9.8) 15.1 (10.6–19.2) 7.0 (4.6–9.4) 14.6 (9.7–19.3) 8.6 (6.1–11.3) 15.7 (10.7–19.8)
2.5 (1.5–3.3) 11.9 (8.8–14.7) 1.7 (1.1–2.2) 7.8 (4.9–10.6) 2.1 (1.6–2.7) 8.4 (6.4–10.8)

70–79.9 5.2 (3.2–7.0) 14.7 (8.7–20.6) 8.2 (4.4–12.6) 21.2 (11.5–31.5) 6.6 (3.5–9.4) 17.7 (9.4–25.9)
1.6 (0.9–2.5) 11.1 (8.1–14.4) 1.9 (1.0–2.9) 10.2 (7.0–14.2) 1.8 (0.8–2.6) 8.6 (4.8–13.5)

80–89.9 3.4 (1.8–5.2) 12.0 (5.7–19.0) 4.6 (1.8–7.4) 17.2 (6.2–28.3) 3.4 (1.9–5.0) 11.0 (6.8–15.3)
1.0 (0.6–1.5) 9.1 (4.9–13.2) 1.1 (0.5–1.8) 8.1 (4.0–12.4) 0.9 (0.5–1.3) 5.4 (3.3–7.5)

P 90 3.8 (2.2–5.4) 20.5 (11.1–29.1) 9.0 (6.4–12.2) 78.4 (45.3–135.2) 10.9 (7.0–14.6) 73.1 (40.5–107.4)
1.2 (0.6–1.9) 15.9 (8.1–21.2) 2.1 (1.5–3.0) 37.7 (25.4–51.3) 2.9 (1.7–4.1) 34.5 (22.7–45.9)

Table A.5
Mean (and 95% bootstrapped confidence interval) stem density and above-ground live carbon (AGCh) per stem diameter size class per one hectare plot, for plots with and without
signs of past logging within 100 m. Percentage contributions are given in italics.

Size (cm) Logging (n = 8) No logging (n = 10)

Stems AGCh (t) Stems AGCh (t)

10–19.9 196 (148–242) 5.7 (4.2–7.4) 249 (215–291) 9.3 (7.7–11.1)
55.3 (46.4–63.9) 4.3 (2.9–5.9) 56.0 (52.0–60.2) 6.0 (4.0–8.9)

20–29.9 63.5 (44.8–84.8) 9.4 (6.3–13.0) 87.4 (72.3–101.0) 15.4 (12.3–18.6)
18.0 (13.7–21.9) 6.7 (4.3–9.6) 19.9 (16.5–22.5) 9.8 (6.6–14.1)

30–39.9 34.6 (25.0–44.5) 12.8 (8.6–17.2) 38.9 (33.8–44.3) 16.4 (13.5–19.4)
9.9 (7.8–11.9) 8.8 (6.0–12.0) 9.0 (7.7–10.1) 9.9 (7.2–13.5)

40–49.9 20.3 (15.5–25.3) 14.4 (11.6–17.4) 23.2 (18.4–28.4) 19.0 (14.3–23.9)
5.9 (4.6–7.4) 10.4 (8.2–12.7) 5.3 (4.2–6.5) 10.2 (7.9–12.3)

50–59.9 11.4 (8.4–14.3) 15.1 (10.5–19.3) 13.4 (10.6–16.2) 17.6 (12.9–21.8)
3.5 (2.3–4.7) 11.7 (7.5–16.2) 3.1 (2.4–3.8) 9.2 (7.3–11.3)

60–69.9 7.8 (6.3–9.3) 14.6 (11.5–17.5) 8.2 (5.9–10.5) 15.7 (11.3–19.8)
2.4 (1.8–3.1) 10.7 (8.1–13.2) 1.9 (1.4–2.3) 8.0 (6.3–9.8)

70–79.9 6.0 (4.1–8.0) 16.3 (10.1–21.8) 7.2 (4.2–10.3) 19.1 (11.7–27.1)
1.8 (1.2–2.5) 10.5 (8.5–12.9) 1.7 (1.0–2.4) 9.1 (5.6–13.9)

80–89.9 3.3 (1.9–4.8) 11.4 (6.4–16.8) 4.1 (2.3–6.1) 14.3 (8.0–20.7)
1.0 (0.6–1.3) 7.5 (4.8–10.7) 1.0 (0.5–1.4) 6.9 (4.2–9.8)

P90 7.0 (3.6–10.8) 51.1 (20.7–86.8) 9.5 (6.7–12.8) 67.1 (41.4–103.0)
2.2 (1.2–3.4) 29.4 (16.6–42.4) 2.3 (1.5–3.2) 30.8 (21.5–41.2)
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