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Abstract
Aim: Species interaction networks are known to vary in structure over large spatial 
scales. We investigated the hypothesis that environmental factors affect interaction 
network structure by influencing the functional diversity of ecological communities. 
Notably, we expect more functionally diverse communities to form interaction net‐
works with a higher degree of niche partitioning.
Location: Americas.
Time period: Current.
Major taxa studied: Hummingbirds and their nectar plants.
Methods: We used a large dataset comprising 74 quantitative plant–hummingbird in‐
teraction networks distributed across the Americas, along with morphological trait 
data for 158 hummingbird species. First, we used a model selection approach to evalu‐
ate associations between the environment (climate, topography and insularity), species 
richness and hummingbird functional diversity as predictors of network structure 
(niche partitioning, i.e., complementary specialization and modularity). Second, we 
used structural equation models (SEMs) to ask whether environmental predictors and 
species richness affect network structure directly and/or indirectly through their influ‐
ence on hummingbird functional diversity. For a subset of 28 networks, we additionally 
evaluated whether plant functional diversity was associated with hummingbird func‐
tional diversity and network structure.
Results: Precipitation, insularity and plant richness, together with hummingbird func‐
tional diversity (specifically, functional dispersion), were consistently strong predictors 
of niche partitioning in plant–hummingbird networks. Moreover, SEMs showed that 
environmental predictors and plant richness affected network structure both directly 
and indirectly through their effects on hummingbird functional diversity. Plant func‐
tional diversity, however, was unrelated to hummingbird functional diversity and net‐
work structure.
Main conclusions: We reveal the importance of hummingbird functional diversity for 
niche partitioning in plant–hummingbird interaction networks. The lack of support for 
similar effects for plant functional diversity potentially indicates that consumer func‐
tional diversity might be more important for structuring interaction networks than re‐
source functional diversity. Changes in pollinator functional diversity are therefore likely 
to alter the structure of interaction networks and associated ecosystem functions.

K E Y W O R D S

functional dispersion, insularity, modularity, network structure, niche partitioning, plant–
pollinator interactions, pollination networks, specialization, trait diversity
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1  | INTRODUC TION

Species’ traits influence niche partitioning between pairs of species, 
and thus should affect the structuring of entire networks of inter‐
acting organisms (Fründ, Dormann, Holzschuh, & Tscharntke, 2013; 
Junker et al., 2013; Maglianesi, Böhning‐Gaese, & Schleuning, 2015; 
Maruyama, Vizentin‐Bugoni, Oliveira, Oliveira, & Dalsgaard, 2014). 
We may therefore expect a correspondence between community 
trait composition (i.e., functional diversity) and interaction network 
structure, such that communities in which species differ strongly in 
traits related to their ecological interactions should exhibit a high re‐
source partitioning. Despite the potential importance for community 
stability and ecosystem functioning (Fontaine, Dajoz, Meriguet, & 
Loreau, 2005; Fründ et al., 2013; Mouillot, Graham, Villéger, Mason, 
& Bellwood, 2013; Schleuning, Fründ, & Garcia, 2015), the relation‐
ship between functional diversity and the structure of species in‐
teraction networks remains untested at large geographical scales 
(Gravel, Albouy, & Thuiller, 2016; Kissling & Schleuning, 2015).

Several recent studies have used mutualistic networks to exam‐
ine how large‐scale variation in environmental factors, notably cli‐
mate, relate to network structure (e.g., Dalsgaard et al., 2011; Martín 
González et al., 2015; Schleuning et al., 2012, 2014 ; Trøjelsgaard 
& Olesen, 2013). Likewise, studies have reported relationships be‐
tween the environment and the functional diversity of assemblages, 
for both plants (Ordonez & Svenning, 2017; Swenson et al., 2012) 
and pollinators (Grass, Berens, & Farwig, 2014; Rader, Bartomeus, 
Tylianakis, & Laliberté, 2014). However, apart from a few local 
and regional studies on a small number of networks (e.g., Junker, 
Blüthgen, & Keller, 2015; Maglianesi, Blüthgen, Böhning‐Gaese, & 
Schleuning, 2015), the influence of functional diversity on species 
interaction networks is poorly understood. In addition, despite the 
reported relationships between environmental factors and network 
structure, the mechanisms behind such relationships remain specu‐
lative (reviewed by Trøjelsgaard & Olesen, 2016; Tylianakis & Morris, 
2017).

One plausible way in which environmental factors might affect in‐
teraction network structure is through effects on the distribution of 
species and, hence, community composition (Bartomeus et al., 2016; 
Dalsgaard et al., 2011; Sonne et al., 2016; Tylianakis & Morris, 2017). 
Environmental factors have been shown to affect the distribution of 
species traits (e.g., body size; Olson et al., 2009) and species richness 
(e.g., Kreft & Jetz, 2007). Moreover, high species richness has been 
linked to an increase in competition, which should promote greater 
trait differentiation within plant and pollinator communities (Fründ 
et al., 2013; Inouye, 1978; MacArthur & Levins, 1967; Vamosi et al., 
2006). For example, traits linked to the body size and shapes of polli‐
nators have been shown to determine interaction partitioning within 
plant–pollinator interactions (e.g., Inouye, 1978; Vizentin‐Bugoni, 
Maruyama, & Sazima, 2014). Thus, one hypothesis is that environ‐
mental factors influence species richness and functional diversity 
in communities (Kreft & Jetz, 2007; Olson et al., 2009; Ordonez & 
Svenning, 2017), which then mediate effects on network structure 
(Bartomeus et al., 2016; Fründ et al., 2013; Mouillot et al., 2013; 

Tylianakis & Morris, 2017). Specifically, a higher functional diversity 
in communities should lead to networks with a greater partitioning 
of interactions (Inouye, 1978; Junker et al., 2013, 2015 ; Maglianesi, 
Blüthgen, et al., 2015; Maruyama et al., 2014).

We investigate this hypothesis using a large dataset of 74 quan‐
titative plant–hummingbird mutualistic interaction networks dis‐
tributed widely across the Americas. Hummingbirds, a species‐rich 
family of nectar‐feeding birds, are important pollinators in the New 
World, showing specialized interactions with the plants they polli‐
nate (Cronk & Ojeda, 2008; Stiles, 1981; Zanata et al., 2017). Owing 
to their high diversity and strong specialization for nectarivory, hum‐
mingbirds have been used frequently as a model system to study 
the evolutionary, historical and ecological factors structuring the 
assembly of species into communities (Graham, Parra, Tinoco, Stiles, 
& McGuire, 2012; Maglianesi, Böhning‐Gaese, et al., 2015; Martín 
González et al., 2015; Snow & Snow, 1972; Sonne et al., 2016; Stiles, 
1981; Vizentin‐Bugoni et al., 2014). In this study, we evaluated the 
relationships between environmental factors, species richness, func‐
tional trait diversity and network structure. Our aim was to elucidate 
whether functional trait diversity mediates the effects of environ‐
mental factors on network structure at a macroecological scale. We 
focused on hummingbird body mass, bill length and shape, because 
these traits are known to influence their interactions with their nec‐
tar plants (Dalsgaard et al., 2009; Feinsinger & Colwell, 1978; López‐
Segoviano, Bribiesca, & Arizmendi, 2018; Maglianesi, Blüthgen, 
Böhning‐Gaese, & Schleuning, 2014; Maglianesi, Böhning‐Gaese, 
et al., 2015). Given that hummingbirds depend on floral nectar for 
energy intake and partition floral resources according to their mor‐
phology, we expected that hummingbird communities with higher 
degrees of functional diversity should form specialized interaction 
networks with higher degrees of niche partitioning (Feinsinger & 
Colwell, 1978; Inouye, 1978; MacArthur & Levins, 1967; Maglianesi, 
Blüthgen, et al., 2015; Stiles, 1981). Likewise, we expected a posi‐
tive relationship between plant functional diversity and the degree 
of interaction niche partitioning, as plant traits have been shown to 
constrain plant–hummingbird interactions (Maglianesi et al., 2014; 
Vizentin‐Bugoni et al., 2014). Moreover, we expected that predic‐
tors linked to productivity, such as temperature and precipitation, 
would be positively associated with both functional diversity (e.g., 
Ordonez & Svenning, 2017) and network specialization (Dalsgaard 
et al., 2011; Martín González et al., 2015; Trøjelsgaard & Olesen, 
2013), whereas past climate instability should decrease specializa‐
tion (Dalsgaard et al., 2011; Ordonez & Svenning, 2017). Climatic 
seasonality, in contrast, may increase both the functional diversity 
(Swenson et al., 2012) and interaction partitioning (Schleuning et 
al., 2014) by causing regular species turnover related to predictable 
environment variability. In addition to climatic effects, we expected 
that topographical heterogeneity would have a positive effect on 
both functional diversity and network specialization by generating 
habitat heterogeneity and enabling species to track changing cli‐
mates more easily (Ordonez & Svenning, 2017; Sonne et al., 2016). 
In contrast, insularity is expected to have a negative effect owing to 
ecological release and increased generalization on islands (Traveset, 
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et al., 2015). We tested these hypotheses by examining how envi‐
ronmental predictors affect network structure both directly and in‐
directly, through their influence on functional diversity.

2  | METHODS

2.1 | Plant–hummingbird networks

We used a dataset of 74 quantitative plant–hummingbird inter‐
action networks distributed across the Americas (Figure 1), from 
38°58′ N to 31°48′ S (updated from Martín González et al., 2015; 
see Supporting Information Appendix S1). Each network describes 
interactions among plant and hummingbird species for a given 
community, with interactions summarized as a quantitative bipar‐
tite matrix having plants as rows and hummingbirds as columns, 
and each cell filled with the observed frequency of pairwise in‐
teractions. We focused on mutualistic interactions among plants 
and hummingbirds, and thus excluded instances of nectar robbery 
or theft, because they characterize other types of interactions 
(Maruyama, Vizentin‐Bugoni, Dalsgaard, Sazima, & Sazima, 2015). 
Species names and classification followed The Plant List (www.
theplantlist.org) and the International Ornithological Committee 
World Bird List (IOC; www.worldbirdnames.org), respectively. In 
total, our dataset comprised 158 species of hummingbirds (c. 46% 

of the 345 species in the IOC Bird List; Supporting Information 
Appendix S2) and 984 species of plants from 85 families (Supporting 
Information Appendix S3).

2.2 | Hummingbird morphological traits and 
functional diversity

For all hummingbird species, we compiled information on three mor‐
phological traits that influence their interactions with flowers and 
interspecific competition for nectar: bill length, bill curvature and 
body mass (Dalsgaard et al., 2009; Feinsinger & Colwell, 1978; López‐
Segoviano et al., 2018; Maglianesi et al., 2014; Maglianesi, Blüthgen, 
et al., 2015; Maruyama et al., 2014; Snow & Snow, 1972; Stiles, 1981; 
Vizentin‐Bugoni et al., 2014). Bill length and curvature were meas‐
ured by inspecting an average of 10 adult specimens, both males 
and females, deposited in museums (Zanata, Dalsgaard, Rahbek, 
& Varassin, 2018; see details in Supporting Information Appendix 
S6); body mass data were gathered from the literature (Supporting 
Information Appendix S2). For all three traits, we used the mean 
trait values per species, because interspecific trait variation is larger 
than intraspecific variation and plays a larger role in determining the 
division of floral resources among coexisting hummingbird species 
(Graham et al., 2012; Tinoco, Graham, Aguilar, & Schleuning, 2017). 
In our data, the intraspecific coefficient of variation (CV) across all 
hummingbird species averaged 6.2% for bill length and 8.3% for bill 

F I G U R E  1   The location of the 74 plant–hummingbird networks used in the study, showing the relationship between hummingbird 
specialization, <d′>, and functional dispersion. For clarity, circles for some study sites were moved to minimize overlap. The illustration on 
the right depicts how hummingbirds with distinct morphologies partition their interactions by associating with flowers of corresponding 
morphology (from network ID 52; top: Planalto Hermit, Phaethornis pretrei, and Manettia cordifolia with long curved corolla; bottom: 
Glittering‐throated Emerald, Amazilia fimbriata, and Palicourea rigida with a short corolla; Credit: Pedro Lorenzo). Points along the white–
grey–black gradient indicate communities with better correspondence between functional dispersion and specialization [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.theplantlist.org
www.theplantlist.org
www.worldbirdnames.org
www.wileyonlinelibrary.com
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curvature, whereas interspecific variation amounted to 42.4% and 
246.9%, respectively (see also Supporting Information Appendix S2).

To calculate hummingbird functional diversity (FD) metrics, we 
computed the pairwise Euclidean distances between hummingbird 
species based on their traits. These distances were projected into a 
functional trait space using a principal coordinates analysis (Villéger, 
Mason, & Mouillot, 2008; Figure 2). Traits were standardized to 
zero mean and unit variance before the calculation of Euclidean 
distances. We used two measures to quantify distinct facets of FD 
in hummingbird communities. First, we calculated from the multi‐
variate trait space the sum of the branch length of the minimum 
spanning tree (MST) connecting all hummingbirds co‐occurring in a 
community. This measure estimates the total trait variability within 
each community. It is equivalent to functional richness (Villéger et 
al., 2008) and conceptually similar to the FD index of Petchey and 
Gaston (2002), with the advantage that it can be calculated for com‐
munities comprising only two coexisting species (as was the case 
for some communities in North America and the Caribbean islands). 
Large MST values indicate the occurrence of species with distinct 
traits but do not consider species abundance in the calculations. 
Second, we calculated the functional dispersion (FDis) of each com‐
munity by computing the mean distance of all species in a commu‐
nity to its centroid in functional trait space (Laliberté & Legendre, 
2010). The FDis accounts for differences in the frequencies of spe‐
cies in the community, by weighting the mean distance and the po‐
sition of the community centroid with species abundances. In this 
study, we approximated hummingbird species abundance using the 

sum of interactions for each hummingbird species in the interaction 
matrices (see details in Supporting Information Appendices S7 and 
S8). High values of hummingbird FDis indicate the co‐occurrence 
of hummingbird species with distinct trait combinations (Laliberté 
& Legendre, 2010). Calculation of FDis was performed with the 
function dbFD in the R package “FD” (Laliberté & Legendre, 2010). 
The two functional indices analysed in this study (MST and FDis) 
represent complementary aspects of FD and are only moderately 
correlated (Pearson’s r = .57, p <.05, n = 74 networks). If FDis is cal‐
culated without weighting by species abundance, this correlation 
becomes higher (r = .80, p <.05). Moreover, MST showed a stronger 
correlation with hummingbird species richness (Pearson’s r = .76, p 
<.05) than did weighted FDis (r = .43, p <.05).

2.3 | Plant functional diversity

We computed plant functional diversity for a subset of 28 networks, 
comprising 103 hummingbird and 467 plant species from mainland 
and island communities (51.2% and 47.5% of the complete dataset, 
respectively). To do this, we considered three traits that have been 
associated with hummingbird specialization and partitioning of in‐
teractions among flowers: (a) floral corolla length (e.g., Maglianesi 
et al., 2014; Maruyama et al., 2014); (b) the colour spectrum vis‐
ible to the human eye, reflecting different degrees of specializa‐
tion to ornithophily (Dalsgaard et al., 2009; Wilson, Castellanos, 
Hogue, Thomson, & Armbruster, 2004); and (c) plant life form, re‐
flecting resource availability (e.g., trees having higher floral display 

F I G U R E  2   The relationship between hummingbird functional dispersion (FDis) and network structure. (a) An example illustrating two 
networks with similar number of hummingbird species (Net 74 = 7, Net 22 = 8) but with contrasting FDis. Networks on top depict the 
interaction networks, with hummingbird species indicated by red and blue boxes at the top and plant species indicated by black boxes at the 
bottom (with the interactions indicated by grey lines). (b) The FDis is measured as the mean of the distance (Zi) of all species (small circles) 
to its community centroid (large circles) in multivariate trait space generated by a principal coordinates analysis. Notice that the community 
from Costa Rica (blue, right) includes several species located distantly from the community centroid, in contrast to the community 
from Southern Brazil (red, left). (c,d) Linear regressions showing the relationship between hummingbird (c) specialization, <d′>, and (d) 
modularity, ∆Q, with FDis. Note that the two networks from (a) are indicated with their respective colours [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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and attracting territorial hummingbirds; Feinsinger & Colwell, 1978) 
and/or vegetation strata (Jordano, Bascompte, & Olesen, 2006; 
see details on plant trait assessment in Supporting Information 
Appendices S4–S6). We calculated plant FDis for each network, 
based on the pairwise Gower distances as suggested for the com‐
bination of continuous (corolla length) and categorical (colour, life 
form) trait variables (Laliberté & Legendre, 2010). Weighting of indi‐
vidual species in the FDis metric were given by independent meas‐
ures of local floral abundances (Supporting Information Appendix 
S6). For this subset of communities, we also recalculated humming‐
bird FDis to test whether it relates to plant functional diversity. In 
addition, because corolla length was the only continuous variable 
available for plants, we also estimated plant and hummingbird FDis 
based solely on corolla and bill length, respectively. The results from 
these single‐trait analyses were qualitatively identical and are there‐
fore not shown.

2.4 | Network indices and sampling intensity

To characterize network structure, we calculated two quantitative 
indices widely used in the literature to quantify the extent to which 
species partition their interactions, namely complementary speciali‐
zation (H2′ and d′; Blüthgen, Menzel, & Blüthgen, 2006) and quanti‐
tative bipartite modularity (Q; Dormann & Strauss, 2014). Although 
conceptually distinct, these indices characterize a similar ecological 
pattern from the perspective of the hummingbirds, namely the par‐
titioning of interactions along a niche dimension represented by the 
plant species in the network (Blüthgen, 2010). The complementary 
specialization indices derive from Shannon’s entropy and quantify 
how realized species interactions differ from those expected in 
randomly interacting communities relative to partner availability, 
i.e., reflect the niche partitioning among species (Blüthgen, 2010; 
Blüthgen et al., 2006). Two variants, the network‐wide specializa‐
tion, H2′, and the species‐level specialization, d′, are commonly used; 
a guild‐level specialization can be estimated as the weighted mean 
of d′ across all species from the same guild, <d′> (Blüthgen et al., 
2006). In our dataset, hummingbird specialization, <d′>, was strongly 
correlated with network‐wide specialization, H2′ (Pearson’s r = .93, p 
<.05). We primarily focused on < d′> as we calculated FD based on 
morphological data for hummingbird species.

A complementary measure of interaction partitioning is mod‐
ularity, Q, which quantifies the prevalence of preferentially inter‐
acting subgroups in the networks (Dormann & Strauss, 2014). The 
formation of such modules of interacting species can be related to 
a high degree of trait matching between species (Maruyama et al., 
2014, 2015 ). Here, we used the QuanBiMo, a modularity‐searching 
algorithm specifically designed for quantitative bipartite networks 
(Dormann & Strauss, 2014). Both < d′> and Q scale from zero to one, 
with zero indicating low specialization/modularity, respectively and 
one high specialization/modularity, respectively (Blüthgen et al., 
2006; Dormann & Strauss, 2014). Network analyses were conducted 
using the “bipartite” package in R (Dormann, Fründ, Blüthgen, & 
Gruber, 2008; R Core Team, 2016).

Intrinsic characteristics of the networks, such as size (i.e., num‐
ber of interacting species) and sampling effort, may affect network 
indices (Blüthgen et al., 2006; Vizentin‐Bugoni et al., 2016). The 
quantitative network indices used here take species interaction 
frequencies into account and are less sensitive to sampling insuffi‐
ciency than metrics based on binary networks that report only the 
presence or absence of interactions between species pairs (Blüthgen 
et al., 2006; Vizentin‐Bugoni et al., 2016). Nevertheless, to mini‐
mize potential biases attributable to differences in sampling among 
networks, we Δ‐transformed our metrics (Dalsgaard et al., 2017; 
Schleuning et al., 2012). In this transformation, the mean value of a 
metric obtained by multiple randomizations of a null network is sub‐
tracted from the observed value (Dalsgaard et al., 2017; Schleuning 
et al., 2012). Here, we used the Patefield null model, which fixes the 
network size and the marginal totals, (i.e., species richness and the 
total number of interactions of the species), while shuffling inter‐
actions randomly (Dormann et al., 2008). The specialization index, 
<d′>, is already subject to a correction for the marginal totals of the 
species in the network (Blüthgen et al., 2006), but modularity is not 
(Dormann & Strauss, 2014); thus, we report the null model corrected 
ΔQ values but not Δ<d′> in the main results. Nonetheless, results for 
both untransformed and Δ‐transformed specialization and modular‐
ity metrics were similar (see Supporting Information Appendix S9).

In addition to null model corrections, we calculated sampling 
intensity (SI) and network asymmetry, both of which may affect 
the degree of specialization (Blüthgen et al., 2006; Schleuning et 
al., 2012). Sampling intensity is defined as the square root of the 
number of interaction events divided by the geometric mean of the 
total species number in the given bipartite network (Schleuning et 
al., 2012), and network asymmetry is defined as the ratio between 
hummingbird and plant richness. Sampling intensity was included in 
the models (see Table 1), but as network asymmetry was only weakly 
related to the calculated metrics (r = −.21, p = .07 for < d′> and r = 
−.09, p = .42 for ΔQ), we did not consider it further.

2.5 | Environmental variables

We extracted information on current climate, topography and long‐
term climate stability within a 10 km radius around each study site 
from WorldClim 30 arc‐s rasters (v. 1.4; Hijmans, Cameron, Parra, 
Jones, & Jarvis, 2005). Current climate was represented by mean 
annual temperature (MAT), mean annual precipitation (MAP), tem‐
perature seasonality (estimated as the standard deviation across 
monthly temperatures; TS) and precipitation seasonality (esti‐
mated as the CV for monthly precipitation means; PS). To deter‐
mine the topographical variation (Topography) at each study site, 
we also used the WorldClim digital elevation model (DEM). This 
combines the SRTM gap‐filled 30 arc‐s DEM (CGIAR; https://srtm.
csi.cgiar.org/), covering from 60 N to 60 S, with the GTOPO30 
DEM (https://lta.cr.usgs.gov/GTOPO30) for other parts of the 
world. Topography was represented by the standard deviation of 
elevation within a 10 km radius around each study site. We de‐
scribed paleoclimate stability using the change in temperature and 

https://srtm.csi.cgiar.org/
https://srtm.csi.cgiar.org/
https://lta.cr.usgs.gov/GTOPO30
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precipitation from the Last Glacial Maximum (LGM) to the present, 
as estimated using two different models, CCSM3 (Collins et al., 
2006; Otto‐Bliesner et al., 2006) and MIROC 3.2 (K‐2004 model 
developers,2004). For each site, we calculated the change in tem‐
perature and precipitation from the LGM to the present (Anomaly) 
and its spatial rate of displacement (Velocity) as complementary 
measures of past to present climate variability (Loarie et al., 2009). 
As our data cover a large geographical extent, we assumed that the 
regionally downscaled climate estimates are good indicators of the 
variation of local climate among communities. In addition to data 
on past and current climate and topography, we included insularity 
as a dummy variable (one, island; zero, mainland). To meet statisti‐
cal assumptions of normality, MAP was square root transformed 
and TS was log10 transformed before further analyses. All variables 
were scaled to zero mean and unit variance.

As velocity and anomaly both describe historical climate 
change and are derived from the same model projection, we built 
one model for each of the two measures of historical climate 
change. As velocity includes the spatial variability of the climatic 
variable in the calculations (Loarie et al., 2009) and is correlated 
with topographic heterogeneity, we did not include velocity and 
topography in the same models. In the main text, we report the 
results regarding anomaly and topography; results regarding 
velocity as an integrated measure of historical climate variabil‐
ity were qualitatively similar and are reported in the Supporting 
Information (Appendix S10).

2.6 | Macroecological analysis

We divided the macroecological analysis into two steps in order to 
simplify and reduce the number of predictors in the structural equa‐
tion models (SEMs). First, we fitted multi‐predictor linear models for 
both specialization, <d′>, and modularity, ΔQ, considering the two in‐
dices for hummingbird FD (MST and FDis) separately, plus humming‐
bird richness (Hummingbirds). Besides MST and FD is, we included 
the following environmental predictors: temperature (MAT), precipi‐
tation (MAP), temperature seasonality (TS), precipitation seasonality 
(PS), topography (Topo), temperature anomaly (AnomT), precipita‐
tion anomaly (AnomP) and insularity (Insu) to the set of predictors. 
Finally, we included plant species richness (Plants), because this has 
been shown to influence resource partitioning in flower–bird net‐
works (Zanata et al., 2017) and might potentially act independently 
of floral functional diversity (Souza et al., 2018). For the subset of 28 
networks with plant FDis measures, we used linear models to test 
whether plant FDis and hummingbird FDis predicted network level 
specialization <d′>, calculated for plants and hummingbirds sepa‐
rately, and ΔQ.

We fitted four principal models incorporating the combina‐
tions of two measures of FD (MST and FDis) and the two net‐
work indices (<d′> and ΔQ). The two FD measures were always 
fitted separately because these were correlated; for comparison, 
we also fitted a model with unweighted FDis (i.e., without in‐
corporating abundance; Supporting Information Appendix S11). 

TA B L E  1   Model selection and averaging results of the multi‐predictor linear models explaining the variation of hummingbird 
specialization, <d′>, and network modularity, ΔQ, corrected by the Patefield null model

Complementary specialization < d′> Modularity ΔQ

FDis MST FDis MST

Σwi AVM MAM Σwi AVM MAM Σwi AVM MAM Σwi AVM MAM

FD index 0.97 0.33 0.31 0.28 0.02 – 1.00 0.43 0.43 0.55 0.12 –

Plants 0.75 0.16 0.19 0.89 0.23 0.26 0.98 0.28 0.28 0.98 0.34 0.35

MAP 0.92 0.30 0.33 0.99 0.44 0.45 0.32 0.03 – 0.70 0.17 0.30

TS 0.32 0.03 – 0.30 0.03 – 0.23 −0.01 – 0.25 0.01 –

PS 0.23 −0.01 – 0.23 0.01 – 0.54 −0.08 −0.16 0.36 −0.04 –

AnomT 0.27 −0.02 – 0.26 −0.02 – 0.26 0.01 – 0.27 0.02 –

AnomP 0.29 −0.02 – 0.25 −0.01 – 0.44 −0.06 – 0.38 −0.05 –

Topography 0.32 0.03 – 0.33 0.03 – 0.27 −0.02 – 0.26 −0.02 –

Insularity 0.77 −0.17 −0.21 0.86 −0.22 −0.27 0.99 −0.31 −0.28 0.97 −0.32 −0.35

SI 0.29 −0.02 – 0.38 −0.05 – 0.52 0.08 – 0.31 0.03 –

R2
adj 0.42 0.36 0.48 0.37

AICc 177.3 183.8 168.9 182.7

Notes. We used two functional diversity measures, hummingbird functional dispersion (FDis) and minimum spanning tree (MST), reflecting different 
aspects of trait diversity in hummingbird communities. Important predictors in explaining network indices variation (Σwi > 0.8) are in bold. We also 
show the AICc = corrected Akaike’s information criterion; AVM = standardized coefficients of the averaged model across all models; MAM = standard‐
ized coefficients of the minimum adequate model with the lowest AICc value; and R2

adj = variation explained by the minimum adequate model with the 
lowest AICc. Acronyms of the predictors: AnomP = precipitation anomaly; AnomT = temperature anomaly; FDis = functional dispersion; MAP = mean 
annual precipitation; MST = minimum spanning tree; Plants = plant richness; PS = precipitation seasonality; SI = sampling intensity; Topography = top‐
ographical variation; TS = temperature seasonality. See Methods for details.
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We checked for multicollinearity in the full model by  evaluating 
the condition number (CN ≤ 5) and the variance inflation  factor 
(VIF ≤ 5). This led to the exclusion of MAT and hummingbird 
richness as predictors (see additional results in Supporting 
Information). Models considering hummingbird richness in‐
stead of FD measures had less statistical support (Supporting 
Information Appendix S12). Model performance of all combina‐
tions of predictor variables was assessed based on the Akaike 
information criterion with correction for small samples (AICc). 
Model selections were performed with the function dredge in the 
R package “MuMIn” (Barton, 2014), according to their AICc. In all 
cases, multiple models presented ΔAICc values ≤ 2.0 in relation‐
ship to the best model (i.e., no single best model was identified; 
Burnham & Anderson, 2002). Hence, model averaging was per‐
formed across all possible models using the function model.avg 
in “MuMIn” (Barton, 2014). We report the averaged coefficient 
values and the relative importance of each predictor variable by 
summing the Akaike weights across the models including the re‐
spective variable across all possible models (i.e., Σwi; Burnham & 
Anderson, 2002). We did not include interaction terms between 
predictors in our models owing to the lack of a clear hypothesis 
justifying their inclusion. Spatial autocorrelation in model resid‐
uals was assessed by computing Moran’s I correlograms using 
the “ncf” package in R (Bjornstad, 2016), with distance classes of 
500 km and a truncation distance of 5,000 km. The linear model 
with specialization, <d′>, showed significant positive spatial au‐
tocorrelation. Therefore, we re‐ran this model using a simultane‐
ous autoregressive (SAR) model that specifies the autoregressive 
processes within the error term (Kissling & Carl, 2008). The SAR 
modelling was conducted using the “spdep” package in R (Bivand 
& Piras, 2015). The spatial connections between networks were 
determined as the three nearest neighbours. For the SAR model, 
no significant spatial autocorrelation remained in the residuals 
(see also Supporting Information Appendix S6).

The second step of our analysis used SEMs to quantify the ex‐
tent to which predictors influence network structure directly or 
indirectly via FD. The advantage of SEMs is that both direct and 
indirect associations among variables are considered simultane‐
ously, hence allowing a hierarchical model structure (Shipley, 2002). 
We constructed two sets of SEMs for each of the network met‐
rics: (a) one based on the hypothesis that environmental and spe‐
cies richness predictors affect FD and network metrics in parallel, 
resulting in covariation between FD and network metrics; and (b) 
another based on the hypothesis that FD directly affects network 
metrics (i.e., no covariation between FD and network metrics). A 
priori SEMs were constructed based on results from the previous 
model selection, which consistently demonstrated that insularity, 
MAP and plant richness had the greatest importance in determining 
network structure. All other predictors, except hummingbird FDis, 
had consistently low importance values, usually with a Σwi < 0.3, 
and thus were not included in the SEMs (see Table 1; Supporting 
Information Appendix S9–S12). As MST did not influence < d′> or 
ΔQ, only SEMs for FDis were constructed. By including the same 

set of predictors in each SEM, models were directly comparable, 
enabling a direct interpretation of whether environmental factors 
and plant richness are likely to affect network structure directly 
or indirectly through the functional composition of morphological 
traits (Shipley, 2002). Appropriate fits for SEMs were obtained by 
including error covariance links based on high modification indices 
and large residual correlations.

Model fit was evaluated with a χ2 test, a comparative fit index 
(CFI) and a root mean square error of approximation (RMSA). The 
χ2 test measures the coincidence between the empirical and the 
fitted variance–covariance structure in the data. Here, models 
were accepted if p>.05. The CFI relates the χ2 of the model to 
the χ2 value of an independent model assuming zero correlation 
among variables while also accounting for sample size (Shipley, 
2002). The CFI ranges between zero and one, and models with 
CFI>.09 were considered to have an appropriate fit (Shipley, 
2002). Finally, the RMSA index was included owing to its sensitiv‐
ity to the number of fitted parameters. A RMSA < 0.07 indicated 
an appropriate model fit (Shipley, 2002). All SEM analyses were 
conducted using the “lavaan” package (Rosseel, 2012) in R (R Core 
Team, 2016).

3  | RESULTS

Communities varied considerably in measures of hummingbird func‐
tional diversity (CV: MST = 55.3%; FDis = 43.4%) and network struc‐
ture (CV: <d′> = 53.1%; Q = 48.5%; Figure 1). No strong latitudinal 
trend was observed for these variables (linear models with absolute 
latitude as a predictor; hummingbird FDis: R2 = .08, p = .02; <d′>: R2 

= .05, p = .05; Q: R2 = .09, p <.01), although MST was higher at low 
latitudes (R2 = .37, p <.01).

All best‐fitting models explaining network structure included 
hummingbird FDis as a predictor, showing a positive association with 
both hummingbird complementary specialization, <d′>, and network 
modularity, ΔQ (Table 1; Figure 2). Moreover, hummingbird FDis was 
the only variable that consistently had high importance values across 
different models, with a positive effect on both untransformed and 
Δ‐transformed network indices (Table 1; Supporting Information 
Appendix S9). On the contrary, MST had a negligible importance 
in predicting network structure (Table 1), as did unweighted FDis 
(Supporting Information Appendix S11) and hummingbird richness 
(Supporting Information Appendix S12). The MAP was positively re‐
lated to hummingbird specialization, <d′> (Table 1), whereas plant 
richness was positively related and insularity negatively related to 
modularity, ΔQ (Table 1). Other environmental variables were not 
important in any of our models.

For the subset of 28 networks, plant FDis showed less varia‐
tion than hummingbird FDis (CV = 24.2% vs. 43.2%, Supporting 
Information Appendix S5). Plant FDis was unrelated to plant rich‐
ness (R2 = .01, p = .51), hummingbird FDis (r = .07, p = .70) or network 
structure (plant < d′>: R2 = .09, p = .11; ΔQ: R2 = .04, p = .34). Within 
this subset of networks, hummingbird FDis was positively associated 
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with the degree of interaction partitioning (hummingbird < d′>: R2 = 
.39, p <.01; ΔQ: R2 = .55, p <.01), consistent with the analysis across 
all networks.

Structural equation models indicated that the combined in‐
fluence of precipitation, insularity and plant richness explained 
a larger amount of the variation in specialization and modular‐
ity than in FDis (Figure 3a,c). Notably, including hummingbird 
FDis as a predictor of network structure (Figure 3b,d) increased 
the overall explanatory power of the models (adjusted R2; 
Figure 3). Environmental predictors affected network structure 
more strongly through direct links, but also had indirect effects 
through their influence on functional diversity. Precipitation 
(MAP) affected specialization both directly (β = .32; Figure 3b) 
and indirectly through FDis (indirect coefficients are obtained by 
multiplication of coefficients, i.e., .41 × .31 = .13; Figure 3b). In 
the case of modularity, the indirect association with precipitation 
(.41 × .39 = .16; Figure 3d) was similar to the direct one (β = .14; 
Figure 3d). Plant species richness (specialization: direct = .19, in‐
direct = .07; modularity: direct = .27, indirect = .09; Figure 3b,d) 
and insularity (specialization: direct = −.21, indirect = −.06; mod‐
ularity: direct = −.28, indirect − .07; Figure 3b,d) showed stronger 
direct and weaker indirect associations with network metrics.

4  | DISCUSSION

Functional diversity of hummingbirds correlated with network struc‐
ture in plant–hummingbird communities across the Americas, with 
hummingbird communities composed of functionally distinct spe‐
cies (i.e., those with a high functional dispersion) forming specialized 
and modular interaction networks with their nectar plants. In con‐
trast, plant functional diversity was unrelated to network structure. 
Our result that precipitation was both directly and indirectly related 
to network structure through its association with hummingbird 
functional diversity illustrates how the environment, through its ef‐
fects on community trait composition, may influence the realization 
of species interactions within local communities (McGill, Enquist, 
Weiher, & Westoby, 2006).

In addition to precipitation, we showed that plant species rich‐
ness was positively related to the extent to which hummingbirds 
partition floral resources, with both direct and indirect effects 
through hummingbird functional diversity. This association may 
be driven by the resource diversity for hummingbirds and may 
be related partly to precipitation, because the annual number of 
days with rainfall (a variable closely related to annual precipita‐
tion) is one of the major drivers of global vascular plant richness 

F I G U R E  3   Structural equation models (SEMs) showing the direct and indirect associations among environmental and richness predictors, 
functional dispersion (FDis) with complementary specialization (<d′>; a,b) and modularity (∆Q; c,d). Models in (a) and (c) assume a covariation 
between FDis and network structure, whereas (b) and (d) consider a directional relationship between FDis and network structure. In both 
cases, the value of R2 is substantially higher in the models that include the direct link between FDis and network metrics. Black arrows 
indicate positive relationships, whereas red arrows indicate negative relationships, with the thickness of each arrow reflecting their 
standardized path coefficients. Double‐headed grey arrows indicate covariance links [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(Kreft & Jetz, 2007). This notion is reinforced by the importance 
of plant species richness in our models and its covariation with 
precipitation (Table 1; Figure 3). A global analysis of nectarivorous 
birds, including hummingbirds, honeyeaters and sunbirds (Zanata 
et al., 2017), has previously reported a positive relationship be‐
tween plant richness and network specialization. Interestingly, the 
association between plant richness and network structure was 
not mirrored by covariation between network structure and plant 
functional diversity (see also Souza et al., 2018). One possible rea‐
son for this is that, in contrast to birds, interaction frequencies of 
plants usually do not reflect their abundances (Vizentin‐Bugoni et 
al., 2014; Weinstein & Graham, 2017a). For instance, humming‐
bird‐visited plant species with long corollas often have low abun‐
dances (Vizentin‐Bugoni et al., 2016), thus contributing little to 
abundance‐weighted estimates of plant FDis. However, flowers 
with long corollas are frequently visited by abundant long‐billed 
hummingbirds, which fosters interaction partitioning (Maglianesi, 
Böhning‐Gaese, et al., 2015; Maruyama et al., 2014; Weinstein & 
Graham, 2017a). A closer association between network specializa‐
tion and consumer FD, but not plant FD, may also result from phe‐
nological differences between plants and animals. Although many 
hummingbird species are constantly present in the community, 
the turnover of flowering plant species is usually high, suggest‐
ing that morphologically specialized plant species may be replaced 
by functionally similar species temporarily (Bergamo et al., 2017; 
Weinstein & Graham, 2017b). Thus, plant assemblages may have 
greater species redundancy, and the processes driving niche parti‐
tioning may differ between plants and animals. For instance, hum‐
mingbirds often compete for floral resources, as exemplified by 
their frequent aggressive defense of floral resources (Feinsinger & 
Colwell, 1978), which is likely to enforce niche partitioning among 
birds more than among simultaneously flowering plant species. 
Overall, our results indicate that total resource/niche space, as ex‐
pressed by plant richness, allows for a finer division of resources 
and potential occurrences of species with distinct strategies 
within communities.

In addition to the positive effect of precipitation and plant rich‐
ness, insularity had a negative association with functional diversity 
and network metrics (Figure 3). Although the direct links between 
insularity, specialization and modularity were stronger than the 
indirect effects, we also detected indirect relationships between 
network structure and insularity through bird functional diversity. 
Island communities, especially those from oceanic islands, tend to 
show a high degree of generalization, consistent with an interaction 
release and niche expansion in impoverished communities (Traveset, 
et al., 2015). Consequently, plant–pollinator interaction networks on 
these islands can be less specialized than those on continents; for 
example, showing greater pollinator overlap among plants (Traveset 
et al., 2016). In accordance with this, higher generalization has pre‐
viously been shown for insular plant–hummingbird networks (Martín 
González et al., 2015), and our results here indicate that part of this 
greater generalization is associated with the lower functional diver‐
sity of hummingbirds on islands.

The incorporation of functional diversity constitutes an import‐
ant step towards identifying determinants of network structure at 
large spatial scales and is particularly promising for scaling up our 
understanding of natural systems from local to global scales (Gravel 
et al., 2016; Kissling & Schleuning, 2015). Furthermore, it may allow 
a better assessment of the association between community struc‐
ture, ecosystem functioning and responses to disturbance (Fontaine 
et al., 2005; Fründ et al., 2013; Mouillot et al., 2013; Schleuning et 
al., 2015; Tylianakis & Morris, 2017). For instance, niche partitioning 
among morphologically distinct hummingbirds may promote optimal 
foraging, because trait matching leads to an increased efficiency in 
floral resource use (Maglianesi et al., 2014). In addition, an increase 
in floral niche partitioning among pollinators is likely to increase the 
quality of pollination services among plants through an increase 
in conspecific pollen transfer (Brosi & Briggs, 2013; Inouye, 1978). 
Hence, if pollinator functional diversity is reduced in response to cli‐
mate change or direct human‐induced disturbance (e.g., Grass et al., 
2014; Rader et al., 2014), this is likely to result in a reduced resource 
partitioning among pollinators and lower effectiveness of pollination 
(Fontaine et al., 2005; Fründ et al., 2013; Schleuning et al., 2015). In 
this regard, we note that species abundances have an influence in 
addition to species traits, because unweighted functional diversity 
metrics (MST and unweighted FDis) were only weakly associated 
with network structure. Other studies have likewise found that un‐
weighted functional diversity indices were only weakly associated 
with ecosystem functions delivered by animals (e.g., Gagic et al., 
2015). Therefore, functionally distinct species in a community must 
be sufficiently abundant to fulfil their functional roles in interaction 
networks and contribute to ecosystem functioning. The apparent 
asymmetry between plant and bird functional diversity could stem 
from comparatively low abundance of morphologically specialized 
plant species, each potentially less important at the community 
level, compared with functionally specialized hummingbirds with 
high abundances, fulfilling crucial ecological roles in communities 
(e.g., large‐bodied hermits).

Taken together, our results show how network structure is as‐
sociated with environmental factors, pollinator functional diversity 
and plant richness at a continental scale. Environmental and species 
richness predictors determined network structure both directly and 
indirectly through functional trait diversity. Moving forward, studies 
should investigate how interaction networks affect the evolution of 
the traits of the species embedded in networks (Guimarães, Jordano, 
& Thompson, 2011) and the assembly of interacting species within 
communities (Bartomeus et al., 2016). For instance, simulation stud‐
ies may be able to evaluate how present network structure will af‐
fect the diversity of species and their functional traits in potential 
future communities, which in turn should feedback on the structure 
of interaction networks (Bartomeus et al., 2016; Guimarães et al., 
2011). In conclusion, we believe that our results indicating that en‐
vironmental factors exert indirect effects on interaction niche parti‐
tioning, mediated by consumer trait diversity and resource richness, 
yield a step towards a mechanistic understanding of how the envi‐
ronment influences the structure of species interaction networks. 
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Hence, potential future changes in pollinator functional diversity are 
expected to alter the structure of interaction networks and associ‐
ated ecosystem functions, such as pollination.

5  | BIOSKETCH

Pietro K. Maruyama is an ecologist, with a broad interest ranging 
from natural history to the macroecology of plant–animal mutu‐
alistic interactions. This study is part of the HummLab research 
team (wordpress.hummlab.com), an ongoing research collabora‐
tion on plant–hummingbird networks across the Americas involv‐
ing numerous researchers from a wide range of institutions and 
countries.

6  | SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup‐
porting information tab for this article.
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