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ABSTRACT

Aim We undertook the largest comparative study to date of the form of the island
species–area relationship (ISAR) using 207 habitat island datasets and 601 true
island datasets. We also undertook analyses of (a) the factors influencing z- and
c-values of the power (log–log) model and (b) how z and c vary between different
island types.

Location Global.

Methods We used an information theoretic approach to compare the fit of 20
ISAR models to 207 habitat island datasets. Model performance was ranked accord-
ing to pre-set criteria, including metrics of generality and efficiency. We also fitted
the power (log–log) model to each dataset and analysed variation in parameter
estimates and model fits as a function of key dataset characteristics using linear
models and constrained analysis of principal coordinates.

Results The power (nonlinear) model provided the best fit to the most datasets,
and was the highest ranked model overall. In general, the more complex models
performed badly. Average z-values were significantly lower for habitat island
datasets than for true islands, and were higher for mountaintop and urban habitat
islands than for other habitat island types. Average c-values were significantly lower
for oceanic islands, and significantly higher for inland water-body islands, than for
habitat islands. Values of z and c were related to dataset characteristics including the
ratio of the largest to smallest island and the maximum and minimum richness
values in a dataset.

Main conclusions Our multimodel comparisons demonstrated the nonlinear
implementation of the power model to be the best overall model and thus to be a
sensible choice for general use. As the z-value of the log–log power model varied in
relation to ecological and geographical properties of the study systems, caution
should be employed when using canonical values for applied purposes.

Keywords
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INTRODUCTION

The species–area relationship (SAR), i.e. the general increase in

the number of species recorded with increasing sampling area, is

one of the fundamental patterns in biogeography (MacArthur &

Wilson, 1967; Rosenzweig, 1995; Whittaker & Fernández-

Palacios, 2007). A number of hypotheses have been put forward

to explain SAR phenomena, including the equilibrium theory of

island biogeography (ETIB), the habitat diversity hypothesis,

passive sampling from a regional species pool and an increasing
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rate of speciation with increasing area (e.g. MacArthur &

Wilson, 1967; Losos & Schluter, 2000; Triantis et al., 2003;

Whittaker & Fernández-Palacios, 2007).

For the present purposes we focus purely on island species–

area relationships (ISARs; Whittaker & Matthews, 2014). The

term ISAR refers to Scheiner’s (2003) type IV curve, wherein the

number of species sampled within each of a set of isolates is

plotted as a function of isolate area. It is also necessary to dis-

tinguish between different types of islands. Herein we define

true islands as geographical islands within a matrix of water, i.e.

oceanic islands, continental-shelf islands and inland water-body

islands, whereas habitat islands are isolates of natural habitat

(including lakes) surrounded by a contrasting non-water matrix

type (see Whittaker & Fernández-Palacios, 2007).

The ISAR has broad applicability in ecology and conservation

and has been used as the basis for protected area design, predic-

tion of species extinctions resulting from the loss of native

habitat and estimating regional diversity from smaller-scale

sample data (e.g. Dengler, 2009; Smith, 2010; Halley et al., 2013;

Gerstner et al., 2014). However, despite this applied usage in

terrestrial systems, most ISAR comparison studies have focused

on true islands. As such, the development of conservation

theory regarding habitat islands has relied too heavily on analy-

ses of true island datasets; with insufficient attention to ISAR

patterns of specific habitat islands (cf. Laurance, 2008;

Mendenhall et al., 2014a). For example, Triantis et al. (2012)

provided a synthetic analysis of ISARs involving comparisons of

fit for 20 ISAR models to data from 601 true island datasets. No

comparable analysis has been conducted using just habitat

island datasets, and as Sala et al. (2005, p. 380) state (see also

Halley et al., 2013), the ‘precise shape of the relationship’ in

terrestrial systems is unknown. The comparability of ISAR pat-

terns between true islands and habitat islands, and the applica-

tion of island theory to habitat islands, are thus key themes

within both conservation and countryside biogeography (Daily

et al., 2003; Pereira & Daily, 2006; Koh et al., 2010; Matthews

et al., 2014a,b; Mendenhall et al., 2014a,b).

The past decade has seen a rise in the number of studies

examining the form of the ISAR (e.g. Dengler, 2009; Tjørve,

2009; Williams et al., 2009; Triantis et al., 2012). Over 20 func-

tions have been proposed (e.g. Table 1), of which the power

function remains the most commonly employed. Underpinning

this research endeavour is a growing acceptance that the choice

of function is an integral component of the applications of the

ISAR (Guilhaumon et al., 2008; Benchimol & Peres, 2013;

Halley et al., 2013). For example, linear, convex and sigmoidal

models will result in very different estimates of richness

hotspots when used in comparative analyses (Guilhaumon et al.,

2008), while the form of ISAR fitted is key to predictions of the

number of extinctions resulting from habitat loss (Halley et al.,

2013). The growing popularity of multimodel inference

methods in ISAR research (e.g. Guilhaumon et al., 2008, 2010;

Scheiner et al., 2010; Benchimol & Peres, 2013; Matthews et al.,

2014a) is evidence of the increasing realization that the form of

the ISAR matters.

Notwithstanding the recent focus on ISAR form, most

applied studies of habitat island ISARs employ the power model

in combination with a set/pre-defined z-value, generally

Table 1 The 20 ISAR models compared
in the model selection. Adapted from
Triantis et al. (2012); for further
information on the various models see
Dengler (2009), Tjørve (2009) and
Williams et al. (2009).

No. Model name Model code

No. of

parameters Model shape

Overall

rank

1 Power power 2 Convex 1

2 Exponential expo 2 Convex 2

3 Kobayashi logarithmic koba 2 Convex 3

4 Linear linear 2 Linear 4

5 Persistence function 2 P2 3 Sigmoid 5

6 Monod monod 2 Convex 6

7 Rational ratio 3 Convex 7

8 Asymptotic asymp 3 Convex 8

9 Extended power 2 epm2 3 Sigmoid 9

10 Weibull-3 weibull3 3 Sigmoid 10

11 Logistic heleg 3 Sigmoid 11

12 Morgan–Mercer–Flodin mmf 3 Sigmoid 12

13 Beta-P betap 4 Sigmoid 13

14 Weibull-4 weibull4 4 Sigmoid 14

15 Negative exponential negexpo 2 Convex 15

16 Persistence function 1 P1 3 Convex 16

17 Gompertz gompertz 3 Sigmoid 17

18 Power Rosenzweig power_R 3 Convex 18

19 Chapman–Richards chapman 3 Sigmoid 19

20 Extended power 1 epm1 3 Convex/Sigmoid* 20

*The epm1 model can be either convex or sigmoidal in shape depending on the parameter values. The
overall model rank was calculated by standardizing the generality and efficiency criteria [(criterion
value – mean criterion value)/standard deviation] and summing the resultant values.
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Preston’s (1962) canonical value of 0.25 (e.g. van Vuuren et al.,

2006); see the examples listed in Kitzes & Harte (2014).

However, previous empirical work suggests that a wide range of

values can occur (see Whittaker & Fernández-Palacios, 2007). In

particular, it is expected that habitat islands, being less effectively

isolated, should have lower ISAR z-values than do true islands.

This proposition has rarely been tested using multiple datasets

and our understanding of variation in ISAR parameters remains

hazy.

Few studies have explored ISAR patterns in a large number of

habitat island studies. Watling & Donnelly (2006) conducted an

analysis of several habitat island datasets but fitted just a single

ISAR model. Similarly, the meta-analysis of Drakare et al. (2006)

only considered two ISAR models, and is confounded by the

inclusion of nested SARs. Hence our paper has three aims. First,

we use an information theoretic approach to compare the fit of

20 ISAR models to 207 habitat island datasets. Second, we test

for variation in parameter estimates and model fits as a function

of various dataset characteristics. Third, we compare our find-

ings with those for true island datasets (n = 601; Triantis et al.,

2012), to provide the most comprehensive comparison of ISARs

in the two island types to date.

MATERIALS AND METHODS

Habitat island data collection

Between May 2010 and August 2013 we searched within JSTOR

(1913–2003), ISI Web of Knowledge (1980–2013) and BIOSIS

Biological Abstracts (1980–2003) using the keywords ‘species

richness’, ‘fragments’ and ‘habitat islands’ in different combina-

tions. Certain datasets were obtained from the authors of the

source papers, whilst others were supplemented with additional

data obtained from the authors of the source papers. Following

Matthews et al. (2014b) our criteria for selecting datasets were:

(1) habitat islands constituted discrete patches of habitat sur-

rounded by contrasting habitat (we also included a small

number of datasets consisting of protected areas in which the

contrast between the islands and the intervening matrix was not

so pronounced); (2) there were at least four habitat islands (as in

Triantis et al., 2012); (3) the area and number of species of each

habitat island were known; and (4) data did not overlap with

those from any other study already accepted for analysis (data

for different taxa within the same study system were accepted).

We also included two datasets of birds in 40 habitat islands in

fragmented landscapes in northern France and southern Spain,

collected by the first author (see Appendix S1 in Supporting

Information for details). For each dataset we recorded: the lati-

tudinal midpoint of the habitat patches (Lat; for certain datasets

this was an estimate as precise data were not presented in the

source paper), taxon (Tax), number of islands (Ni), area of the

smallest (Amin) and largest island (Amax) and the ratio between

them (i.e. Amax/Amin; Ascale), and minimum (Smin) and

maximum (Smax) species richness values and the ratio between

them (Sscale). We categorized habitat island types (Typ) as forest

islands, grassland fragments, mountain-top islands (sensu

Brown, 1971), urban fragments and other (e.g. gravel pits, pro-

tected areas). Forest island datasets were defined as those in

which the main vegetation type was forest and the surrounding

matrix was non-urban. Urban fragment datasets could encom-

pass any main vegetation type (typically it was forest) where the

surrounding matrix was entirely comprised of intensive urban

land uses. Island areas were converted into hectares. We tested

for multicollinearity between predictor variables using variance

inflation factors (with a threshold of four) and we tested for

normality in each predictor. As a result Amax and Sscale were

removed from subsequent analyses, while Amin, Ascale, Smin, Ni

and Smax were log-transformed to induce normality.

Model comparison

Following Triantis et al. (2012) we compared 20 ISAR models

(Table 1) using an information theoretic approach (Burnham &

Anderson, 2002). The linear model was fitted using ordinary

linear regression. The remaining models were fitted using non-

linear regression and an expanded version of the ‘mmSAR’ R

package model-fitting procedure (Guilhaumon et al., 2010; see

Triantis et al., 2012, for a more detailed account). Model resid-

uals were evaluated for normality using the Shapiro normality

test and for homoscedasticity using Pearson correlations. The fit

of a model was deemed to be satisfactory if both of these

assumptions were met and the optimization algorithm con-

verged; if not the fit was deemed inadequate. To avoid local

minima we started the optimization algorithm from multiple

different random starting points (n = 1000).

Model performance was compared using the Akaike informa-

tion criterion corrected for small sample size (AICc; Burnham &

Anderson, 2002). The smallest AICc value was taken to represent

the single best model for a given dataset; all models within < 2

ΔAICc of the best model were considered as having similar

empirical support (Burnham & Anderson, 2002). For each

dataset, we calculated AICc weights (wAICc) to determine the

probability of each model being the best-fitting model given the

set of models, and concatenated them to form a model selection

profile. We also recorded the following: whether each model

provided a satisfactory fit (described above), the best fitting

model and the observed shape (linear, convex or sigmoid) of

that model fit using the sequential algorithm outlined in Triantis

et al. (2012).

Following Triantis et al. (2012) we computed model general-

ity (the proportion of datasets for which a model provided a

satisfactory fit) and efficiency (the average wAICc for all datasets

in which a model provided an adequate fit). An overall model

rank was then calculated by standardizing each of these proper-

ties [(criterion value – mean criterion value)/standard devia-

tion] and summing the resultant values.

For our multimodel comparative analyses we used the non-

linear implementation of the power model, but for comparison

with other studies we also fitted the logarithmic form of the

power model to each dataset using standard linear regression in

log–log space, recording the c and z parameters, the R2-value,

and whether the slope of the regression line was significantly

Species–area relationships in islands and habitat islands
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different from zero. In datasets which included islands with zero

species we added one to each island richness value prior to log

transformation.

Consistency of model performance

The effect of sample size

To determine whether model ranks were consistent across the

spectrum of the number of islands (Ni) values, model ranks

were first determined for all datasets with seven or more islands

(the minimum was set to seven as AICc could not be computed

for datasets with fewer islands, see below; cf. Triantis et al.,

2012). This process was then repeated for all datasets with eight

or more islands, and so on, iteratively up to datasets with 20 or

more islands. For each model we then plotted Ni against model

rank and fitted simple linear regressions.

Robustness

To test the sensitivity of a best-fitting model to individual data

points (a criterion we termed ‘robustness’) we randomly

selected 40 datasets and used a jack-knife procedure. We chose

this number because the procedure was computationally inten-

sive and 40 represented approximately a fifth of our datasets.

We hypothesized that model fits for datasets with few data

points were more likely to be influenced by individual data

points and therefore used a weighting system in which datasets

were weighted (i.e. probability of selection) according to the

number of islands they contained. For a given dataset we fitted

18 ISAR models to the complete dataset and defined the best

overall model (Boverall) as that with the lowest AICc value. The

betap and weibull4 (Table 1) models were not used in this

analysis as the fitting process was too computationally inten-

sive. We then removed a data point and reran the model selec-

tion, noting the best model for the subset (Btrial). If no model

provided a satisfactory fit the iteration was discarded. That

data point was then reinstated and a different point removed,

and this process repeated iteratively until the model selection

had been run for all possible sets (trials) of n – 1 data points.

We then calculated the percentage of these successful trials

in which Btrial was the same as Boverall, and the percentage of

trials in which a Btrial model shape matched the Boverall model

shape.

Explaining variation in ISAR patterns

Dataset characteristics

Constrained analysis of principal coordinates (CAP; Bray–

Curtis dissimilarity, 9999 permutations; Anderson & Willis,

2003) was used to determine the amount of variation in the

model selection profile explained with regard to (1) the best-

fitting model (i.e. vectors of wAICc) and (2) the best-fitting

model shape (i.e. vectors of wAICc summed across models for

each shape). We used all the aforementioned dataset character-

istics, except those excluded due to multicollinearity (above), as

predictor variables.

Power (log–log) model

First, we calculated summary statistics for c and z, and used

boxplots and Wilcoxon rank sum tests to assess how z and c

varied in response to Tax, Ascale and Typ. We ran these analyses

twice: first with only parameter estimates from datasets with a

significant z-value, and second with parameter estimates from

all datasets. To enable comparisons of c- and z-values between

habitat islands (number of significant datasets = 135, all

datasets = 207), oceanic islands (n = 125 and 193), continental-

shelf islands (n = 277 and 353) and inland water-body islands

(n = 58 and 66) we fitted the power (log–log) model to the latter

three island categories using the datasets listed in Triantis et al.

(2012); again, running the analysis when only considering

datasets with a significant z-value, and when considering all

datasets. We added 11 inland water-body island datasets found

during our dataset screening process to those compiled by

Triantis et al. (2012) (see Table S1 in Appendix S2).

Second, we fitted two sets of linear models (LMs), using z and

c as the response variables and the dataset characteristics as the

predictor variables. To provide more equal sample sizes between

habitat island categories we grouped mountain-top islands and

urban islands into one category on the basis that they repre-

sented more isolated systems than datasets grouped under our

forest island category. All additional datasets were classified as

‘other’. We took the absolute value of latitude. Again, we reran

these analyses twice, once for datasets with significant z-values

(n = 133 when z was used as the response variable, and 132 when

c was the response; two and three datasets were removed as

outliers based on Cook’s distance values, respectively) and once

for all datasets. Models were compared using AICc. We calcu-

lated the weight of evidence (WoE) of each predictor variable by

summing the Akaike weights of all the models in which a vari-

able was included (cf. Burnham & Anderson, 2002). We used the

‘dredge’ function in the ‘MuMIn’ R package (Bartoń, 2012) to fit

a complete set of models, considering all appropriate predictors.

All analyses were conducted in R (version 3.0.2; R Development

Core Team, 2013).

RESULTS

From over 1500 published articles, 207 habitat island datasets

(Appendix S2) passed the screening procedure, comprising 121

vertebrate, 47 invertebrate and 39 plant datasets; and 127 forest,

12 mountaintop, 16 grassland, 35 urban and 17 ‘other’ habitat

island datasets (a map of these datasets is given in Fig. S1 in

Appendix S2). The true island datasets sourced from Triantis

et al. (2012) included 601 datasets, comprising 193 oceanic

island datasets, 353 continental-shelf island datasets and 55

inland water-body island datasets (increased to 66 with the addi-

tion of the 11 we sourced); and 233 invertebrate, 152 plant and

227 vertebrate datasets.
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Model comparison

AICc could not be computed for datasets with fewer than seven

islands (cf. Triantis et al., 2012), so the model comparison analy-

ses were based on a smaller subset of datasets (Table S1 in

Appendix S2). Of these datasets, at least one model provided a

satisfactory fit in 182 datasets. The power model provided the

best fit (the lowest AICc) for 24% (n = 44) of the 182 datasets.

The P2 model scored best on the generality criterion, although

the power model was a close second (Fig. 1), and the power

model was the highest ranked model according to the efficiency

and overall ranking criteria and was the only model to perform

well by each metric (Fig. 1, Table 1). However, there is a degree

of uncertainty in model performance as the mean wAICc of the

power model was only 0.17, with the second most efficient

model (Kobayashi) having a mean wAICc of 0.15 (Fig. 1). The

more complex models performed poorly, with the weibull4,

betap and heleg models (Table 1) never providing the best fit

(Fig. 1). The linear model ranked second in the number of best

fits (Fig. 1a), but was ranked lower in generality and efficiency

(Fig. 1b,c). For the majority of datasets the observed best-fitting

model shape was convex (mean wAICc of convex models from

satisfactory model fits = 0.83; linear = 0.12; sigmoid = 0.09; see

Table S1).

Sample size and robustness

The majority of model rankings were consistent across the

breadth of Ni values. For example, the power model was ranked

first for all minimum values of Ni (Fig. 2). The main exception

was the linear model (Fig. 2), the rank of which significantly

decreased with increasing minimum Ni (Fig. 2).

The model rankings appeared relatively robust to the removal

of individual data points (Table S2 in Appendix S3). The median

number of times a data point removal trial yielded the same

best-fitting model as the overall best, for a given dataset, was

80%, and the median number of times a data point removal trial

yielded a model with the same shape as the best overall model

was 100%.

Dataset characteristics and the model selection profile

When the model selection profiles (i.e. vectors of wAICc) were

used as the dependent term in the CAP analysis, the significant

predictor variables (i.e. P < 0.05) were Ni, Ascale, Typ and Amin

(Table 2). However, these significant variables explained a total

of only 11% of variation in the choice of best model across the

182 datasets. For model shape (i.e. vectors of wAICc summed

across models for each shape), the only significant predictors

were Ascale and Ni, but they explained only 4% of the variation

in best model shape across the 182 datasets.

The power (log–log) model

There were 135 datasets with a significant power (log–log)

z-value (mean R2 = 0.62). The median z-value was 0.22 (first

quartile (Q1) and third quartile (Q3) = 0.16 and 0.32, respec-

tively; Fig. 3), and the median c-value was 2.27 (Q1 and

Q3 = 1.14 and 3.03; Fig. S2a in Appendix S3). In comparison,

z-values were larger for continental-shelf islands

(median = 0.28; Q1 and Q3 = 0.19 and 0.37; Fig. 3a), inland

water-body islands (median = 0.28; Q1 and Q3 = 0.19 and 0.35)

and oceanic islands (median = 0.35; Q1 and Q3 = 0.24 and

0.49). The median z-value for all true island categories com-

bined was 0.29 (Q1 and Q3 = 0.20 and 0.40; a comparison of

habitat island z-values with those for all true island categories

combined is provided in Fig. S3 in Appendix S3). The z-values

were significantly lower for habitat islands than for continental-

shelf islands (W = 14,014, P = < 0.001), inland water-body

islands (W = 3211, P = 0.048) and oceanic islands (W = 4767,

Figure 1 The performance of 20 species–area relationship models fitted to 182 habitat island datasets. Performance was measured in three
ways: (a) the proportion of datasets for which a given model provided the best fit (i.e. had the lowest AICc value); (b) the proportion of
datasets for which a given model provided a satisfactory fit (generality); and (c) the average AICc weight for datasets in which a given
model provided a satisfactory fit (efficiency). The weibull4, betap and heleg models have been omitted from (a) as they never provided the
best fit to a dataset. For full model names and associated information see Table 1.
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P = < 0.001) according to a Wilcoxon rank-sum test. In addition,

c-values were significantly lower for oceanic islands

(median = 1.45; Q1 and Q3 = 0.33 and 2.45; P < 0.001; Fig. S2a

in Appendix S3), and significantly higher for inland water-body

islands (median = 2.81; Q1 and Q3 = 1.60 and 3.78; P = 0.02)

than for habitat islands (above). Continental-shelf islands

(median = 2.2; Q1 and Q3 = 0.80 and 3.39) had lower c-values

than did habitat islands, but this difference was not significant

(P = 0.82).

Considering only datasets with a significant z-value, and

within habitat island datasets, the median z-value was lowest for

forest islands (0.20; Fig. 3b), and increased for urban islands

(0.27) and mountain-top islands (0.30). Due to differences in

sample size between categories, the only significant pairwise

differences were between forest islands and urban islands

(Wilcoxon rank sum test P = 0.01). The median c-value of forest

islands was significantly larger than mountaintop islands

(P < 0.01; Fig. S2b in Appendix S3) but not urban islands

(P = 0.11). The median z-values did not significantly differ

between taxa (Fig. 3c), while vertebrates had a significantly

lower c-value than plants (Wilcoxon tests; P = < 0.01; Fig. S2c in

Appendix S3) and invertebrates (P = 0.01).

Considering only significant z-values, when z was used as the

response variable in a set of LMs the best model contained

Ascale (Fig. 3d), Ni, Smin and Smax (Table 3). WoE values for

these variables were high. The best model had an adjusted R2 of

0.63. Typ and Amin were also included in some of the models

within < 2 ΔAICc of the best model. Subsequent analysis of the

relationship between z and Ascale revealed no clear patterns

across the three taxa (Fig. S4 in Appendix S3). When c was used

as the response variable, the best model (with an adjusted R2 of

0.89) included Amin, Ni, Typ and Smin, and each of these vari-

ables had high WoE values (Table 3).

When our power model analyses were rerun using parameter

estimates from all datasets (i.e. including non-significant

parameter estimates) our results were qualitatively similar to

those based on significant parameter estimates (all results based

on these data are provided in Table S3 and Figs. S5 & S6 in

Appendix S3). For simplicity, in the Discussion we focus solely

on results based on significant parameter estimates.

DISCUSSION

Of 20 ISAR models and for 207 habitat island datasets,

the power model (nonlinear form) was the overall best model.

In separate analyses using the log–log power model, we found

that z and c varied between datasets, with 63% and 89% of

the variation explained by various dataset characteristics,

respectively.

Model performance

It is reassuring that the power model consistently emerged as

the best overall model given the preponderance of SAR studies

which exclusively use this model (e.g. Watling & Donnelly,

2006). Our results are also consistent with those of Triantis

et al. (2012) using true island datasets, in which it was found

that the power model was the best-ranked model overall. The

more complex models generally performed poorly (Fig. 1), and

as such it seems inappropriate to prefer them over simpler

models for general use either in habitat island or true island

studies. With regard to shape, the best-performing models

Figure 2 Change in model performance with the number of habitat islands in a dataset. Results for two models are displayed: (a) linear
and (b) power models. The rank of a model refers to the model selection analysis in which 20 island species–area relationship models were
compared using the AICc. A model rank was determined by standardizing the generality and efficiency criterion values (see ‘Materials and
methods’), and adding these standardized values together. Thus, rank 1 refers to the model with the largest (larger values indicating a better
performance) sum of standardized generality and efficiency values. Model ranks were first determined for all datasets with four or more
islands, and then for all datasets with five or more islands, and so on, iteratively up to datasets with 20 or more islands. The linear model
rank results were chosen as this was the model with the biggest change in model rank with the number of islands in a dataset. A linear
regression line was fitted through the points and we tested to see if the slope of the line was significantly different from zero.
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were convex (mean wAICc of 0.83). The poor performance of

sigmoidal models, such as the logistic and Gompertz models

(Table 1) may reflect the limited range in area of most habitat

island systems. Scale dependency in ISAR shape has long been

debated (e.g. He & Legendre, 1996), and logistic models are

theorized to be potentially appropriate only over a large range

of island areas (He & Legendre, 1996; Triantis et al., 2012), a

prediction seemingly backed up by our results. Considering

datasets in which the best fit provided an observed linear

shape, the median Ascale value was 78, whilst the medians for

datasets in which the best model provided an observed convex

or sigmoidal shape were 151 and 161, respectively. In addition,

Ascale was a significant predictor variable in the CAP analysis

of the best model shape, but explained only a small amount of

variance in the choice of best model shape (Table 2) – again,

possibly due to the smaller number of datasets in the larger

Ascale categories.

In general, our predictor variables failed to explain variation

in the identity and shape of the best-fitting models (Table 2).

This may indicate that other dataset-specific factors, such as

matrix properties, hunting pressure, etc., act to modulate the

functional form of the ISAR (e.g. Benchimol & Peres, 2013). We

have argued elsewhere that such ‘confounding variables’ may

underpin the good fit of discontinuous piecewise ISAR models

to a number of habitat island datasets (Matthews et al., 2014b).

Interpreting the parameters of the power (log–log)
model

Our study represents the largest collection of solely habitat

island datasets used to date in an ISAR synthesis, and only

focusing on ISAR-structured data (i.e. no nested SARs; Drakare

et al., 2006). Thus, it is encouraging that our reported average

and range of z values are consistent with values published in

other syntheses that have included habitat island datasets

(Table 4).

A central aim of much SAR research has been to determine

whether the z parameter is biologically interpretable (Connor &

McCoy, 1979; Rosenzweig, 1995; Triantis et al., 2012). One par-

ticular area of interest has focused on the idea that more per-

meable matrices surrounding islands will result in lower

z-values as individuals of certain taxa can more easily disperse

between islands, leading for example to rescue effect processes

(Watling & Donnelly, 2006; Whittaker & Fernández-Palacios,

2007). Hence, it has been argued that habitat island systems

should, in general, have lower z-values than true island systems

(see Table 4; MacArthur & Wilson, 1967; Rosenzweig, 1995). As

an illustration, Mendenhall et al. (2014a) show that forest frag-

ments in an agricultural matrix in Costa Rica have lower extinc-

tion rates and shallower ISAR slopes than nearby true islands in

Panama. Our results indicated that in general habitat islands

(median z = 0.22) do indeed have lower z-values than both

continental-shelf islands (0.28) and oceanic islands (0.35;

Fig. 3a), most likely reflecting the dominant processes involved

in island biota assembly/disassembly (Triantis et al., 2012). We

also found that median z increased from forested islands (0.20)

to mountain-top islands (0.30) and urban islands (0.27;

Fig. 3b), indicating that z seemingly responds to matrix type (see

also Watling & Donnelly, 2006).

ISAR z-values were also found to be affected by Smin, Smax,

Ascale and Ni. For Ni the effect was negative, meaning that z

decreased with increasing Ni. This finding is consistent with our

model selection results as we found that the linear model per-

formed better as the number of islands in a dataset decreased.

Thus, it seems that in datasets with low Ni values there is more

of a linear shape to the ISAR in arithmetic space, which in turn

often results in a steeper ISAR in log–log space. That z decreased

with increasing Ascale seems to imply that the most dramatic

increase in richness occurs over a low range of island areas and

that beyond a certain size of island the gain in richness from

additional area becomes slight. The negative effect of Smin on

the z-value, coupled with the positive effect of Smax, makes

sense as together these two variables represent the range in

species richness within a dataset. If we assume that Smin typi-

cally occurs on a small island, while Smax occurs on one of the

largest islands, then decreasing Smin and increasing Smax will

necessarily result in a steeper slope in log–log space.

The lack of difference in z-values between taxa is interesting,

as studies that focused primarily on true islands have found

Table 2 Constrained analysis of principal coordinates (CAP)
results for analyses of factors explaining the amount of variation
in the model selection profile for 182 habitat island datasets. The
predictor variables used in the analyses were the number of
islands (Ni), island type (Typ), the area scale (Ascale, the area of
the largest island in a dataset divided by the area of the smallest
island), the minimum island area (Amin), the minimum and
maximum species richness values in a dataset (Smin and Smax),
taxon, and the latitude of the study area. Only predictor variables
with significant effects (P < 0.05) are presented in each table. We
used these predictors in conjunction with CAP analyses
(Bray–Curtis dissimilarity, 9999 permutations) to determine the
amount of variation in model selection profile explained in
regards to (a) the best model, and (b) best model shape. (L)
indicates predictor variables that were log transformed.

(a) Best model

Variable d.f. Var. F P

Ni (L) 1 11.81 10.1 < 0.01

Typ 5 6.99 1.2 0.04

Ascale (L) 1 4.24 3.63 < 0.01

Amin (L) 1 1.69 1.44 0.04

Residual 173 202.25

(b) Best model shape

Variable d.f. Var. F P

Ascale (L) 1 1.52 5.04 < 0.01

Ni (L) 1 0.79 2.62 0.01

Residual 189 53.93
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significant inter-taxa differences (Sólymos & Lele, 2012; Triantis

et al., 2012) whilst a separate analysis of habitat island datasets

also found no significant difference (Watling & Donnelly, 2006).

We are unsure about the precise causes of this result, but it is

possible that our taxonomic division (i.e. plants, vertebrates and

invertebrates) is simply too coarse, with too much internal vari-

ation in dispersal powers within the groupings (Aranda et al.,

2013), while dividing species into smaller taxonomic groups

leads to sample sizes that are too small to allow any reasonable

inference. Interestingly, vertebrates had significantly lower

c-values than plants and invertebrates. The c parameter is often

overlooked and has been argued to reflect a number of different

properties; for example the average size of the most common

species, a measure of carrying capacity and a scale-independent

measure of diversity (Gould, 1979; Whittaker &

Fernández-Palacios, 2007; Triantis et al., 2012). Our finding that

vertebrates have a significantly lower c-value supports the latter

two hypotheses, as vertebrates, in general, are less diverse than

plants and invertebrates.

Conservation implications and conclusions

Habitat loss is the biggest driver of the current wave of species

extinctions (Schipper et al., 2008). It is thus essential that con-

servation biogeography develops an accurate and coherent

methodology for using the ISAR to predict extinctions resulting

from habitat reduction (Sala et al., 2005). Derivation of any

generalities regarding the form of the ISAR in habitat islands,

alongside the derivation of appropriate parameter values to use

in prediction exercises, are essential components of this research

programme (Halley et al., 2013). The functional form of the

model is a particularly important consideration as the different

Figure 3 Variation in the z parameter of the power (log–log) model across (a) all island types, (b) different habitat island types, (c)
different major taxa, and (d) area scale (log transformed). Note that (b)–(d) were calculated using only habitat island datasets. For all plots,
only datasets with significant z-values (P < 0.05) were included. For reasons of clarity, the boxplots were constructed after omitting the
small number of z-values < 0 (all subsequent statistics were performed using the full set of data). Thus, in (a) there were 132 habitat island,
125 oceanic island, 58 inland water-body (‘Inland’) and 277 continental-shelf island datasets (‘C. shelf ’). In (b) there were 75 forest, 12
mountaintop and 21 urban habitat island datasets. In (c) there were 26 invertebrate, 20 plant and 86 vertebrate datasets. Area scale was
calculated as the area of the largest island in a dataset divided by the area of the smallest island. Area scales larger than five have been
omitted. The boxplots display the median (thick black line) and the first and third quartiles (thin black box). The whiskers extend from the
hinge to the highest value that is within 1.5 multiplied by the interquartile range of the hinge. Outliers are indicated by solid dots.
Significant differences in z-values between dataset categories are displayed as different lowercase letters above the boxplots. Values that do
not significantly differ between categories have the same lowercase letters.
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forms of the ISAR curve translate to varying forms of their

respective first derivatives, and thus different species extinction

rates for a given amount of habitat area (Fig. S7 in Appendix S3

illustrates this issue using a convex and sigmoidal model).

The large number of datasets used herein allows us to provide

at least partial answers to a number of the questions that have

been posed in connection with applied use of the SAR (e.g.

Connor & McCoy, 1979; Rosenzweig, 1995; Laurance, 2008). For

example, in a seminal critique of the use of the SAR in bioge-

ography, Connor & McCoy (1979), list, amongst others, (1) the

unreserved use of the power model, and (2) the use of canonical

z values of 0.25 derived from traditional island theory (e.g.

Preston, 1962), as widespread incorrect assumptions. Regarding

issue (1), we have shown that the power model is markedly the

Table 3 Parameter estimates for a set of the most parsimonious linear models, modelling (a) the z-value of the power (log–log model) and
(b) the value of the c parameter for 135 habitat island datasets. The predictor variables included the latitude of the study site (Lat; absolute
value was used), area of the smallest island (Amin), area scale (Ascale; i.e. Amax/Amin), the number of islands (Ni), the minimum and
maximum species richness values for a dataset (Smin and Smax) the taxon (Tax), and the habitat island type (Typ). The best model (i.e.
lowest AICc) and all models within ΔAICc of < 1.5 of the best model in (a), and within ΔAICc of < 2 in (b) are given in each instance. Only
datasets with significant z-values were used. The weight of evidence (WoE) of each variable, calculated by summing the Akaike weights of
all the models in which a variable was included, is also given. The ΔAICc and wAICc for each model selection are also presented.

(a) z-value

Model no. Lat Ascale (L) Amin (L) Ni (L) Smax (L) Smin (L) Tax Typ ΔAICc wAICc

1 −0.03 −0.03 0.14 −0.17 0 0.16

2 −0.04 < −0.01 −0.03 0.15 −0.17 1 0.09

3 −0.03 −0.03 0.15 −0.17 + 1.34 0.08

4 −0.04 < −0.01 −0.03 0.15 −0.17 + 1.39 0.08

WoE 0.27 1 0.45 0.84 1 1 0.38 0.38

(b) c-value

Model no. Lat Ascale (L) Amin (L) Ni (L) Smax (L) Smin (L) Tax Typ ΔAICc wAICc

1 −0.22 0.13 1.16 + 0 0.12

2 −0.22 1.14 + 0.42 0.09

3 < −0.01 −0.22 0.16 1.17 + 0.45 0.09

4 −0.22 0.08 1.09 + 1.73 0.05

WoE 0.38 0.25 1 0.57 0.28 1 0.25 0.87

+, Indicates a significant effect of taxon or habitat type. A blank space indicates that a variable was not included in a model. (L) indicates predictor
variables that were log transformed.

Table 4 Reported average and/or range of z values of isolate systems from a selection of island species–area relationship syntheses and
meta-analyses. Only studies which focus on multiple datasets/island systems are included.

Dataset Island type

No. of

datasets Taxon studied Reported average and/or range of z values

This study Habitat islands 207 Multiple taxa Median = 0.22 (Q1 and Q3 = 0.16 and 0.32).

Connor & McCoy (1979) Multiple island types 90 Multiple taxa Mean = 0.31, SD = 0.23 (range −0.28 to 1.13).

Drakare et al. (2006) Multiple island types 794† Multiple taxa Average = 0.24 (range 0 to c. 1)

Rosenzweig (1995) True islands * * Range 0.25–0.33*

Sala et al. (2005) Oceanic and mountaintop islands 26 Vascular plants Mean = 0.34, SD = 0.14

Sólymos & Lele (2012) Multiple island types 94 Multiple taxa Mean = 0.23 (90% confidence limits of 0.06 and 0.41).

Triantis et al. (2012) True islands 601 Multiple taxa Mean = 0.32, SD = 0.16 (range 0.06–1.31).

Watling & Donnelly (2006) Habitat islands and true islands 118 Multiple taxa Habitat islands: mean = 0.20

True islands: mean = 0.26

Q1, first quartile; Q3, third quartile.
*Represents a theorized range of z-values, i.e. not results from a synthetic analysis.
†This number includes datasets that report z-values derived from nested SAR data, rather than ISAR data; the average z-value reported in the table only
relates to the ISAR structured datasets.
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best overall model according to our criteria and thus is in

general a sensible choice (but see Smith, 2010). Regarding issue

(2), we found that z varies according to a number of different

properties, such as island type, a variable which is linked to

matrix type: as the intervening matrix becomes more hostile/less

permeable, the z-value increases. This is a particular concern

because the majority of past studies have used z-values from a

set range (0.18–0.25) to predict extinctions (see Halley et al.,

2013). Our results indicate that such values may only be appro-

priate for a subset of systems; while the median z-value (log–log

model) when all datasets with a significant model fit (n = 135)

were considered was 0.22, 51 datasets had z-values > 0.25.

Perhaps a better approach when the aim is to predict extinctions

would be to adjust z-values according to a particular context/set

of site-specific conditions (as Triantis et al., 2010). This need not

introduce large amounts of complexity, and even very basic

adjustments have had positive results (Pereira & Daily, 2006;

Koh et al., 2010; Mendenhall et al., 2014a, b). There is a need for

more research in this area, and further broad-scale tests of pre-

viously published ‘calibrated’ and ‘countryside biogeographic’

SAR models.

It is important to recognize that determining the functional

form of the ISAR in habitat island systems and selecting the

most appropriate model, or set of models, are but steps towards

improving the accuracy of ISAR extinction predictions (Matias

et al., 2014). A number of other factors are also relevant. For

example: (1) variables other than area have been found to

modulate the SAR (e.g. hunting pressure; Benchimol & Peres,

2013); (2) the ISAR is often unable to accurately predict the total

richness of a set of isolates (Matthews et al., Unpublished data);

(3) and there may be interactions between the effects of decreas-

ing patch area and increasing patch isolation (Hanski et al.,

2013). A further issue is that the majority of studies, including

the present analysis, include all sampled species in SAR calcula-

tions. However, in a recent paper we have shown that habitat

specialists and generalists respond discordantly to habitat

insularization: the first derivative of a multimodel ISAR curve

was generally steeper for specialists than for generalists

(Matthews et al., 2014a; see also Banks-Leite et al., 2012). Thus,

the inclusion of generalist species in SAR calculations may act to

mask the impact of habitat loss on specialists.

It is necessary to highlight two potential issues with our analy-

ses. First, whilst island type in this study is likely to be coupled

with matrix type, it would have been preferable to include more

precise information on matrix type in our models. The catego-

rization used was necessarily coarse given the lack of detailed

information provided in many source papers, but the fact that

significant differences were found suggests this may be a pro-

ductive avenue for further work in the future. Second, as with

any meta-analysis the inclusion of multiple datasets from differ-

ent sources mixes studies that had varying aims, sampling proto-

cols and sampling effort, which may affect the inferences drawn

(Whittaker, 2010). It is thus possible that variations in data

quality have influenced our results. To counter this issue we read

and checked the methods of each source paper before accepting

a dataset. Having done this we saw no reason to assume that

variation in sampling effort would be biased towards any par-

ticular island type or taxon. However, future work might use-

fully be undertaken, for example to determine whether studies

have consistently undersampled the larger islands in a dataset

(which might affect conclusions on ISAR curve shape, for

example). See Appendix S2 for a more detailed discussion of

data quality issues in SAR studies.

Due to constraints on resources and data availability, the

analysis of SARs remains one of the most important analytical

methods in the conservation biogeographer’s toolkit. Thus, it is

essential that studies attempt to synthesize information across

systems in order to produce general guidelines. Based on the

results of this study, we suggest the following guidance for using

the ISAR with habitat island data: (1) if only one model is to be

used, the power model is a sensible choice; (2) convex models

should generally be preferred to linear and sigmoidal models,

particularly if very large islands are not the focus of study; (3)

depending on the aim of the study, calibrating the z-value of the

power model based on system-specific characteristics will

improve predictive accuracy; and (4) as the software is freely

available (Guilhaumon et al., 2010), it can be enlightening to fit

a selection of models and use a multimodel inference approach,

especially for use in conservation applications.
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