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ABSTRACT

It has become increasingly recognized that multiple processes can generate simi-

lar shapes of species abundance distributions (SADs), with the result that the fit

of a given SAD model cannot unambiguously provide evidence in support of a

given theory or model. An alternative approach to comparing the fit of different

SAD models to data from a single site is to collect abundance data from a variety

of sites, and then build models to analyse how different SAD properties (e.g.

form, skewness) vary with different predictor variables. Such a biogeographical

approach to SAD research is potentially very revealing, yet there has been a gen-

eral lack of interest in SADs in the biogeographical literature. In this Perspective,

we address this issue by highlighting findings of recent analyses of SADs that we

consider to be of intrinsic biogeographical interest. We use arthropod data drawn

from the Azorean archipelago to further highlight how analyses of SAD form and

function may be biogeographically informative. We hope that, by reviewing a

number of novel approaches, our article may prove to be a catalyst for a greater

interest in analysing SADs in biogeography.
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INTRODUCTION

A species abundance distribution (herein ‘SAD’) describes

how the total number of individuals sampled within a given

community is distributed amongst the sampled species. Pat-

terns of SADs have been studied for over 70 years, with sem-

inal papers published in the 1940s by Fisher et al. (1943)

and Preston (1948), but have received renewed interest in

the last decade (McGill et al., 2007; McGill, 2011; Matthews

& Whittaker, 2015). One common recent use of the SAD has

been as a means to test different ecological theories. For

example, following the introduction of Hubbell’s (2001) spa-

tially implicit neutral model (SINM) for application in bio-

geography and biodiversity studies, many authors attempted

to test the theory by evaluating the fit of the SAD predicted

by Hubbell’s SINM to empirical data – with varying levels of

success (e.g. Hubbell, 2001; McGill, 2003; Etienne, 2005; for

a review see Matthews & Whittaker, 2014).

Unfortunately, it has become increasingly apparent that

multiple processes can generate similar shapes of SAD curves,

thus causing a problem of equifinality: the fit of a given SAD

model cannot unambiguously provide evidence in support of

a given theory (McGill et al., 2007). An alternative and less

frequently applied approach to that of simply comparing the

fit of different SAD models to data from a single site, is to

collect species abundance data from a variety of sites to build

models that can then be used to analyse how different SAD

properties (e.g. form, skewness) vary with different predictor

(environmental) variables. In other words, the question of

which mechanisms drive SADs can be approached instead by

assessing which biogeographical variables control the relative

abundances of species. Such an approach to SAD research

may be more revealing and encourage interest in using SADs

in biogeographical studies.

Here, we set out to highlight the use of SADs as a fruitful

and instructive approach in biogeographical research and we
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hope that this article may encourage greater interest in ana-

lysing SADs amongst biogeographers. We begin by describing

how two different regression-based methods (standard linear

regression and function regression) can be used to determine

the mechanisms underlying SADs and provide examples

from the recent literature of studies that have used these

approaches. This is followed by an analysis of arthropod data

from the Azorean archipelago to illustrate how the study of

SADs can generate interesting information from a biogeo-

graphical point of view.

USE OF REGRESSION METHODS FOR

EXPLAINING VARIATION IN SADS

Assessing SAD model parameters within a standard

linear regression framework

One useful way of assessing which variables underpin various

SAD properties is to use a parameter from a given SAD

model as the response variable in, for example, a regression

model. Traditionally, the lognormal and logseries models

have been used in such an approach (see Matthews & Whit-

taker, 2015). For instance, Sæther et al. (2013) used a Scot-

tish lake macro-benthos community dataset to show that the

r2 parameter (the variance) of the lognormal model varied

significantly according to the severity of pollution.

While the lognormal and logseries models are sound statisti-

cal representations of many empirical communities and still

represent useful tools, more recently introduced models offer

additional possibilities for such analyses. For example, the

immigration parameter (m) of Hubbell’s (2001) SINM can be

used to make inferences regarding the importance of dispersal

from the metacommunity into the local community: if m is

close to 1, the local community is a random sample of the

regional metacommunity, whereas if m is close to zero, the

local community receives very few immigrants from the meta-

community (Hubbell, 2001; Matthews & Whittaker, 2014).

The m parameter can easily be estimated by maximum likeli-

hood fitting of the zero-sum multinomial SAD model (Eti-

enne, 2005). If multiple sites are surveyed it is then possible to

regress m against various predictor variables to determine what

factors influence the importance of dispersal in ecological

communities. For example, in one recent analysis Chust et al.

(2013) found that m was consistently lower in tropical relative

to temperate marine phytoplankton communities. The fre-

quency dependence parameter (delta) of Jabot & Chave’s

(2011) non-neutral generalization of Hubbell’s model provides

an alternative parameter to use in such exercises (e.g. see Jabot

& Chave’s 2011, Figure 2 for a correlation between delta and

precipitation for a variety of tropical tree plots).

The gambin SAD model (Matthews et al., 2014a) can also

be used in biogeographical analyses (e.g. Dornelas et al.,

2011). The gambin model combines the flexible gamma dis-

tribution with a binomial sampling process. It is a single free

parameter model and its parameter (a) characterizes the

shape of the SAD. Low values characterize logseries SAD

shapes, while higher values indicate lognormal curve shapes

(Ugland et al., 2007; Matthews et al., 2014a). Extreme values

can indicate more complex situations in which common spe-

cies are the most prevalent type of species in the community.

Thus, a condenses the shape of the SAD into a single value

that can then be used in regression models. The gambin

model is beneficial in this regard as it is flexible and has been

found to fit a wide range of SAD shapes.

A recent paper published in Journal of Vegetation Science by

Ulrich et al. (2015) provides a useful example of what can be

gained from a biogeographical approach to SAD research.

They examined the SADs of 605 tree assemblages across six

continents and fitted two SAD models (logseries and lognor-

mal) in rank-abundance form and related various properties

of the observed SADs (e.g. shape and evenness) to geographical

and climatic variables (e.g. latitude, elevation and evapotran-

spiration) using linear regression. Relationships between lati-

tude and SAD evenness and shape were found. Logseries

distributions were more prevalent at lower latitudes, while

there was an increase in the prevalence of lognormal distribu-

tions towards northern latitudes. Again, while these results are

interesting in themselves, what is perhaps more intriguing is

that this approach allows the user to make inferences regarding

classic SAD and community assembly theory. For example, the

lognormal distribution has traditionally been used to model

undisturbed ecological communities (Ugland et al., 2007;

Matthews & Whittaker, 2015). In contrast, logseries SADs have

been linked to disturbed communities and communities in

severe environments with low productivity (Gray et al., 1979;

Hill & Hamer, 1998; Ugland et al., 2007). As such, a number

of studies have used deviation from a lognormal distribution

as a means of assessing the impact of disturbance (e.g. pollu-

tion) on natural communities (e.g. Hill & Hamer, 1998;

reviewed in Matthews & Whittaker, 2015). The results of

Ulrich et al. (2015) are at variance with this theory, as it was

found that logseries distributions were associated with species

rich, productive and low-latitude tree communities. Instead,

their results point to the importance of dispersal and stochastic

processes in shaping the SADs of tree communities. It is worth

noting that the R2 values of their models were generally quite

low (< 0.3), indicating that there must be other important

‘hidden variables’ that were not included in the study, thus

pointing towards information needs for future biogeographical

SAD studies and meta-analyses. For example, isolation is

known to be an important variable in many ecological systems

and may therefore explain some of the additional variation in

Ulrich et al.’s data. A distance-decay approach may be useful

in such circumstances to evaluate the impact of between-patch

distances on SAD metrics.

Function regression and the species abundance

distribution

A recent paper by Yen et al. (2015) introduces the method

of function regression in the context of ecological applica-

tions. Function based regression models have been used in
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the statistical literature for some time (see M€uller &

Stadtm€uller, 2005), but as Yen et al. note, applications in

biogeography and ecology are uncommon. Function regres-

sion models enable functions to be used as the response vari-

able (and as predictor variables, although this possibility is

not discussed here), which allows the user to regress a func-

tion on different predictor variables (Yen et al., 2015). Ques-

tions such as ‘how does the form of the SAD change in

response to fragment area and/or isolation?’ are perfectly sui-

ted to this methodological approach. However, instead of

condensing the SAD into a single value, for example the

gambin a parameter, function regression models allow us to

use function-valued data and therefore the whole SAD, as

the response variable. Multiple methods are available to fit

function regression models (e.g. Bayesian estimation using

reversible-jump Markov chain Monte Carlo computation).

The original ‘free’ R package (see Yen et al., 2015) provides

functionality for six of these different methods. An updated

version of the package (‘FREElite’) that includes fewer fit-

ting methods is also available. The use of function regression

in SAD research is technically more complex than the simple

linear models discussed above, but the former are arguably

more revealing models as they allow the user to determine

how different parts of the SAD are affected by a given pre-

dictor, e.g. the relative abundances of very common species.

As such, ‘a function- valued method is likely to provide

much deeper ecological and evolutionary insight’ (Yen et al.,

2015, p. 18). In their paper, Yen et al. provided examples of

function regression using individual size distributions of var-

ious taxa.

EXEMPLIFICATION WITH AZOREAN

ARTHROPOD SADS

Using standard linear regression to examine

variation in gambin’s alpha parameter

To highlight the utility of using SAD model parameters

within a linear regression framework, we focused on the a
parameter of the gambin model (described above). We used

well-specified arthropod SAD data from the long-running

Biodiversity of Arthropods from the Laurisilva of Azores

(BALA) project in the Azores (see Borges et al., 2005; Ribeiro

et al., 2005) in combination with a linear regression mod-

elling framework to determine which environmental variables

explained variance in the shape of the SAD. Arthropods were

sampled using a combination of pitfall traps and a canopy

beating method, following a rigorously standardized proto-

col. Eighteen fragments of native Laurisilva forest were sam-

pled across seven islands in the Azorean archipelago over

13 years. The full sampling methodology can be found in

Gaspar et al. (2008). The gambin model was fitted to the

SADs from these 18 fragments using the ‘gambin’ R package

(Matthews et al., 2014a), recording the a parameter in each

case. As differences in sample size have been found to influ-

ence a (Matthews et al., 2014a), we used a re-sampling

approach in which we first determined the fragment with the

smallest number of individuals, denoting the number of

individuals in this fragment as n. For each of the remaining

17 fragments, we then randomly sampled n individuals and

fit the gambin model to the sampled data. This process was

repeated 100 times in each case and the average a value of

100 iterations taken. The response variable therefore consti-

tuted the standardised a values for 18 forest fragments. We

collected data on five predictor variables, representing differ-

ent fragment characteristics: fragment area, fragment isola-

tion, precipitation, temperature and relative humidity (RH).

Climatic data were obtained from the CIELO model (de Aze-

vedo et al., 1999). Fragment area and isolation were obtained

from Gaspar et al. (2008) and were calculated using a geo-

graphic matrix of centroids using the DIVA-GIS software

(Hijmans et al., 2005). Isolation was measured in metres as

the distance between fragments within an island, except in

the case of the single fragment on the island of Santa Maria,

for which we used the distance to the closest fragment on

the nearest island of S~ao Miguel. All predictors were log-

transformed (base e), which induced normality. Variance

inflation factors were used to assess multi-collinearity

between predictors, while Cook’s distance was used to iden-

tify any outliers. Two data points were removed as outliers,

so that our results are for 16 fragments only. The dredge

function in the ‘MuMIn’ R package (Barto�n, 2012) was used

to fit a complete set of models that were compared using

Akaike’s information criterion corrected for small sample size

(AICc; Burnham & Anderson, 2002). Weight of evidence val-

ues were calculated for each predictor as the sum of the AICc

weights from all models in which a predictor was included

(Burnham & Anderson, 2002).

The best model contained isolation and temperature, both

of which had relatively high WoE values (Table 1). The best

model had an adjusted R2 of 0.74, which is noteworthy, as it

indicates that a substantial part of the variation in a between

sites can be attributed to isolation and temperature alone,

for these 16 fragments. Isolation was included in all models

within 10 DAICc of the best model, and had a near maxi-

mum WoE value (0.99). The effect of isolation was negative

(see Fig. 1), meaning that increasing isolation results in a

decrease in a and therefore a shift from a more lognormal-

like SAD towards a more logseries-shaped distribution. This

is an interesting finding because it could be expected that

more isolated fragments/islands will have fewer really rare

species of forest-dependent arthropods due to reduced rescue

effects and re-colonisations following patch level extinctions.

Thus, based on this line of reasoning, more isolated frag-

ments would be expected to have a lower proportion of rarer

species and therefore have SADs closer to lognormal in form.

One possible ecological interpretation of this result is that, as

these fragments are isolated in a matrix of human-modified

habitats, our samples contain a relatively high proportion of

tourist species represented by few individuals (Borges et al.,

2008), and that the proportion of tourist species is higher in

the more isolated fragments. For example, in our previous
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work we found that the presence of non-forest specialist spe-

cies within fragments affects the shape of the SAD (Matthews

et al., 2014b). Nonetheless, the more important point in the

context of the current paper is how this methodological

approach can be used to determine the variables driving vari-

ation in SADs between sites, and in turn provides useful

information on the key processes underpinning community

structure.

Examining variation in the shape of Azorean

arthropod SADs using function regression

To our knowledge function regression has not been used in

conjunction with SADs and so we return to the Azorean

arthropod data described above to illustrate the approach.

For this analysis, we used the SAD data from the 18 forest

fragments as the response variable, but this time in their raw

form. We used two predictor variables: fragment area and

isolation. Following Yen et al. (2015), both predictors were

standardized to have a mean of zero and a standard devia-

tion of one. The function regression model was fitted using

the free R package, and we used the ‘INLA’ (Integrated

nested Laplace approximation) method as it was found to

perform well in Yen et al.’s various tests. A Gaussian error

structure was assumed. To convert the SAD data into a

matrix, we binned the data from each fragment into octaves

using functionality available in the gambin R package (Mat-

thews et al., 2014a). This procedure uses a simple log2 trans-

formation that doubles the number of abundance classes

within each octave (see method 3 in Gray et al., 2006). A

matrix was then created in which the columns represented

abundance octaves, and the rows represented fragments.

The R2 value of the resultant model was high (0.87), but

the credible intervals around the model coefficient estimates

were quite large (e.g. Fig. 2). In the function regression anal-

ysis, isolation had a relatively large positive effect on the

number of species in the rarer octaves (Table 2; Fig. 2),

which in turn will make the SAD more logseries-like. The

Figure 1 The relationship between fragment isolation and the

standardized alpha parameter value of the gambin species
abundance distribution model. The data are 16 arthropod SADs

from native Laurisilva fragments in the Azores. Fragment

isolation ranged from 970 m to 90,780 m. The blue line
represents the best fit linear regression model. The islands in

which the fragments are located are provided in the key.
[Colour figure can be viewed at wileyonlinelibrary.com]

Table 1 The results of the linear regression analysis. The

response variable was the standardized gambin a value from 16
arthropod SADs in native Laurisilva forest fragments, in the

Azores. The five predictor variables were fragment area,
isolation, precipitation (Precip.), relative humidity (RH) and

temperature (Temp.). The best model and all models within 4
DAICc of the best model are shown. The weight of evidence

(WoE) of each predictor was calculated by summing the AICc

weights (wAICc) of each model in which a predictor was

included. NI indicates a variable was not included in a model.

Model Area Isolation Precip. RH Temp. DAICc wAICc

1 NI �0.19 NI NI 2.01 0 0.67

2 NI �0.19 NI 3.00 2.59 3.60 0.11

WoE 0.11 0.99 0.10 0.15 0.97

Figure 2 Fitted parameter estimates from a function regression

model. The fitted curve indicates the effect (Beta) of the
predictor variable (fragment isolation) on the species abundance

distributions of arthropods in 18 native Laurisilva forest
fragments, in the Azores. A higher value of Beta indicates a

greater effect of isolation on that particular area of the SAD (see
the main text for further information). The solid line represents

the mean value, and the dashed lines represent the approximate
95% pointwise credible intervals. The SAD data were binned

into octaves using a simple log2 transformation: octave 1
contains the number of species with 1 individual, octave 2 the

number of species with two or three individuals, octave 3 the
number of species with 4–7 individuals, and so forth.
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results of this analysis match up well with our analysis above

in which we used the gambin a parameter as the response

variable in a standard linear regression model. However, the

use of the function regression model allows us to make addi-

tional observations, which we were unable to make using the

simple linear model. For example, from Fig. 2 it is clear that

the effect of isolation is most pronounced for the two rarest

octaves (1:2), and the effect decreases towards the more

common octaves. Thus, it does appear that isolation is

resulting in a relatively higher proportion of rare, possibly

tourist (see e.g. Borges et al., 2008), species in isolated frag-

ments. A single parameter value (e.g. a) will never be able to

convey this detailed level of information; which is one reason

why function regression represents a potentially useful tool

for SAD studies.

CONCLUSIONS

Many authors have commented on how simply evaluating

the fit of a predicted SAD is a poor test of any ecological

theory (e.g. McGill, 2003; McGill et al., 2007; Matthews &

Whittaker, 2014; May et al., 2015). Perhaps then a more

fruitful avenue for SAD research is to adopt a more biogeo-

graphic perspective, and examine the factors that underpin

the observed variation in SAD form between sites in both

space and time. A large number of biogeographical studies

have attempted to interpret the parameters of the power

species–area relationship model (c and z) ecologically by

assessing which predictor variables explain variation in the

parameters across datasets (Connor & McCoy, 1979; Triantis

et al., 2012; Matthews et al., 2015). Similar biogeographic

analyses involving parameters of SAD models are much less

prevalent in the biogeographical literature, probably due in

part to the additional data requirements involved in con-

structing SADs. In fact, obtaining standardized abundance

values for many species across large scales is not trivial,

particularly for invertebrates. However, many SAD datasets

have now been published (Borges et al., 2005; Ribeiro et al.,

2005; Ulrich et al., 2010, 2015), including a number of lar-

ge-scale total counts (i.e. not samples; e.g. the Barro Color-

ado Island 50 ha tree plot). Coupled with this increasing

availability of data, it is hoped that, by reviewing a number

of novel approaches, the present paper may act as a

catalyst for a greater uptake and application of SADs in

biogeography.
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