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ABSTRACT

Aim The application of island biogeography theory in habitat fragmentation

research assumes a simple relationship between species richness and fragment area.

However, previous work has suggested that in some cases thresholds can be detected,

at which the form of the island species–area relationship (ISAR) changes abruptly.

Piecewise regression has been advocated as a suitable statistical technique to model

such thresholds. Here we first provide a comparative analysis of piecewise regression

models to determine the prevalence and type of thresholds in habitat island ISARs.

Second, we evaluate piecewise regression as a method for locating thresholds in the

ISAR, with particular emphasis on the implications of data transformation.

Location World-wide.

Methods Seventy-six habitat island datasets were sourced from the literature.

An information theoretic approach was employed to compare linear regression

ISAR models with piecewise regression models. The models were applied to un-

transformed (species–area), semi-log (species–log area) and log–log (log species–log
area) data. Three types of piecewise regression models were evaluated: continu-

ous, discontinuous and zero slope. Model performance was compared using the

Akaike information criterion. We also examined the influence on model perfor-

mance of taxon, number of habitat islands, and area of smallest island.

Results Linear regression models performed best, although piecewise models

were preferred in a number of cases. Cases in which no model was significant

were most prevalent in untransformed space relative to the semi-log and log–

log transformations. Piecewise fits were more prevalent in datasets with a larger

numbers of islands.

Main conclusions Data transformation is a key part of model selection and

needs to be explicitly considered, especially in terms of drawing inferences

from models. Piecewise models, even if selected as the favoured model in our

analyses, were often ecologically unintelligible in relation to area alone. When

detected, breakpoint values ranged over five orders of magnitude, although

with one exception all were under 50 ha. Our findings highlight the limitations

of using individual threshold values to inform conservation practice.

Keywords

Breakpoint values, conservation biogeography, habitat islands, island biogeog-

raphy, piecewise regression, scale dependency, small island effect, species–area

relationship, thresholds.

INTRODUCTION

The destruction and fragmentation of natural habitat are pri-

mary causes of terrestrial biodiversity decline (Wilcove, 1987;

Primack, 2010) and constitute a major focus of research

within conservation biogeography (Ladle & Whittaker, 2011).

The impacts of habitat loss and fragmentation on species

diversity take time to be fully realized (Halley et al., 2014),
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leading to a reliance on the use of various forms of species–

area relationship (SAR) to quantify and predict likely future

levels of species loss from landscapes (but see also, e.g.,

Stork, 2010). The two principal variants of SAR are species

accumulation curves (SACs), which record the cumulative

sum of species as sampling area is increased, and island spe-

cies–area relationships (ISARs), which record the number of

species found versus area for each island or habitat patch

(Box 4.2 in Whittaker & Fern�andez-Palacios, 2007). Both

variants (and others) have been used in efforts to model and

predict species losses arising from habitat fragmentation.

However, as the majority of fragmentation studies use ISARs

the empirical tests presented herein are exclusively concerned

with ISARs.

ISARs are typically interpreted in terms of MacArthur &

Wilson’s (1967) equilibrium theory of island biogeography.

However, debate continues as to the efficacy and applicability

of island theory in the context of habitat islands (e.g. Lau-

rance, 2008). Of particular concern is whether there may be

evidence for nonlinearity, perhaps involving thresholds across

which relationships change form, and how analytically such

nonlinearity may best be dealt with (Lomolino & Weiser,

2001; Gentile & Argano, 2005; Ficetola & Deno€el, 2009; Den-

gler, 2010).

The definition of nonlinearity in this context is itself prob-

lematic. In general, ISARs, whether fitted to ‘habitat island’

or ‘true island’ datasets, are rarely best fitted by linear mod-

els using untransformed data. Rather, partly for analytical

convenience, linear fits have been obtained by log-transfor-

mation of data, with much debate as to whether linear fits

are more satisfactorily obtained using ‘species richness–log

area’ (hereafter semi-log) or ‘log species richness–log area’

(hereafter log–log) transformations. The implication of a lin-

ear regression fit using a semi-log transformation is of course

that species richness declines nonlinearly with declining area.

For example, Drinnan (2005) uses this logic to identify a

threshold area below which the loss of species accelerates

with further area loss. An alternative approach to identifying

thresholds is to use piecewise regression models that fit two

separate linear functions to upper and lower parts of the dis-

tribution of values of area (e.g. Gentile & Argano, 2005).

However, when using log-transformed area and/or species

richness data, it should be understood that any breakpoint

identified is in essence identifying a change of form within

an already nonlinear space (Burns et al., 2009). Hence, any

interrogation of threshold relationships using piecewise

regression requires careful interpretation of the data transfor-

mation applied.

The use of piecewise regression to test for ecological

thresholds has been advocated by several authors as it

allows for rigorous identification of patch area thresholds,

and evaluation of the associated error of such identifica-

tions (e.g. Toms & Lesperance, 2003; Ficetola & Deno€el,

2009). Ficetola & Deno€el (2009) sourced 26 papers from

the literature and reviewed the methods used to detect

thresholds in the relationship between habitat amount and

species occurrence or richness. They found that only 35%

of the studies examined used appropriate statistical tech-

niques. A number of studies were found to have used gen-

eralized linear models whereby the breakpoint was

determined visually. Ficetola & Deno€el (2009) contend that

visual identification of breakpoints is inadequate, arguing

that only techniques such as piecewise regression have the

ability to estimate both the position and probability of

thresholds in habitat amount.

Previously reported threshold ISAR relationships mostly

take two basic forms, which we characterize herein as shal-

low–steep and steep–shallow, by which we refer to the

change in form of the ISAR with increasing area. Steep–shal-

low relationships are those showing an initially rapid rate of

increase in richness with area, until a threshold is reached

beyond which a slow rate of increase applies (Fig. 1). Steep–

shallow thresholds indicate that the effect of habitat loss

becomes exacerbated below the threshold level of habitat

cover. This may be due, for example, to a patch extinction

rate exceeding its immigration rate (Fahrig, 2001). A certain

threshold area may also relate to coinciding minimum patch

area requirements for multiple species or to a point at which

the effects of habitat isolation are exacerbated (Andr�en,

1994). Detecting steep–shallow relationships is an important

Figure 1 Schematic illustration of the alternative models used in the analysis, and their different forms. In the ‘linear’ plots the red line

signifies a negative linear relationship and the blue line a positive linear relationship. In the continuous plots the blue lines signify a
shallow–steep form (following the line from left to right) and the red line indicates a steep–shallow form of the model. The

discontinuous plots do not represent the sole form of a discontinuous model; rather multiple patterns emerged through the analysis (see
Fig. S1 in Appendix S2). We denote the x-axis as (log) Area, and the y-axis as (log) Species richness, but have applied the models to

data that were untransformed, semi-log and log–log transformed.

Journal of Biogeography 41, 1018–1028
ª 2014 John Wiley & Sons Ltd

1019

Thresholds and the species–area relationship



task for conservation planners (Drinnan, 2005; Huggett,

2005). Shallow–steep ISARs are those that initially show a

slow rate of (or no) increase in richness with increasing area,

followed by a steeper phase beyond a critical threshold.

Shallow–steep ISARs as so defined include those that repre-

sent the so-called small island effect (SIE: e.g. see Lomolino

& Weiser, 2001), which has previously been described for

some habitat island datasets (Qie et al., 2011).

Piecewise regression models incorporate the inclusion of

breakpoints within linear regressions, with the breakpoints

representing a point at which the form of the relationship

changes, either in slope or in slope and intercept (Toms &

Lesperance, 2003; Gentile & Argano, 2005). Analytically, the

possible forms of these relationships are in practice more

numerous than the two basic forms described above and

include the following set of piecewise models: continuous,

zero slope, and discontinuous (Fig. 1). Continuous piecewise

models incorporate a change in slope at the break-point,

with the condition that the regression line being modelled is

continuous. Zero slope models are a subtype of the shallow–

steep continuous model whereby the slope to the left of the

breakpoint is zero (i.e. there is no relationship). Zero slope

models are included within the model comparison as they

are recommended by Lomolino & Weiser (2001) for detec-

tion of the SIE. It is important to note, however, that this

methodological approach to detecting SIEs has been the sub-

ject of dispute (e.g. Triantis et al., 2006; Dengler, 2009, 2010;

Tjørve & Tjørve, 2011; Triantis & Sfenthourakis, 2012). In a

discontinuous piecewise model both the slope and intercept

of the regression line can change at the breakpoint; that is,

the regression line is not continuous. In addition to the

breakpoint models, around 20 functions have been described

for fitting ISARs (Triantis et al., 2012). We do not attempt

to determine the fit of these alternative ISAR models as our

study is focused on the fit of piecewise models and their use

in detecting area thresholds.

Despite existing theoretical and empirical work focusing

on patch area and extinction thresholds (e.g. Drinnan, 2005;

see Swift & Hannon, 2010, for a review), few previous stud-

ies have re-analysed existing datasets to explore emergent

patterns (but see Ficetola & Deno€el, 2009). Moreover, we are

unaware of any statistical re-analysis of patch area thresholds,

or for that matter any type of ecological threshold, incorpo-

rating a large number of datasets. The aim of this paper is

thus twofold. First, we provide a synthetic analysis of piece-

wise regression models (Fig. 1), using an information theo-

retic approach (Burnham & Anderson, 2002) to determine

the prevalence and type of thresholds in the ISARs of 76

habitat island datasets. Having done so, we examine the

resulting model fits with reference to the distribution of

island areas and other properties of the source datasets. Sec-

ond, we evaluate piecewise regression as a method for locat-

ing thresholds in the ISAR, with particular emphasis on data

transformation. We go on to provide methodological recom-

mendations and comment on the implications of our find-

ings for conservation biogeography.

MATERIALS AND METHODS

Data collection

Three abstracting services were searched for relevant habitat

loss and fragmentation studies and datasets during May–June

2007 and May–July 2011: JSTOR (1913–2003); ISI Web of

Knowledge (1980–2011); and BIOSIS Biological Abstracts

(1980–2003). The search keywords were ‘habitat islands and

species richness’ and ‘forest fragments and species richness’.

Additionally, cross-referenced papers derived from the refer-

ence lists of sourced papers were also included.

Suitability was based on the following criteria:

1. Habitat islands were defined as discrete patches of habitat

surrounded by contrasting, ‘hostile’ matrix habitat.

2. The areas and species richness of each habitat island were

listed.

3. The number of habitat islands within each dataset was at

least eight, as this was necessary so that all the available

piecewise models could be applied (below).

4. Data from any particular study did not overlap with those

from any other study accepted for analysis (data for different

taxa within the same study system were allowed).

For each dataset we recorded the geographical location,

the taxon studied, the habitat island type (forested or non-

forested), and the range of species richness and island sizes

(see Appendix S1 in Supporting Information).

Data analysis

First, we developed three versions of the datasets: untrans-

formed (S versus A), semi-log (S versus logA) and log–log

(logS versus logA) transformed, where S is species richness

and A is area. Second, we fitted linear models to all three

versions of each dataset alongside a set of piecewise models:

continuous piecewise, zero slope continuous, and discontinu-

ous piecewise regression models. As log(0) is non-defined, a

log(x+0.1) was applied for the transformation of species rich-

ness in the case of the log–log transformation. All analyses

were performed using R 3.0.0 (R Development Core Team,

2013).

In fitting the piecewise models, the optimal breakpoints

for each continuous and discontinuous piecewise model and

dataset were selected by testing 1000 evenly distributed

points within the range of the data. The optimal breakpoint

leading to the best-fitting model was selected from this set

by a log-likelihood optimization separately for each case and

model type. A benefit of this methodology is that the exis-

tence of thresholds (breakpoints) in the data is not assumed

a priori; this being a criticism often levelled at such studies

(see Gentile & Argano, 2005).

All models were implemented and compared as linear

regressions. For each of the three versions of each dataset

(i.e. untransformed, semi-log or log–log) the performance of

each model was compared using Akaike’s information

criterion corrected for small sample size (AICc; Burnham &
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Anderson, 2002; code from library ‘AICcmodavg’ version

1.20; Mazerolle, 2011):

AICc ¼ �2� logLik(model) þ 2� k½n=ðn� k� 1Þ�;
where n is the number of observations and k the number of

model parameters. The selection of a single best model (i.e.

the statistically best-fitting descriptive model) was based on

there being a difference in AICc value of at least two between

the best and a respective weaker model (Burnham & Ander-

son, 2002).

In addition, because we were concerned that the initial

optimization of the breakpoints could be deemed to consti-

tute ‘hidden parameters’, we also performed a sensitivity

analysis in which we ran the model selection after accounting

for the initial optimization of the breakpoints and increase

in model complexity by increasing the number of model

parameters to k = 4 for the piecewise continuous model with

zero slope, k = 5 for the piecewise continuous model, and

k = 6 for the piecewise discontinuous model, when calculat-

ing AICc. As the calculation of AICc includes a division by

n � (k � 1) (with n being the number of data points and

k the number of model parameters), to avoid a negative

denominator the minimum number of data points was set to

eight. In addition to the aforementioned linear and piecewise

models, we also implemented a model with a zero slope

regression line at the data mean as our simplest model

(corresponding to no species–area relationship). Cases in

which none of the more complex models were favoured

above this ‘null model’ based on our AICc criterion were

treated as ‘non-significant’. As an additional criterion, a stan-

dard F-test was used to check the significance of the species–

area relationship for each model. Only models showing a

significant species–area relationship were compared based on

AICc. In a number of datasets no model showed a significant

relationship. These cases were also labelled as ‘non-

significant’. A direct comparison of models across different

versions of the dataset is not possible based on AICc values

as the model types have different dependent variables [log

(S + 0.1) and S].

In a further step all analyses were re-run following the

application of Cook’s distance criterion (Cook & Weisberg,

1982). This was done to remove models which were unduly

influenced by a single data point. Many habitat island data-

sets include relatively few islands (Appendix S1) and thus

outliers are a significant problem that needs to be consid-

ered. For each version of the dataset, models in which any

data points had a Cook’s distance greater than one were

removed from the model comparison for that version of the

dataset (Cook & Weisberg, 1982). We summarize the initial

results in Appendix S2 and present the results following

application of Cook’s distance criterion in the main Results

(below).

Plots of each dataset were checked visually to allow us to

categorize linear models as either positive or negative and

continuous piecewise models as either shallow–steep or

steep–shallow forms (as Fig. 1). In addition, we took note of

visually peculiar relationships to inform subsequent interpre-

tation.

The effects of the dataset characteristics

Model performance was compared between taxonomic

groups, habitat type and the various dataset characteristics

recorded (number of habitat islands, range of habitat island

areas, and area of smallest and largest habitat island) using

the Student’s t-test, ANOVA and Tukey’s honestly significant

difference (HSD) post-hoc test. To determine the effect of

habitat type, datasets were separated into those comprising

forested habitat islands and those comprising non-forested

habitat islands and model performance was compared using

a test of proportions (prop.test in the basic stats package in

R). After the initial analysis the dataset selection criteria

(above) were iteratively altered to progressively remove data-

sets with the fewest habitat islands, increasing in units of one

from our pre-set minimum of eight, up to 32 habitat islands.

After each iteration the analyses were re-run to determine

the effect of sample size on the results (following Triantis

et al., 2012).

RESULTS

Over 500 articles were reviewed, from which we retrieved 76

datasets meeting the above criteria from 70 separate sources

(Appendix S1). There were 53 forest habitat island datasets

(70%) and 23 non-forest systems (30%); and there were 14

(18%) invertebrate, 39 (51%) vertebrate, and 23 (31%) plant

datasets. The vertebrate datasets comprised 22 bird, 15 mam-

mal and two reptile case studies.

Model performance

The application of Cook’s distance criterion resulted in the

best model changing for four of the untransformed datasets,

four of the semi-log transformed datasets, and six of the

log–log transformed datasets (see Table S1 in Appendix S2

for overall outcome, which remains largely unchanged).

Whilst this process removed a number of visually idiosyn-

cratic, ecological unintelligible models, inspection of the

plots revealed that several remained that defy ecological

interpretation in terms of isolate area (n � 8; Fig. S1 in

Appendix S2): these latter cases were nonetheless retained in

the analysis (Table 1).

Unsurprisingly, the best model type varied depending on

the data transformation undertaken prior to model fitting

(Table 1). Despite the range in form of the models used,

cases where no significant model was generated accounted

for 51% of the untransformed datasets, 32% of the semi-log

datasets, and 37% of the log–log transformations, respec-

tively. Positive linear fits were the commonest fit and were

found in respectively 18%, 32% and 32% of cases. The sec-

ond best model for untransformed datasets and for the

log–log datasets was the subset of piecewise continuous
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models visually classified as steep–shallow, with 22% and

16%, respectively, while the zero slope piecewise model was

the second commonest best model in semi-log space, being

selected for 14% of cases. The breakpoint values of piecewise

models selected as the best were found to vary over five

orders of magnitude (0.3–23,000 ha), although with one

exception all were under 50 ha.

The sensitivity analysis in which we re-ran the model

selection after increasing the number of parameters to take

explicit account of the initial optimization of the break-

points, resulted in a small number of changes to the models

chosen as best (compare Table 1 with Table S2 in Appendix

S2). In particular, we found greater support for linear models

relative to piecewise models. However, qualitatively our

results did not change, and from herein we only discuss

results based on the standard AICc calculation.

Dataset descriptors

The proportion of cases where at least one model was signifi-

cant in at least one version of the datasets was lower for

invertebrate datasets (57% of cases), than for vertebrates

(74%) and plants (74%) (detailed results not shown). The

small sample sizes involved prohibit formal statistical testing

of between-taxa differences. However, the breakdown of

results by taxon shows that setting aside linear models, piece-

wise continuous models emerged as the best most often from

vertebrate datasets, whereas discontinuous piecewise models

emerged more often for plant datasets (Table S3 in Appendix

S2). There was no significant difference in the proportion of

piecewise models selected as the best between forested and

non-forested habitat islands (P = 0.32; prop.test).

Grouping the models into piecewise and non-piecewise it

was found that the mean number of islands in datasets in

which piecewise models performed best for at least one ver-

sion of the dataset (mean � SD = 26 � 12, n = 38) was

greater than for the remaining datasets (mean � SD

= 19 � 12, n = 38), although this difference was non-signifi-

cant (t = 2.85, P = 0.1; Student’s t-test). Datasets in which

no models were significant generally had fewer islands than

datasets with a significant ISAR, although the differences

between the number of islands in datasets with no significant

model and datasets best modelled by a linear or piecewise

model were not always significant according to Tukey’s HSD

post-hoc test (Fig. 2a–c). Versions of datasets in which a dis-

continuous model was selected as best mostly had more

islands than those in which other models were selected as

best. However, again these differences were not always signif-

icant according to Tukey’s HSD test (Fig. 2a–c). The size of

the smallest island was smaller in versions of the datasets in

which discontinuous models performed best, in comparison

to those in which a linear model was best, or in which no

model was significant (Fig. 2d–f). However, these differences

were not always significant and, in general, the minimum

island size in a dataset does not clearly discriminate between

piecewise continuous (shallow–steep and steep–shallow

forms) and linear models. There was no significant difference

in the proportion of piecewise models selected as best based

on either the area of the largest island in the dataset, or the

overall range of habitat island areas in the study (results not

presented). As some of the foregoing comparisons involve

very few datasets, caution is necessary in interpreting these

findings.

Progressively removing datasets with fewer habitat islands

led in general to a larger fraction of datasets being best

approximated by piecewise models and a reduction in the

number of non-significant models (Fig. 3).

DISCUSSION

Data transformation

To determine the prevalence of thresholds in the ISAR of

habitat islands (n = 76 datasets), statistical techniques incor-

porating a breakpoint in the linear regression were compared

with simple linear regression species–area models. The mod-

els were applied to untransformed, semi-log and log–log

transformed data. We found that linear regression models

performed best in about half of the cases for which at least

one significant model could be fitted, with proportions of

the different piecewise models varying between the three dif-

ferent data transformations used.

Our analyses serve to highlight the danger of taking an a pri-

ori decision on data transformation without careful reflection

Table 1 The best fit island species–area relationship (ISAR)

model for 76 habitat island datasets, tallying the best fit models
separately for each data transformation. The best model for each

version of the dataset (i.e. untransformed, semi-log and log–log)
was chosen based on Akaike’s information criterion corrected

for small sample size (DAICc > 2). These results were tallied
following the application of Cook’s distance criterion: for results

prior to this step, see Appendix S2.

Number of datasets (percentages in parentheses)

Model type Untransformed Semi-log Log–log

Linear (positive

relationship)

14 (18%) 24 (32%) 24 (32%)

Linear (negative

relationship)

1 (1%) 0 0

Piecewise

continuous

(steep–shallow)

17 (22%) 5 (7%) 12 (16%)

Piecewise

continuous

(shallow–steep)

0 6 (8%) 0

Piecewise zero

slope (i.e.

flat–steep)

1 (1%) 11 (14%) 5 (7%)

Piecewise

discontinuous

4 (5%) 6 (8%) 7 (9%)

Non-significant 39 (51%) 24 (32%) 28 (37%)
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on study aims. Such a strategy may obscure significant varia-

tions in the form of the ISAR across data transformations

and lead to erroneous (or incomplete) inferences surround-

ing the shape of the ISAR, and, ultimately, the identification

of thresholds. It is important to be aware of these pitfalls

and to ensure that the analytical strategy adopted is appro-

priate for the purpose of the particular study because it is

possible for two quite different models to provide good fits

to the same dataset. Figure 4 illustrates this for a dataset

drawn from Watson (2003), a study of naturally fragmented

montane habitat islands in Mexico. Whereas the best model

in untransformed space is a piecewise continuous model of

the steep–shallow form, the best in semi-log space is a zero

slope piecewise model. Therefore, depending on the transfor-

mation used one could infer that there is a habitat amount

threshold below which richness precipitously declines, or evi-

dence of a traditional small island effect (sensu Lomolino &

Weiser, 2001). With regard to the zero slope pattern found

for the semi-log analysis, the data points responsible for the

initial lack of area trend each had very low (or no) species

(Fig. 4). These data points almost overlay each other in the

graph of the untransformed data, while the semi-log trans-

formation in effect expands this section of space to generate

the zero slope pattern.

The dataset of Kitchener et al. (1980) also provides a useful

illustration of the change in model selection across the differ-

ent versions of the dataset (Fig. 5). Visual examination of the

untransformed plot suggests a threshold but the best model is

actually a simple linear (positive) model. However, the best

model in semi-log space is also a simple linear regression and

thus, using the method of Drinnan (2005) this would be

equivalent to the identification of a threshold in untrans-

formed space. To complete the comparison, a steep–shallow

piecewise continuous model was preferred in log–log space.

Hence the question arises as to what a linear (or alterna-

tively a piecewise) relationship actually signifies when using

logged variables. For instance, a linear relationship in semi-

log space equates to a curvilinear relationship using the

(a)

(d) (e) (f)

(b) (c)

Figure 2 Box plots displaying the number of habitat islands (top row), and area of the smallest habitat island (bottom row), for each

model type across the three data transformations. Significant differences between models are displayed as different lowercase letters
above the box plots. Models that do not significantly differ in the dependent variable have the same lowercase letters. NS

refers to datasets where no model provided a significant fit, ‘Disc’ = datasets in which a discontinuous model was selected as best,
‘st-sh’ = steep–shallow, ‘sh-st’ = shallow–steep, and ‘lin’ = a linear model. Shallow–steep refers to both shallow–steep continuous

models and the zero-slope piecewise models. Note that small ‘n’ values in particular categories limit the power of the analysis to detect
significance. Significance was assessed by ANOVA followed by Tukey’s HSD (honestly significant difference) post-hoc test (P = 0.05).
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untransformed data. Thus, given that 34% of datasets are

best modelled by a linear model in semi-log space, an under-

lying curvilinear form can be described for about half of the

datasets for which we are able to fit ISARs. However, our

results indicate that the higher proportion of linear models

that performed best in semi-log and log–log space does not

correspond to an equally high proportion of piecewise mod-

els in untransformed space (Table 1). Rather, datasets in

which no model provided a significant fit were in the major-

ity in untransformed space. The likelihood of detecting

thresholds and what form they take is thus to a considerable

degree dependent on the data transformation applied before

analysis: an obvious point mathematically but one that is fre-

quently given scant attention in ecological threshold analyses

(but see Wilson, 2007; Burns et al., 2009).

Interpreting discontinuous models

Scrutiny of plots of all ‘best’ models revealed that several of

the piecewise models are difficult to interpret ecologically,

particularly in the case of discontinuous piecewise models

(see Fig. S1 in Appendix S2). While it is conceivable that dis-

continuous relationships may exist in nature (see Maron

et al., 2012), their detection in a few datasets most likely sig-

nifies important roles for confounding variables that were

not included in our models, such as isolation or matrix

effects (e.g. see Crowe, 1979; Levenson, 1981). For instance,

the best model in log–log space for the Crowe (1979) dataset

was a discontinuous piecewise model. Crowe (1979) tested

various predictions of the equilibrium theory of island bioge-

ography (MacArthur & Wilson, 1967) using plants in urban

habitat patches of varying age in the USA. It was found that

richness in older patches (over 40 months in age) had no

relationship with patch age and did exhibit a significant

ISAR, whereas young patches (under 40 months) exhibited a

significant species–age relationship and no ISAR. Crowe

(1979) suggested that older patches could be considered at

equilibrium whereas younger patches were still gaining

species through colonization. This suggests that the selection

herein of a discontinuous piecewise model is uninformative

of the effect of area, but instead reflects a confounding

variable.

(a)

(c)

(b)

Figure 3 Percentage of models identified to be the best depending on the minimum number of habitat islands (sample size) of a

dataset selected, for the three versions of each dataset (untransformed, semi-log and log–log). Note that eight represents the minimum
number of habitat islands allowed by the original selection criteria for analysis. Non-sig = non-significant; regular = linear fit.

Figure 4 Variation in the best model selection across two
versions of the same dataset. Left, the data plotted in

untransformed space in which the best model is a continuous
(steep–shallow) piecewise model. Right, the same data plot

plotted in semi-log space, in which the best model is a zero
slope piecewise model. Data are from Watson (2003): a study on

birds in a fragmented landscape, Mexico.
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The issue of confounding variables is not restricted to dis-

continuous models. For example, Watson (2003) identifies

the same steep–shallow threshold and breakpoint in untrans-

formed space that we have identified. But he states that there

is a high degree of collinearity within his independent vari-

ables and thus this pattern cannot be solely attributed to area

but may be a product of, for example, elevation, patch con-

figuration, or number of microhabitats. We have not con-

ducted formal analyses of such potentially confounding

system variables because there may be many relevant factors

and their availability is limited and inconsistent within the

source papers (cf. Whittaker, 2010).

Ecological interpretation and the search

for thresholds

Breakpoint values and dataset characteristics

Scrutiny of the piecewise models denoted in Table 1 does

not suggest that there is any clear tendency to a particular

patch threshold size at which rate changes occur in the ISAR.

This may reflect a general lack of consistency in response to

area, variations in minimum area requirements of species, or

it may arise from authors of our source papers having

undertaken studies specifically to analyse the effects of one

or more of an array of other variables (above; Maron et al.,

2012). Landscape features within studies are also important

in determining breakpoints. For instance, variation in isola-

tion and of matrix permeability can determine the existence

of thresholds through the mitigation or accentuation of the

effects of area loss per se (e.g. With & King, 1999; Brotons

et al., 2003; Watson et al., 2005; Watling et al., 2011).

Another possible explanation of variation in breakpoint val-

ues is that the main two piecewise model forms (i.e. steep–

shallow and shallow–steep) may represent different parts of a

triphasic sigmoidal SAR in which different parts reflect dif-

ferent driving processes at different scales (cf. Rosenzweig,

1995; Lomolino & Weiser, 2001; Whittaker & Fern�andez-

Palacios, 2007; Triantis et al., 2012). However, while sigmoid

models may be plausible for particular case studies the pres-

ent analysis does not provide a basis to claim generality of

such a pattern. Another issue in threshold detection is that

in cases where a dataset only contains a few data points there

are unlikely to be many points near to the hypothetical

breakpoint and there is thus potential to ‘miss’ the threshold

(cf. Lomolino & Weiser, 2001; Qie et al., 2011). We found

some support for this proposition, as piecewise models

appeared to emerge mostly in datasets with a large number

of islands.

It is intriguing that piecewise continuous models emerged

as best more often for the vertebrate datasets, with the

steep–shallow form most common. This observation is mir-

rored by the fact that piecewise discontinuous models

emerged as best for three (13%), five (22%), and four

(17%) of the untransformed, semi-log transformed and log–

log transformed plant datasets, respectively, but for none of

the untransformed versions of the vertebrate datasets, and

only one (3%) semi-log transformed and three (8%) log–log

transformed vertebrate datasets (Table S3 in Appendix S2).

There were less obvious emergent patterns for the inverte-

brate datasets, although it is apparent that invertebrate data-

sets had a higher proportion of cases in which no model

provided a significant fit compared with the vertebrate and

plant datasets, for the semi-log and log–log versions of the

datasets. While the small sample sizes make it dangerous to

speculate on these apparent differences, these results suggest

specific responses of the three taxa to habitat loss that merit

further investigation.

Conservation and methodological implications

Patch area thresholds have been posited as an important

component of protected area network design at the landscape

scale (Drinnan, 2005; Huggett, 2005). As such, we offer the

Figure 5 Variation in the best model selection across three versions of the same dataset. Left to right: untransformed, semi-log, log–log.
The best model for the untransformed and semi-log transformation was simple linear (positive), and for the log–log transformation, the

best was piecewise continuous (steep–shallow). Data are from Kitchener et al. (1980): a study on mammals in Australia.

Journal of Biogeography 41, 1018–1028
ª 2014 John Wiley & Sons Ltd

1025

Thresholds and the species–area relationship



following observations with respect to future research on the

topic.

Methodological implications

Piecewise regression has been advocated as an approach to

identifying thresholds on the basis that it is more objective

than methods such as visual inspection of breakpoints

(Ficetola & Deno€el, 2009). However, we have shown above

that this approach requires careful consideration with

regard to the choice of threshold model and data transfor-

mation (see also Connor & McCoy, 1979; Burns et al.,

2009; Dengler, 2009). This is clearly illustrated for the

Watson (2003) dataset in which a single dataset reveals

two seemingly opposing patterns depending on the trans-

formation (Fig. 4). It could be argued that both these pat-

terns provide partial truths about the dataset. However, we

have also noted that there are confounding variables that

may account for the features of the ISAR (see Watson,

2003). Thus, where possible future empirical studies of

patch area thresholds should consider other potentially

important variables, such as isolation, properties of the

matrix and patch age.

We found a small amount of support for the zero slope

model: 11 datasets (14%) were best categorized by the zero

slope model in semi-log space, and five (7%) in log–log

space, and therefore exhibited what has traditionally been

described as an SIE (sensu Lomolino & Weiser, 2001; e.g. see

the right hand side plot of Fig. 4). All that can be said is that

the SIE pattern may be identified statistically in a low pro-

portion of habitat island systems (see also Qie et al., 2011),

although it should be noted there are other methods of

detecting SIE patterns (see Triantis et al., 2006) that were

not explored in this paper.

In terms of specific recommendations regarding data

transformation in the application of piecewise models one

stratagem is to fit ISARs to the untransformed data, semi-log

transformed data, and log–log transformed data and consider

all three results to generate a conclusion. However, in doing

this it is obviously necessary to interpret a particular model

in the context of the transformation used (Wilson, 2007).

Our results also suggest that the choice of transformation

may influence the detection of particular thresholds. For

instance, if the aim of a study is to detect classical steep–

shallow thresholds in a set of habitat fragments for conserva-

tion management purposes it is not advisable to rely upon

piecewise regression of a semi-log transformed dataset, for

the reasons outlined above and because steep–shallow thresh-

olds were detected very infrequently in semi-log transformed

data (see Table 1).

In addition to the complexity surrounding the use of

data transformation we identify three further points where

future studies may advance statistical methodologies in the

search for patch area thresholds. First, use of the log–log

transformation to model ISARs generally involves the use

of log(x+e) to avoid the problem of log(0) being non-finite.

The choice of e is often arbitrary and can affect the shape

of the resulting relationship (Millar et al., 2011), although

this is not as problematic for ISAR statistics in comparison

with other data. Thus, for future studies of this nature it

may be preferable to avoid transformations and apply non-

linear methodologies when fitting nonlinear relationships

(Steinbauer et al., 2012).

Second, a number of ‘best’ models were changed through

our use of Cook’s distance criterion (Table S1 in Appendix

S2). Despite all its advantages, the AICc framework was not

developed to correct for problems associated with extreme

values, and regression analyses, as with other statistical meth-

ods, need to be critically evaluated in this respect. The influ-

ence of data extremes is usually (if at all) checked using

visual inspection of model residuals, which can be especially

difficult in cases of small datasets, which are common in

island biogeographical analyses. As such, we suggest the use

of a more rigorous statistical test to highlight potential out-

liers, such as Cook’s distance.

Third, piecewise regression may occasionally lead to eco-

logically uninterpretable models being selected as the ‘best’

when used within a model comparison framework; this was

particularly the case for discontinuous models. As such, we

believe a necessary stage of the process is to use contextual

data and graphical display to identify instances in which the

best model may be the result of a statistical or experimental

design artefact as opposed to any biological mechanism con-

nected with isolate area.

Conservation implications

Our results do not provide the hoped for generic guidance

on patch area thresholds but do highlight the importance in

future research of considering the effects of data transforma-

tions and of sampling a large number of patches and a wide

range of patch areas, in order to permit meaningful tests for

such thresholds. Notwithstanding the methodological impli-

cations outlined above, it is perhaps noteworthy that the 17

datasets which displayed a significant piecewise continuous

(steep–shallow) relationship in untransformed space (thus

bypassing the data transformation quandary) contained

breakpoint values which varied over five orders of magnitude

of area. Thus the search for a ‘magic threshold value’ to

guide land management and conservation of multiple taxa

(e.g. Andr�en, 1994) may be misguided (Fahrig, 2001; Betts

et al., 2007; Montoya et al., 2010). However, it should be

stressed that all these breakpoints, with the exception of the

Watson (2003) system, were under 0.5 km2 (50 ha), high-

lighting the ecological precariousness associated with very

small fragments.

In sum, it is problematic to determine the prevalence of

thresholds in the ISAR of habitat islands. While various

piecewise models can be fitted and when grouped may be

deemed statistically ‘best’ in about the same number of cases

as can simple linear models, it is worth noting the following:

first, that we have tried fitting four different types of
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piecewise models, thus giving every chance for a piecewise

model to emerge as best; second, the emergence of a piece-

wise model as best does not necessarily mean that the result-

ing model will be ecologically intelligible; and third, that

initial choice of data transformation is a key determinant of

the outcome of model fitting. Hence, in the search for

thresholds in the ISAR, we call on authors to be explicit as

to which data transformations they use at each stage of

analysis, and what any particular transformation may mean

in terms of inferences based on these analyses. We caution

that the use of piecewise regression within a single dataset,

or within a meta-analysis framework, could lead to errone-

ous inferences based on model performance criterion alone

and, in particular, more thought needs to be given to the

type of data transformation(s) employed.
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