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Abstract
1.	 Species abundance distributions (SADs) are one of the most widely used tools in 

macroecology, and it has become increasingly apparent that many empirical SADs 
can best be described as multimodal. However, only a few SAD models have been 
extended to incorporate multiple modes and no software packages are available 
to fit multimodal SAD models. In this study, we present an extension of the gam-
bin SAD model to multimodal SADs.

2.	 We derive the maximum likelihood equations for fitting the bimodal gambin distri-
bution and generalize this approach to fit gambin models with any number of 
modes. We present these new functions, along with additional functions to aid in 
the analysis of multimodal SADs, within an updated r package (“gambin”; version 
2.4.0) that enables the fitting, plotting and evaluating of gambin models with any 
number of modes.

3.	 We use a mixture of simulations and empirical datasets to test our new models, 
including tests of the sensitivity of the model parameters to the number of indi-
viduals and the number of species in a sample. We show that the new multimodal 
gambin models perform well under a variety of circumstances, and that the ap-
plication of these new models to empirical SAD and other macroecological (e.g., 
species range size distributions) datasets can provide interesting insights. The up-
dated software package is simple to use and provides straightforward yet flexible 
statistical analyses of multimodality in SAD-type datasets.
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1  | INTRODUC TION

The species abundance distribution (SAD) has been a core focus of 
macroecology for over 80 years (e.g., Fisher, Corbet, & Williams, 
1943), and is currently the subject of widespread renewed interest 
(McGill et al., 2007; Alonso, Ostling, & Etienne, 2008; Arellano et al., 
2017). Recently, it has been argued that a gamma-binomial (herein 
‘gambin’) distribution represents a useful SAD model (Ugland et al., 
2007). Gambin is a stochastic unimodal model that combines the 
gamma distribution, in which the scale parameter is fixed at 1, with a 
binomial sampling method (see Ugland et al., 2007 for a full descrip-
tion of the model). The use of the gamma distribution as the basis of 
the model provides gambin with substantial flexibility and tests of 
the gambin model have found that it generally provides a good fit to 
a wide range of empirical SAD data, typically out-performing other 
candidate SAD models (Ugland et al., 2007; Matthews et al., 2014), 
such as the Poisson log-normal (PLN; Bulmer, 1974) and logseries 
models (Fisher et al., 1943). The model can also be used with contin-
uous data, thus extending the analysis of SADs to different measures 
of abundances (e.g., biomass). The unimodal gambin model has a free 
parameter (α) that determines the shape of the distribution. Low 
values of α indicate logseries curve shapes, while higher α values 
indicate more log-normal–like curve shapes. Thus, α is an intuitive 
parameter that has been found to be of use in comparing the SAD of 
different ecological communities, for example, disturbed and undis-
turbed communities, and for testing what variables drive changes in 
the shape of the SAD along ecological gradients (Dornelas, Soykan, 
& Ugland, 2011; Matthews & Whittaker, 2015; Arellano et al., 2017; 
Matthews, Borges, de Azevedo, & Whittaker, 2017). Due to the way 
the statistical model is defined, gambin can only be fitted to data 
binned into octaves, for example, classes of log2 transformed abun-
dance data, with octave 0 containing the number of species with 1 
individual, octave 1 the number of species with two or three individ-
uals, and so on.

It has become increasingly apparent that many empirical SADs 
can best be described as multimodal (Dornelas & Connolly, 2008; 
Vergnon, van Nes, & Scheffer, 2012; Antão, Connolly, Magurran, 
Soares, & Dornelas, 2017). For example, Antão et al. (2017) found 
that between 15% and 22% of the 117 empirical SAD datasets 
they evaluated showed evidence of multimodality, depending on 
the model selection tools used. Multimodality may be indicative of 
particular process regimes (Matthews et al., 2014) or be due to a 
combination of different types of species (e.g., trophic groups) in a 
sample, and its detection may also be relevant to, for example, tests 
of the theory of emergent neutrality (Vergnon et al., 2012). Hence, 
describing and testing for multimodality is a priority in SAD research 
(Antão et al., 2017). To date, few SAD models have been extended 
to incorporate multiple modes (for the PLN see Dornelas & Connolly, 
2008), in part because compound probability distribution models are 
mathematically and computationally complex. Hence the need for 
an easy to use software package permitting straightforward statis-
tical analysis of multimodality in SAD datasets. We set out to pro-
vide a multimodal extension of gambin because the gambin model is 

relatively simple and it would allow comparison of the fit of unimodal 
and multimodal models analytically using standard statistical meth-
ods (e.g., Burnham & Anderson, 2002).

First, we derive the maximum likelihood equations for fitting 
gambin models with any number (g) of components and incorpo-
rate these new functions, along with additional functions to aid in 
the analysis of multimodal SADs, within an updated version of the 
r package gambin (version 2.4.0). Second, we use a mixture of sim-
ulations and empirical datasets to test the new models, providing 
examples of the updated package in operation.

2  | MULTIMODAL GAMBIN 
DISTRIBUTIONS AND THE g a m b i n  r 
PACK AGE ( VERSION 2 .4 .0)

The full derivation of the likelihood functions for multimodal gam-
bin models is provided in Appendix S1 (Supporting Information). In 
version 2.4.0 of the gambin r package, the one-component gambin 
model is taken to have two parameters: the shape parameter (α) and 
the max octave. It should be noted that this differs from previous 
implementations of the model (e.g., Matthews et al., 2014) that only 
considered there to be a single parameter (α). The two-component 
gambin model is simply the mixture of two gambin distributions. To 
allow for the subdivision of all of the observed objects (species in the 
context of SADs) (yobs), a parameter (w1) is needed that describes 
the fraction of objects belonging to the first distribution (wi is analo-
gous to the ρ parameter in the multimodal PLN context). The fraction 
of objects belonging to the second component (w2) is 1—w1. Thus, 
the expected number of observed objects is split into two compo-
nents, consisting of w1* yobs and w2* yobs objects respectively. Thus, 
yobs = (w1 * yobs) + (w2 * yobs). With no extra information, we may 
therefore assume that the numbers of objects in the k-th interval 
(k = 1, 2,…, i) are w1 * yk and w2 * yk. Thus, the likelihood function for a 
bimodal gambin model contains five parameters: the shape parame-
ters for the first and second component (α1 & α2), the max octaves for 
the first (noct1) and second (noct2) components, and one splitting pa-
rameter (w1) representing the fraction of objects in the first compo-
nent. Note that this is the same number of parameters in the bimodal 
PLN model; it is simply that the parameters represent different as-
pects of the distribution in each case. It is relatively straightforward 
to extend the above approach for fitting the two-component gambin 
model by maximum likelihood, to fitting gambin models with g com-
ponents (where components correspond to the number of modes; 
see Appendix S1). However, while it is possible to use the equations 
given in Appendix S1 to fit gambin distributions with any number of 
components, in practice fitting SAD models with more than three 
(possibly even two depending on sample size) components will likely 
result in overfitting the data. Sample sizes in ecological studies are 
generally relatively small, and the number of parameters becomes 
large with increasing g (Dornelas & Connolly, 2008). Thus, optimiz-
ing the likelihood functions becomes increasingly problematic at 
larger g; ecological interpretation of model fits with large numbers of 
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components is also problematic. Accordingly, we do not advise fitting 
gambin models with more than three components.

In addition to providing functions to fit multimodal gambin distri-
butions (described below), the gambin r package (version 2.4.0; avail-
able on CRAN) has been updated to bring it more in line with other 
distribution functions within the r base ‘stats’ package. For exam-
ple, the updated gambin package now provides dgambin (probability 
density function), rgambin (generate random values from a gambin 
distribution; the returned values relate to a given octave), qgambin 
(quantile function), and pgambin (cumulative distribution function) 
functions. Likelihood optimization is undertaken using the Nelder–
Mead algorithm. As the likelihood optimization procedure for multi-
modal gambin models can be time consuming, the updated package 
provides the option of using parallel processing to speed up optimi-
zation. The gambin r package documentation and associated vignette 
provide additional information.

The main function within the package is ‘fit_abundances’:

A primary argument for the prevalence of multimodal SADs in 
nature is the idea that the different modes represent different cate-
gories of species (e.g., native and invasive species, or core and satel-
lite species; Magurran & Henderson, 2003; Matthews & Whittaker, 
2015). A natural next step then is to deconstruct the SAD by visualiz-
ing and analysing how different categories of species are distributed 
across the various modes/modal octaves. This is performed with the 
new function “deconstruct_modes.” If species category information 

is provided (e.g., native or invasive), the function returns the num-
ber and proportion of the various categories in the different modal 
octaves (a split barplot where the bar for each octave is split accord-
ing to the number of species in each category can also be returned). 
Subsequent statistical test (e.g., χ2 or G-test) and/or null model tests 
can then be undertaken to determine whether the number of spe-
cies representing the different categories significantly differs be-
tween octaves. If species category information is not available, the 
function will simply identify the modal octaves (i.e., the modal oc-
tave of each component distribution) in a multimodal gambin model 
fit (user-specified modal octaves can instead be provided), and also 
lists the names of the species within each octave (a plot of the model 
fit with the modal octaves highlighted can also be returned).

One of the main applications of the gambin model has been to fit 
gambin to SADs from different sites (e.g., along a disturbance gradi-
ent) and then to compare the resultant alpha values (e.g., Dornelas 
et al., 2011; Arellano et al., 2017). Thus, we have also added a func-
tion that fits the unimodal gambin model to the SADs from multiple 
sites and returns the standardized and unstandardized alpha values.

F IGURE   1 The fit of the unimodal (blue circles), bimodal (red triangles), and trimodal (black diamonds) gambin models to two horse 
fly species abundance distribution datasets (black bars) from Brazil. (a) Horse fly data from 33 localities across Brazil (number of unique 
species = 164; total number of individuals = 78,755), and (b) data from one individual locality and one type of sampling (number of 
unique species = 58; total number of individuals = 1,943; see Appendix S3). In (a), the bimodal model provides the best fit according to 
BIC, while the unimodal model provides the best fit to the data in panel (b)
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3  | E X AMPLES USING EMPIRIC AL 
DATA SETS

3.1 | A Brazilian horse fly dataset

To illustrate the new functionality, we used an empirical dataset 
comprising abundance records of horse flies (Diptera, Tabanidae) 
from a variety of sampling locations in Brazil (see Appendix S2 
in the Supporting Information). As outlined above, multimodal 
SADs may hypothetically arise from the intersection in nature 
of samples from different habitat types or of different ecologi-
cal species groups (Magurran & Henderson, 2003; Antão et al., 
2017) within a dataset. To test this proposition, we first fitted the 
unimodal, bimodal, and trimodal versions of gambin to the whole 
Brazilian dataset. We then took a subset of the dataset relating 
to one individual locality within Brazil and one type of sampling 
(see Appendix S2) and again fitted the three models. In both cases, 
the three models were compared using the Bayesian information 
criterion (BIC):

When the three models were fitted to the whole Brazilian 
horse fly dataset (Figure 1a), the bimodal gambin model provided 
the best fit to the data (BIC = 830.4), followed by the unimodal 
model (BIC = 832.5) and the trimodal model (BIC = 837.6). When 
the three models were fitted to the subset of data from a single 
site (Figure 1b), the unimodal model provided the best fit (BIC = 
236.2), followed by the bimodal model (BIC = 239.9) and the tri-
modal model (BIC = 246.5). Thus, while the data from a single 
site are characterized by a classical unimodal SAD, when pooling 
records from different localities across Brazil, the bimodal model 
was favoured. These findings provide additional support for the 
claim that multimodal SADs are more prevalent with increasing 
taxonomic breadth, sampling variation, spatial extent (i.e., increas-
ing ecological heterogeneity; Antão et al., 2017), and heterogene-
ity in species detectability (Alonso et al., 2008).

3.2 | A set of 275 woody plant SADs

We took the set of 843 angiosperm woody plant datasets sourced 
from the literature by Kubota, Kusumoto, Shiono, and Ulrich (2018). 
Each dataset represents an abundance vector of plant species sam-
pled in a forest plot and the datasets have a global distribution. We 
filtered out datasets with <10 species and <500 individuals. We then 
fitted the unimodal and bimodal gambin models to the resulting 275 

datasets and compared the fits using BIC. The bimodal model was 
considered as the best fitting model if it had the lowest BIC value 
and the unimodal model had a ΔBIC value of >2.0 (a lower value in-
dicates the models have similar support, in which case the unimodal 
model should be preferred on grounds of parsimony).

The bimodal model provided the best fit to 51 of the 275 data-
sets (19%; see Appendix S3 for the full model comparison results).

3.3 | Application to other macroecological  
phenomena

While gambin models have so far only been used to analyse SADs, it 
is possible to fit them to any other type of ecological or general dis-
tribution. For example, there is evidence that some species range size 
distributions may exhibit multimodality (e.g., see Gaston, 2003, p. 80). 
As an illustration, we fitted a selection of gambin models to the global 
range size distribution of 167 marine mammal species, and the oc-
cupancy distribution of intestinal helminths in three species of grebe; 
we observe evidence of multimodality in both distributions. The full 
methods and resultant model fits are provided in Appendix S3.

4  | SIMUL ATION ANALYSES

The results of our simulations indicated that in general the α param-
eter estimates of the bimodal gambin model were relatively insensi-
tive to the number of species in the sample (Figure S2, Appendix 
S4).

In contrast, it was found that the α parameter estimates of the 
bimodal gambin model were sensitive to the number of individuals 
in a sample (Figures S3 and S4, Appendix S4). The latter is true 
of most SAD models (see McGill, 2011) and is worrying given that 
SAD analyses typically involve small datasets. While this sensitivity 
is problematic for unimodal gambin, it is less of an issue for applica-
tions of the bimodal model. With the unimodal gambin model, the 
α value can be used as a type of diversity metric to compare SAD 
shape across communities (e.g., Arellano et al., 2017). However, 
for multimodal gambin models the meaning of the α values is not 
as clear, and as such, when fitting multimodal gambin models we 
do not advise using the α parameter estimates as diversity metrics 
or as response variables in regression-type comparative analyses. 
Rather, the benefit of multimodal gambin models is to provide a 
simple, quick, and easy to use test for determining whether em-
pirical SADs are multimodal, and to provide a basis for subsequent 
deconstruction analysis to examine the identities of species within 
the octaves.

To test the error rate of our models, we simulated unimodal 
and bimodal gambin SADs using multiple simulations varying the 
numbers of individuals and species (Appendix S4), fitting both un-
imodal and bimodal gambin models to the simulated data. We com-
pared models using BIC and calculated the proportion of times that 
a bimodal model provides a better fit than a unimodal model to a 
unimodal dataset (i.e., false positive) and the proportion of times 
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a unimodal model provides a better fit than a bimodal model to a 
multimodal dataset (i.e., false negative). When a unimodal gambin 
distribution was simulated, the error rate (false positive) was roughly 
7.0% (see Appendix S4). When a bimodal gambin distribution was 
simulated, the mean error rate depended on the sample size and 
the difference between the α1 and α2 values in the simulated data 
(Figure 2). When the difference between α1 and α2 was relatively 
large, the error rate was very low (e.g., 0%) regardless of the number 
of species in the sample. In contrast, when the difference between 
the α1 and α2 values was very small, the error rate was high (e.g., 
81%) regardless of the number of species. The fact that the error 
rate increases as the components become closer together (Figure 2) 
is to be expected, as the underlying sample distribution starts to re-
semble a unimodal distribution. As most empirical multimodal SADs 
have distinct rarer and more common species modes, this is not a 
substantive issue. The approach can be considered conservative in 
that the model comparison test is slightly biased towards selecting 
the unimodal model over the multimodal model.

A full outline of the methodology, results, and discussion for 
each of the simulations, along with a more detailed discussion, is 
provided in Appendix S4 in the Supporting Information. All analyses 
were undertaken in R (version 3.4.3; R Core Team, 2017).

5  | CONCLUDING REMARKS

In this paper, we have derived the maximum likelihood equations 
for gambin models with multiple components and integrated these 
functions into an updated version of the ‘gambin’ r package available 
on CRAN. Due to the relatively simple underlying mathematics and 

binning procedure, the models are easy to fit and the maximum like-
lihood estimation procedure does not require the user to vary the 
starting parameter values or the optimization algorithm employed. 
Hence, multimodal gambin models represent a novel, easily applied 
test for determining whether SADs or certain other macroecological 
datasets exhibit multimodality. We have also provided a number of 
additional functions to aid in the analysis of multimodal SADs.

As Antão et al. (2017, p. 203) state, “multimodality occurs with a 
prevalence that warrants its systematic consideration when assess-
ing SAD shape and emphasizes the need for macroecological the-
ories to include multimodality in the range of SADs they predict.” 
The development of multimodal gambin models provides one tool to 
undertake these types of analyses. Application of these new models 
to additional datasets will likely be revealing and will help in improv-
ing our understanding of multimodality in SADs and possibly in other 
macroecological data forms.
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