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Abstract Species climate change vulnerability, their predisposition to be adversely affected,
has been assessed for a limited portion of biodiversity. Our knowledge of climate change
impacts is often based only on exposure, the magnitude of climatic variation in the area
occupied by the species, even if species sensitivity, the species ability to tolerate climatic
variations determined by traits, plays a key role in determining vulnerability. We analyse the
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role of species’ habitat associations, a proxy for sensitivity, in explaining vulnerability for two
poorly-known but species-rich taxa in boreal forest, saproxylic beetles and fungi, using three
IPCC emissions scenarios. Towards the end of the 21st century we projected an improvement
in habitat quality associated with an increase of deadwood, an important resource for species,
as a consequence of increased tree growth under high emissions scenarios. However, climate
change will potentially reduce habitat suitability for ~9–43 % of the threatened deadwood-
associated species. This loss is likely caused by future increase in timber extraction and
decomposition rates causing higher deadwood turnover, which have a strong negative effect
on boreal forest biodiversity. Our results are species- and scenario-specific. Diversified forest
management and restoration ensuring deadwood resources in the landscape would allow the
persistence of species whose capacity of delivering important supporting ecosystem services
can be undermined by climate change.

1 Introduction

Assessing species climate change vulnerability requires an estimate of their exposure, sensitivity
and adaptive capacity (Dawson et al. 2011). Foden et al. (2013) carried out an evaluation of well-
studied taxonomic groups such as birds (≈9800 species, 35 % found susceptible to climate
change), amphibians (≈6200 species, 52% susceptible) and important ecosystem engineers such
as corals (≈800 species, 70 % susceptible). Our knowledge of the impacts of climate change on
other poorly known but functionally important taxa, such as insects, remains limited (Bush et al.
2014; Mair et al. 2014; Arribas et al. 2012; Bellard et al. 2012; Wilson and Maclean 2011). For
this neglected majority of species, vulnerability has often been based only on their exposure to
climate change. However it is well-established that sensitivity and adaptive capacity also play a
role in determining species vulnerability (Garcia et al. 2014; Foden et al. 2013; Triviño et al.
2013; Arribas et al. 2012; Summers et al. 2012; Dawson et al. 2011). The knowledge of species
characteristics affecting their sensitivity to climate change is very limited for most species, and
practically null concerning their adaptive capacity (Bush et al. 2014; Arribas et al. 2012).
Furthermore, species vulnerability critically depends on land use change (Barbet-Massin et al.
2012; Ponce-Reyes et al. 2012; Brook et al. 2008). Accounting for this important component of
global change when predicting vulnerability improves predictions about future species persis-
tence (Fordham et al. 2013; Triviño et al. 2013; Ponce-Reyes et al. 2012).

Here we analysed the role of species’ habitat associations in affecting climate change
vulnerability for 129 Finnish threatened saproxylic (deadwood associated) beetles and fungi
(Tikkanen et al. 2006), two species-rich taxonomic groups in boreal forests. Both groups
depend on deadwood, the main habitat and food resource for 25 % of the species living in this
biome, and are functionally important in key processes like nutrient and carbon cycling and
soil formation (Harmon et al. 1986). For this assessment we used the SIMA forest simulator to
forecast the effects of climatic conditions on ecological processes (Kellomäki et al. 2008). The
simulator can translate forest changes driven by climatic scenarios and management regimes
into changes in habitat characteristics for saproxylic species (details in Supplementary
Methods 1–3, limitations in Supplementary Methods 6). In our simulations, the vulnerability
of species was measured as a combination of species sensitivity to changes in habitat
characteristics and exposure of forest stands to climate change.

We simulated forest ecosystem dynamics for 2816 sample plots (forest stands) of the
National Forest Inventory in Finland, evenly spanning across all vegetation subzones of the
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boreal forest (Supplementary Methods 2). We selected a time horizon of 90 years (2010–
2099), and evaluated the changes in habitat quality for deadwood species. We assumed no
changes in land use and forest management during the time horizon, with 91 % of the forest
area currently under intensive timber production (Yrjölä 2002) and 9 % set-aside. Even if
management practices remain the same, shorter forest rotations will take place following faster
tree growth caused by climate change (Kellomäki et al. 2008). To account for stochasticity in
SIMA models (Supplementary Methods 3), we reran the simulations ten times and calculated
the average values of the characteristics of the forest sample plots under three different IPCC
emissions scenarios (B1, A1B, A2) downscaled for Finland (Jylhä 2009) (Supplementary
Methods 1).

We evaluated the effects of climate change on species habitat availability by comparing
these results with the outputs from simulations with current climatic conditions. Estimates
of habitat availability for saproxylic species were based on the best available knowledge
on their resources (tree species and diameter, deadwood decay stage) and micro-climatic
niche axes (Kouki and Tikkanen 2007) (Supplementary Methods 4 and 6). For each
species we calculated a climatic vulnerability value and identified winner (species
experiencing improved habitat quality in the future), loser (reduced habitat quality) and
stable species. We estimated the climate change vulnerability of the landscape by sum-
ming for each stand the species-specific vulnerability values. Finally, we used Generalized
Linear Models (GLMs) for each IPCC scenario to assess the effects of sensitivity (species
habitat association) vs. exposure (projected rate of climate change) on species climatic
vulnerability.

2 Methods

Details concerning the climate data, the National Forest Inventory data modeling and simula-
tion procedures applied in this manuscript are reported in Supplementary Methods 1–3. In the
following sections we only report information about threatened saproxylic species data, the
procedures to calculate climate vulnerability (CV), and the GLMs relating vulnerability with
habitat associations and climate.

Threatened saproxylic species data We extracted records of threatened species from the
Hertta database, a subset of the Environmental Information System of SYKE, the Finnish
Environment Institute, based on the data updated to 2013 for 64 coleopteran and 65 fungal
species (Tikkanen et al. 2006) (Supplementary Table 2). Threatened saproxylic species are
considered good indicators of the quality of forests, being able to survive only with reasonably
high amounts of deadwood in the stand (≥ 20m3/ha); therefore favourable conditions for
species survival in the stands can guarantee the persistence for many other saproxylic species
inhabiting boreal forests.

Climate Vulnerability (CV) For each stand of the National Forest Inventory (NFI) we
calculated Stand Conservation Capacity (SCC) as a weighted sum of species-specific habitat
suitabilities (HSIs), the weights being the HSIs themselves (Supplementary Methods 4, 5 and
6). CV of forest stands is defined by subtracting the SCC calculated under three IPCC
emissions scenarios (s= B1 ,A1B ,A2), regionally downscaled for Finland (Jylhä 2009), from
the SCCs calculated under baseline climatic conditions (s = BC). SCCs were averaged across
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the last three simulated decades of the 21st century (2070–2099), when the effects of climate
change on forest dynamics are predicted to be the highest (Jylhä 2009):

CVs ¼ ΔSCC ¼ SCCBC − SCCs¼B1;A1B;A2

Original SCC values vary between 0 and 1. To put more emphasis on changes in values in
the middle of the gradient (SCC values around 0.5 having more biological importance), we
transformed CV values as follows:

scaled CVs ¼ CVs SCCBC � 1−SCCBCð Þ½ �:
This transformation accounts for the fact that a small change in habitat suitability induced

by climate change is expected to have less biological importance when the initial level of SCC
under stationary climate is either very low or very high, and the highest importance is for
intermediate SCC values. A negative sum of scaled CV values across the whole NFI corre-
sponds to an increase in SCC induced by climate change (improved landscape quality); a
positive sum of scaled CV values corresponds to a decrease in SCC under climate change
(landscape degradation). In the text, figures, tables and supplementary materials, when not
specified, the notation ‘CV’ always must be considered as an abbreviation for ‘scaled CV’
values. CV depends both on the modifications of stand quality induced by climate change
(exposure) and on how species respond to these changes on the basis of their habitat
association (sensitivity) (Dawson et al. 2011).

We also calculated the species-specific scaled CV values, i.e., the sum of differences across
stands in HSI for each species, between the current and future climate. In the assessment we
categorized species into winners if their average scaled CV across all stands belonged to the
lowest quartile of the range of CV values, and losers when CV was in the highest quartile; all
other species were considered stable typically having both negative and positive CV values
(Supplementary Table 2). To summarize the species-specific information we calculated the
average values of climate vulnerability for each species’ habitat associations in terms of
resources and micro-climatic associations (Supplementary Table 1).

Generalized Linear Models (GLMs): the association between climate vulnerability (re-
sponse variable) and the joint and separate effects of sensitivity (i.e., species habitat association
in terms of resources and micro-climatic associations as a categorical predictor) and exposure
(i.e., climate change rate as a continuous predictor) were evaluated using GLMs for each IPCC
emissions scenario (Supplementary Table 3). Climate change rate was measured as the
difference between future and baseline emissions scenarios for the best combination (in terms
of the lowest AIC values and limited multicollinearity) of five climatic variables (temperature
sum, dry days, evaporation, evapotranspiration, precipitation) simulated for the end of the 21st
century (averaged across the period 2070–2099). For the response variable we assumed a
gamma distribution of errors (random part of the model) and a log link function (systematic
part) between the dependent variable and the predictors. The means of GLM regression
parameters for CV were calculated with the Wald test using robust standard errors. The
importance of habitat association and climate change in explaining CV in the full model was
evaluated by summing up for each of these two CV components the averaging sequential sums
of squares over all orderings of regressors proposed by Lindeman et al. (1980) (lmg values)
calculated for each variable related with these two components for the corresponding linear
models. The sum of lmg values for all the climate change-related variables (ΔTsum, ΔDry
days, etc) defined the effect of climate, and the corresponding sum of habitat association
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variables (tree, decay stage, etc) measured the effect of habitat factors. The relative effect of the
two predictors in the full model was then summarized as a percent share of the total sum of lmg
values.

All statistical analyses were performed using SPSS 20.0 (IBM Corp. 2011). Lmg values to
evaluate the importance of the predictors in the GLMs were calculated via the R package
Brelaimpo^ (https://cran.r-project.org/web/packages/relaimpo/relaimpo.pdf, Grömping 2006).

3 Results

3.1 Response of forest landscape and species to climate change

Across all studied species we projected negative vulnerability values, i.e., improvement in
habitat quality, for 53 % to 57 % of stands, depending on the IPCC scenario, and positive
vulnerability, i.e., habitat degradation, for 38 % to 42 % of the stands (Fig. 1a). Even if there
was an overall improvement in habitat quality losers were represented in the landscape
depending on the emission scenario and in the case of the B1 and A1B scenario outperformed
winners (Fig. 1b). Between 9 % and 43 % of the 129 deadwood-associated species can be
considered losers and 10–26 % winners, while 45–70 % are stable in the face of climate

Fig. 1 Response of forest landscape (a) and species (b) to climate change. (a) Percentages of the National Forest
Inventory (NFI) sample plots, which are predicted to have either an improvement (↑) or a reduction (↓) in habitat
quality towards the end of the 21st century under different climate change scenario. The difference between
improvement and reduction (Δ) qualifies the overall trend for the landscape. (b) Number of threatened species
predicted to be either winners (W), i.e., experience an improvement in their habitat quality, losers (L), i.e.,
experience a reduction in habitat quality, or stable (S), i.e., experience constant habitat quality under climate
change. For (a), (b) changes in habitat quality refer to climate vulnerability values for the three IPCC emissions
scenarios (Jylhä 2009) (B1, A1B, A2) respect to the baseline scenario for Finland
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change (Fig. 1b). The proportions of winners was the highest under a low emission scenario
(B1) while the losers were more represented under intermediate emissions (A1B) and the
proportion of stable species increased with emissions (from B1 to A2) (Fig. 1b). For winners
the average vulnerability was lower under low emissions (B1) than for higher emissions
scenarios (A1B, A2). For losers even if the highest average vulnerability was observed under
low (B1) emissions, the highest extreme values were observed under intermediate emissions
(A1B) (Fig. 2).

3.2 Response of forest species to climate change with regards to their habitat
associations

Winners and losers differed in terms of their habitat associations (Fig. 3, Supplementary
Tables 1 and 2). The losers under low (B1) and intermediate (A1B) emissions were
predominantly associated with deciduous trees (birch i.e., Betula pendula and
B. pubescens) (respectively 84 % and 57 % of the species) while under high (A2)
emissions losers were more often (91 %) associated with Scots pine. The winners were
associated with Scots pine under low (B1) emissions (61 %), with aspen (100 %) under
intermediate (A1B) and with other deciduous trees (71 %) under high (A2) emissions.
With concern to decay stage associations, losers were more frequently associated with
fresh deadwood (58 % under B1 scenario) or with well-decayed deadwood (61 % under
A1B and 100 % under A2 scenario) than winners. Association with large diameter
deadwood was not a crucial factor differentiating winners from losers. Under intermediate
(A1B) and high (A2) emissions a large proportion of winners (respectively 54 and 61 %)
were associated with sunny microclimate.

Fig. 2 Variability in the response of forest species to climate change. Boxplots of average levels of climate
vulnerability for each response category to climate change (W = Winners, L = Losers; S = Stable) of the
threatened species for IPCC scenarios of increasing emissions (Jylhä 2009)
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3.3 The contribution of sensitivity and exposure to climate vulnerability

Species sensitivity, represented as habitat association, was a much stronger predictor of vulner-
ability across the landscape than climatic exposure, represented by the rate of projected climate
change. In the full regression model where CV was explained both by habitat association
(sensitivity) and climate change (exposure), predictors related with habitat association represented
between 91 and 96 % of the explanatory power of the model (in terms of share of sum of lmg
values) and only 4–9 % was explained by climatic exposure (Supplementary Table 3).

4 Discussion

In the present study we analyse the role of species’ habitat associations in explaining climate
change vulnerability for two poorly-known but species-rich taxa in boreal forest, saproxylic
beetles and fungi, using three IPCC emissions scenarios. We found towards the end of the 21st
century an improvement in their habitat quality associated with an increase of deadwood, an
important resource for these species, as a consequence of increased tree growth but also a
reduction of habitat suitability likely caused by future increase in timber extraction and
decomposition rates (Eggers et al. 2008; Tuomi et al. 2011).

In accordance with previous studies addressing species’ climate change vulnerability
(Garcia et al. 2014; Triviño et al. 2013; Foden et al. 2013; Summers et al. 2012), we projected

Fig. 3 Response of forest species to climate change with regards to their habitat associations. For each IPCC
emissions scenario (Jylhä 2009) (B1, A1B, A2) numbers of threatened species, separated for their habitat
associations, which experienced either a reduction (losers) or an improvement (winners) in their habitat quality.
Explanations and abbreviations reported in the following footnotes. Species habitat association: evaluated in
terms of tree species [T], decay stage of deadwood [DS], tree diameter [D], and microclimate [M]. The attribution
of threatened species to each habitat association is based on the notes reported in Tikkanen et al. (2006). Species
response: average climate vulnerability (CV) among the NFI sample plots. Species responses can be: winner (the
species experiences an improvement in its habitat quality), loser (the species experiences a reduction in its habitat
quality), or stable (species keeps constant habitat quality). Classification of response categories: W = Winners =
(average CV value <25th percentile of CV range), L = Losers = (average CV value >75th percentile), S = Stable
= (25th percentile < average CV value <75th percentile). Legend: As = Aspen. De = Deciduous; Pi = Pine;
Sp = Spruce; F = Fresh deadwood. WD = Well-decayed deadwood. LD = association for large diameter
deadwood (>30 cm). NP = No association for a certain diameter classes. Su = preferring sunny sites.
Sh = Demanding shade. I = Indifferent to microclimate
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more losers than winners for both the low (B1) and intermediate (A1B) emission scenarios
while under high emission (A2) the winners increased dramatically respect to losers. Under
low-intermediate emissions, about 30–40 % of the threatened deadwood-associated species
were projected to face reduced habitat quality by the end of the 21st century, while habitat
quality improved for a smaller fraction of species. However, across all species we projected an
improvement in habitat quality for >50 % forest stands, most likely caused by increased
deadwood (Mazziotta et al. 2014) as a result of increased tree growth and mortality with
climate change (Mazziotta et al. 2014; Kellomäki et al. 2008).

The higher number of losers than winners for two emission scenarios, notwithstanding the
overall increase in habitat quality, highlights the importance of accounting for species-habitat
associations when evaluating vulnerability. This mismatch may be explained by the fact that,
even though global warming is expected to increase deadwood availability through increased
tree growth and mortality, the increased rate in deadwood turnover may ultimately limit
species persistence in the landscape. Nevertheless, the strong decrease in stand habitat quality
that we projected for about 40 % of stands reveals that climate change effects on habitat quality
vary with the current characteristics of localities. With increasing emissions, the higher
difference in the landscape’s response to climate change among plots reflects the higher
proportion of stable species. Especially under high emission (A2), the stronger increase in
tree growth and mortality may outpace the increased rate in deadwood turnover overall
increasing deadwood habitats. However this increased habitat availability is still partly deter-
mined by the local landscape suitability.

Suitable habitat conditions will increase in the future for winners species. However, even if
habitat becomes available, many of these species may be unable to colonize this new space
because of limited dispersal ability (Menéndez et al. 2006; Devictor et al. 2008). This is
specially the case for poor dispersers like saproxylic species. Moreover, climate change is
predicted to create novel communities from the new associations of species able to track their
habitat and climatic niche (Williams and Jackson 2007). Species that are able to reach these
new suitable species space might not be able to survive in these novel communities because
they are not competitive enough, ultimately resulting in extinction events difficult to predict
(Urban et al. 2012). Many species may continue to persist at local scale as an effect of
extinction debt even after many decades of unfavorable environmental changes, ultimately
maintaining high local levels of species richness, but their populations might become extinct in
the long run (Hyvärinen et al. 2006; Berglund and Jonsson 2005).

We forecasted a positive trend in species associated with Scots pine and deciduous trees as a
consequence of the predicted enhancement in annual growth of these tree species with
increasing emissions (Mazziotta et al. 2014; Kellomäki et al. 2008). We also projected a
decline of species preferring well-decayed deadwood. This stems from the fact that with
climate change the retention time of the deadwood stock will be reduced by increased
decomposition rates (Tuomi et al. 2011) making their habitats more temporary. Climate change
also results in more frequent final harvest and subsequent harrowing (Kellomäki et al. 2008),
further shortening deadwood retention times (Rabinowitsch-Jokinen et al. 2010). On the other
hand, fresh deadwood will become more available, favoring species associated with this
resource.

Earlier research has suggested that the relative importance that climatic exposure and
ecological sensitivity have in determining vulnerability depends on the spatial scale.
Exposure has more importance than sensitivity at the landscape or regional scale, while the
opposite tends to be true at the local scale (Bradshaw et al. 2014; Garcia et al. 2014; Arribas
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et al. 2012; Summers et al. 2012). In our regional-scale analysis, we projected that sensitivity,
i.e., habitat associations, accounted for a much larger proportion of the variance in vulnera-
bility than exposure. Evidently, whether exposure or sensitivity is driving vulnerability varies
not only with spatial scale, but also among taxa and perhaps within their ecological niches.
Earlier work has shown that the abundance, diversity and community composition of wood-
decaying fungi are more dependent on the amount and diversity of resources than on
macroclimate (Bässler et al. 2010). In other words, coarse (>10 cm) woody debris may create
local microclimatic conditions that effectively isolate saproxylic species from the direct effects
of macroclimate, and consequently climate change, at the landscape level (Bradford et al.
2014). This mismatch between micro- and macroclimatic conditions may explain why we
projected strong effect of habitat associations (sensitivity) and very weak effect of
macroclimate (exposure) on the vulnerability of saproxylic species.

5 Conclusions and implications

Many poorly known threatened species that are vitally important for supporting ecosystem
services may be negatively influenced by climate change (Wilson and Maclean 2011; Mooney
et al. 2009). This calls for action by policymakers and forest managers in establishing
management and restoration measures to make the most of the positive effects of climate
change for species, while alleviating the negative effects at the landscape level (see e.g. the
decision framework for species conservation management in Shoo et al. (2013) and its critics
in Ahteensuu et al. (2015)). Factors making some species losers vary among emissions
scenarios to some extent. This uncertainty calls for management decisions providing large
enough variability in forest structures, e.g. in terms of tree species composition, forest rotation
lengths and amount of retained forest biomass. As habitat association is so important for
explaining species climate vulnerability, management and restoration actions should aim at
increasing habitat diversity and maximizing resources for deadwood species (Mazziotta et al.
2014; Halme et al. 2013; Mönkkönen 1999) to support their persistence in production
landscapes in the face of climate change. These actions can be achieved with relatively low
opportunity costs for society if carefully planned (Mönkkönen et al. 2014). The preservation of
biodiversity under climate change may be in conflict with other societal interests. For example,
European level policy incentives for more renewable climate-friendly energy (Stupak et al.
2007) has already resulted in increasing forest fuel harvesting, which in turn will reduce
resource availability of deadwood-associated species and further cause species endangerment
(Eräjää et al. 2010). More comprehensive forest management planning is needed for recon-
ciling ecosystem services and the protection of biodiversity simultaneously (Mönkkönen et al.
2014). Enhanced biomass accumulation due to climate change may help to compensate the
costs (i.e., declined land area for biomass production) of habitat improvement for saproxylic
species.
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