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Abstract
In the face of increasing cumulative effects from human and natural disturbances, 
sustaining coral reefs will require a deeper understanding of the drivers of coral resil-
ience in space and time. Here we develop a high‐resolution, spatially explicit model of 
coral dynamics on Australia's Great Barrier Reef (GBR). Our model accounts for bio-
logical, ecological and environmental processes, as well as spatial variation in water 
quality and the cumulative effects of coral diseases, bleaching, outbreaks of crown‐
of‐thorns starfish (Acanthaster cf. solaris), and tropical cyclones. Our projections re-
construct coral cover trajectories between 1996 and 2017 over a total reef area of 
14,780 km2, predicting a mean annual coral loss of −0.67%/year mostly due to the 
impact of cyclones, followed by starfish outbreaks and coral bleaching. Coral growth 
rate was the highest for outer shelf coral communities characterized by digitate and 
tabulate Acropora spp. and exposed to low seasonal variations in salinity and sea sur-
face temperature, and the lowest for inner‐shelf communities exposed to reduced 
water quality. We show that coral resilience (defined as the net effect of resistance 
and recovery following disturbance) was negatively related to the frequency of river 
plume conditions, and to reef accessibility to a lesser extent. Surprisingly, reef resil-
ience was substantially lower within no‐take marine protected areas, however this 
difference was mostly driven by the effect of water quality. Our model provides a 
new validated, spatially explicit platform for identifying the reefs that face the great-
est risk of biodiversity loss, and those that have the highest chances to persist under 
increasing disturbance regimes.
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1  | INTRODUC TION

Natural ecosystems are facing unprecedented and accelerating deg-
radation (Ceballos et al., 2015), as exemplified by increasing rates 
of losses of coral reef biodiversity in the 21st century due to an-
thropogenic and natural stresses and their interactions (Hughes et 
al., 2017; Knowlton, 2001). Coral reefs are among the most species‐
rich ecosystems globally (Caley, Fisher, & Mengersen, 2014), hosting 
hundreds of thousands of species (Fisher et al., 2015) and providing 
important ecosystem services (Costanza et al., 2014). Consequently, 
the potential impacts of anthropogenic stresses are especially high 
for coral reef ecosystems.

The resilience of an ecosystem can be defined as its capacity 
to absorb the impact of a disturbance and return to its initial state 
(Folke et al., 2004; Hughes et al., 2003; Hughes, NaJ, Jackson, 
Mumby, & Steneck, 2010), thereby conferring upon it low vulner-
ability (Mumby, Chollett, Bozec, & Wolff, 2014). In this framework, 
temporal trends in coral cover are the most common indicator of 
coral reef resilience (Mumby & Anthony, 2015), reflecting both its 
resistance (capacity to withstand disturbance) and recovery (the rate 
at which coral cover returns to its pre‐disturbance level). Threats 
that undermine coral reef resilience can be broadly grouped into 
chronic stressors (such as ocean warming, pollution, sedimentation, 
and over‐harvesting) and acute stressors or disturbances (such as 
coral predation by crown‐of‐thorns starfish (CoTS) Acanthaster cf. 
solaris, coral bleaching, coral disease, and tropical cyclones) that 
interact in complex ways (Vercelloni, Caley, & Mengersen, 2017). 
For example, nutrient enhancement from terrestrial runoff can in-
crease coral susceptibility to disease and bleaching (Thurber et al., 
2014), and potentially initiate outbreaks of CoTS (Fabricius, Okaji, 
& De'ath, 2010). Previous studies have begun to unravel the factors 
that make a reef more resilient, including herbivory (Hughes et al., 
2007), connectivity (Hughes, Bellwood, Folke, Steneck, & Wilson, 
2005), and protection from fishing (Mellin, Macneil, Cheal, Emslie, 
& Caley, 2016). However, the small percentage of locations where 
there is regular and detailed data collection represents a bottleneck 
for understanding resilience at scales relevant to regional conserva-
tion and management. Spatial resilience (sensu Cumming, Morrison, 
& Hughes, 2017), a subset of the resilience theory, focuses on pro-
cesses influencing a system's ability to maintain its integrity and 
functions that operate across multiple locations and spatial scales, 
from local (e.g., environmental conditions, habitat characteristics) 
to regional or global (e.g., management regimes or the impact of 
regional disturbances exacerbated by global change). Yet there is 
currently no framework available for predicting which reefs are the 
most resilient based on spatial variation in underlying environmen-
tal, biological, and ecological processes at multiple spatiotemporal 
scales. Consequently, management plans are routinely designed and 
implemented with little capacity to quantify their effectiveness in 
supporting reef resilience, and to improve such plans adaptively.

Australia's Great Barrier Reef (GBR) offers a unique opportunity 
to disentangle the effects of acute disturbances from the impacts 
of fishing, which has remained low and well regulated compared 

to most reefs worldwide. Previous statistical assessments of his-
torical trends for the GBR found a 50% decline in coral cover over 
the last three decades, mostly due to the effect of cyclones and 
CoTS outbreaks (De'ath, Fabricius, Sweatman, & Puotinen, 2012). 
However, those results were based on a subset of 214 reefs, rep-
resenting 7% of the total reef area of the GBR with few inner‐shelf 
reefs. Furthermore, this assessment did not account for coral re-
covery following disturbance—a critical requirement for accurately 
reconstructing coral trajectories and identifying key drivers of reef 
resilience. Recent advances have helped quantify the effect of cu-
mulative stress on coral recovery potential (Ortiz et al., 2018); how-
ever, they were based on even fewer samples collected prior to 
2010, and consequently, do not include the latest and most severe 
bleaching events (Hughes et al., 2017) and recent major cyclone im-
pacts (Puotinen, Maynard, Beeden, Radford, & Williams, 2016). Only 
few studies thus far have attempted to identify the environmental 
drivers of coral growth rate (e.g., Madin, Hoogenboom, & Connolly, 
2012, Pratchett et al., 2015, MacNeil et al., 2019), and none has de-
rived high‐resolution predictions of coral cover over the entire time 
series of available data.

Here we develop a high‐resolution dynamic model of coral 
cover for reefs of the GBR that directly incorporates the cumula-
tive effects of disturbances such as coral bleaching, disease, CoTS 
outbreaks, and tropical cyclones. By accounting for key ecological 
processes (coral growth and recovery potential), environmental driv-
ers of coral cover, and observed disturbance history, we reconstruct 
coral cover trajectories for >1,500 reefs at a 0.01° (~1 km) resolu-
tion over the last 22 years (1996–2017). Importantly, for the first 
time, our model includes a spatially explicit index of water quality 
for the frequency of river plume‐like conditions (Petus, Silva, Devlin, 
Wenger, & Alvarez‐Romero, 2014), which can negatively affect cor-
als (Fabricius, 2005; Wolff, Mumby, Devlin, & Anthony, 2018). We 
independently validate our model predictions and provide quan-
titative estimates of model uncertainty—a critical requirement for 
informing decision‐making and risk analyses (Mumby et al., 2011). 
We use this model to map the resilience of corals to anthropogenic 
and natural stressors across the GBR and show that resilience was 
negatively related to plume conditions.

2  | METHODS

2.1 | Experimental design

Model development followed two main steps (Figure S1): (i) estimate 
the Gompertz‐based model parameters from long‐term surveys and 
predict them in every 0.01° grid cell across the Great Barrier Reef 
(GBR), and (ii) couple these spatially explicit estimates of coral cover 
with spatial layers of disturbance history and water quality to re-
construct coral cover trajectories between 1996 and 2017 across 
the GBR.

Step (i) involved predicting benthic communities (i.e. ecological 
communities composed of hard corals and other benthic organisms 
or abiotic substrate) based on environmental and spatial correlates 
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using multivariate regression trees. This was done using surveys of 
average benthic cover for a subset of reefs on the GBR. We then 
developed a Gompertz‐based Bayesian hierarchical model that esti-
mated intrinsic coral growth rate (rs), as well as the effect of various 
disturbances on coral cover, for individual transects nested within 
survey reefs and benthic communities. From these estimates, we 
predicted intrinsic coral growth rate across the GBR, using boosted 
regression trees (BRT) based on environmental and spatial predic-
tors. We also used our BRT model to predict the coral cover ob-
served in 1996 (HCini) and maximum (HCmax) coral cover in every 0.01° 
grid cell based on observations at surveyed reefs.

Step (ii) involved predicting coral cover in each year of the 
time series by combining BRT predictions of HCini, HCmax and rs 
with the impact (severity × effect size) of the various disturbance 
agents including coral bleaching, disease, CoTS outbreaks, tropi-
cal cyclones, and unknown disturbance. This allowed us to predict 
coral cover in every grid cell and in every year between 1996 and 
2017. We validated model predictions using an out‐of‐sample, 
independent set of survey reefs, mapped model uncertainty and 
identified its main sources based on a sensitivity analysis. Last, we 
compared predictions of mean annual change in coral cover with 
an index of cumulative disturbance to quantify reef resilience, 
defined as the net effect of resistance and recovery following 
disturbance.

2.2 | Survey reefs

Australia's Great Barrier Reef (GBR) consists of more than 2,900 in-
dividual reefs extending over 2,300 km between 9 and 24°S latitude. 
Reef communities of the GBR have been monitored yearly between 
1993 and 2005, and then biennially thereafter, by the Australian 
Institute of Marine Science's (AIMS) Long‐Term Monitoring Program 
(LTMP) (Sweatman et al., 2008). As part of the LTMP, a total of 46 
reefs were monitored for transect‐based benthic cover between 
1996 and 2017 in six latitudinal sectors (Cooktown‐Lizard Island, 
Cairns, Townsville, Whitsunday, Swain and Capricorn‐Bunker) span-
ning 150,000 km2 of the GBR. In each sector (with the exception 
of the Swain and Capricorn‐Bunker sectors) at least two reefs were 
sampled in each of three shelf positions (i.e., inner, mid‐ and outer). 
An additional 45 reefs were surveyed using the same methodology 
as part of the Representative Areas Program (RAP) (Sweatman et 
al., 2008), and 17 reefs as part of the Marine Monitoring Program 
(MMP) (Thompson et al., 2016). Finally, reef‐level information on 
hard coral cover was collected by manta‐tow for 97 reefs surveyed 
in 1996 and thereafter (44 of those being also surveyed for transect‐
based benthic cover).

We used information from the 46 LTMP reefs in every step of 
model development, in addition to those from other monitoring pro-
grams where possible, depending on the number of survey years and 
whether associated disturbance data were available (Table S2). We 
validated coral cover trajectories based on 10 manta‐tow reefs that 
were not used for model calibration, and for which disturbance his-
tory as well as ≥10 years of data post‐1996 were available.

2.3 | Survey methods and data collection

For LTMP and RAP, transect‐based data on benthic assemblages 
were collected at three sites separated by >50 m within a single 
habitat on the reef slope (the first stretch of continuous reef on 
the northeast flank of the reef, excluding vertical drop‐offs). Within 
each site, five permanently marked 50‐m long transects were de-
ployed parallel to the reef crest, each separated by 10 m along the 
6–9 m depth contour. Percentage cover of benthic categories was 
estimated for each transect using point sampling of a randomly se-
lected sequence of images (Jonker, Johns, & Osborne, 2008). The 
benthic organisms under five points arranged in a quincunx pattern 
in each image were identified to the finest taxonomic resolution 
possible (n = 200 points per transect) and the data were converted 
into percent cover. For MMP, the smaller size of inshore reefs dic-
tated a reduced design that included two sites at each reef within 
which five 20‐m long transects with n = 160 points per transect 
were used for estimation of percent cover. In this study, we consid-
ered the combined cover of all hard corals, hereafter referred to as 
hard coral cover (HC; %).

Manta‐tow surveys were conducted around the perimeter of en-
tire reefs to estimate hard coral cover and densities of CoTS (Miller & 
Müller, 1999). Manta‐tow surveys involved a snorkeler with a “manta 
board” (hydrofoil) being towed slowly behind a small boat around 
the entire perimeter of each survey reef close to the reef crest so 
that the observer surveyed a 10‐m‐wide‐swathe of the shallow reef 
slope (Bass & Miller, 1996). The boat stopped every 2 min to allow 
the observer to record the mean coral cover into one of 10 catego-
ries (Bass & Miller, 1996), giving one cover estimate per tow (~200 m 
of reef edge) with the number of tows per reef varying from 3 to 325 
depending on reef size.

2.4 | Environmental and spatial covariates

A set of 31 environmental variables were collated across the GBR 
at a 0.01° resolution (12,670 grid cells, spanning a total area of 
14,778 km2) (Matthews et al., 2019). From these variables, we se-
lected those with a reported effect on coral ecophysiology as our 
candidate model predictors (Table S1). These environmental vari-
ables include long‐term annual averages and seasonal variation of 
temperature, salinity, chlorophyll a and nutrient concentrations 
(nitrate, phosphorus), oxygen levels and light availability, as well as 
sediment covers and bathymetry, which are all important predictors 
of coral reef and seabed biodiversity on the GBR (Mellin, Bradshaw, 
Meekan, & Caley, 2010; Sutcliffe, Mellin, Pitcher, Possingham, & 
Caley, 2014) (Table S1). In addition, spatial variables including the 
shortest distances to the coast and to the barrier reef were calcu-
lated for each grid cell of the GBR using great‐circle distance (i.e., the 
shortest distance between two points on the surface of the Earth). 
Within this 0.01° resolution grid, reefs (polygons) were identified, 
using the marine bioregion classification from the Great Barrier 
Marine Park Authority (GBRMPA), excluding any non‐reef locations 
(e.g., cays, islands, mangroves) and restricting coverage to depths 
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<30 m. The grid was truncated by removing all cells with a latitude of 
<12°S due to data scarcity in northernmost locations.

2.5 | Water quality

We used the average frequency of exposure to river plume‐like con-
ditions (PFc) as a proxy for exposure to dissolved nutrients and fine 
sediments delivered during the wet season (MacNeil et al., 2019). 
Based on satellite observations during the 2005–2013 wet seasons, 
the frequency (i.e., number of weeks per year) of exposure to pri-
mary, secondary and tertiary river plumes were estimated at a 1‐km 
resolution (Petus et al., 2014). Primary water consists of the turbid, 
sediment‐dominated parts of the plume, secondary water consists 
of the chlorophyll‐dominated parts of the plume, and tertiary water 
consists of the furthest extent of the relatively clearer parts of the 
plume. Here we pooled these three water types to estimate the fre-
quency of inundation of any plume water, expressed as a proportion 
of total wet season weeks.

2.6 | Disturbance data

The disturbance data included two components (i) point‐based 
records of coral damage collected concurrently with the benthic 
surveys (e.g., Mellin et al., 2016) and (ii) spatial layers of distur-
bance history and associated severity across the GBR available in 
Matthews et al. (2019).

(i) In point‐based records of coral damage, disturbances were 
classified into five categories (i.e. coral bleaching, CoTS outbreaks, 
coral disease, cyclones or unknown) following Osborne, Dolman, 
Burgess, and Johns (2011) based on visual assessment by expe-
rienced divers during reef‐scale manta tow and intensive SCUBA 
surveys. A disturbance was recorded when the total coral cover de-
creased by more than 5% from its pre‐disturbance value between 
two consecutive periods. Each disturbance was identified by distinc-
tive and identifiable effects on corals, such as the presence of CoTS 
individuals or feeding scars, or dislodged and broken coral indicative 
of cyclone damage (Osborne et al., 2011). An additional category 
labeled “unknown” was used to classify unidentified disturbances. 
This dataset thus resulted in a series of five binary variables coding 
the presence (1) or absence (0) of each type of disturbance in each 
year and at each reef where transect‐based surveys of benthic as-
semblages were conducted.

(ii) Spatial layers of disturbance severity during the study period 
were available at a 0.01° resolution for coral bleaching, CoTS out-
breaks and cyclones (Matthews et al., 2019). In this dataset, per cent 
coral cover bleached was interpolated using inverse distance weight-
ing (maximum distance = 1°; minimum observations = 3) from exten-
sive aerial surveys at 641 reefs for the 1998, 2002, and 2016 mass 
bleaching events on the GBR (Berkelmans, De'ath, Kininmonth, & 
Skirving, 2004; Hughes et al., 2017). Interpolated maps of CoTS den-
sities were also generated by inverse distance weighting (maximum 
distance = 1°; minimum observations = 3) from the manta tow data 
collected by the Australian Institute of Marine Science in every year 

from 1996 to 2017 (Miller & Müller, 1999). The potential for cyclone 
damage was estimated based on 4‐km resolution reconstructed sea 
state as per Puotinen et al. (2016). This model predicts the incidence 
of seas rough enough to severely damage corals (top one‐third of 
wave heights >4 m) caused by cyclones for every cyclone between 
1996 and 2016. We then used these spatial layers to associate the 
binary occurrence of each disturbance resulting in coral cover loss 
(as per [i]) with its severity. Note that, at the time of writing, aerial 
surveys following the 2017 bleaching event as well as the impact of 
the 2017 tropical cyclone Debbie (based on the methodology devel-
oped by Puotinen et al., 2016) were unavailable. Due to the unavail-
ability of spatially continuous information on the occurrence and 
severity of coral disease and unidentified disturbance (which both 
had a low influence on coral cover compared to cyclones or CoTS 
outbreaks), we randomly generated spatial layers for these distur-
bances in every year and every model simulation (N = 1,000) match-
ing their observed frequency as per the LTMP historical records.

Disturbance impacts are typically patchy at sub‐reef scales, be-
cause some sections of the reef might not be exposed to cyclone‐
generated waves and/or be structurally vulnerable (Puotinen et al., 
2016), or because of local CoTS aggregation patterns (Pratchett, 
Caballes, Rivera‐Posada, & Sweatman, 2014). The consequence is a 
discrepancy between the expected effect of disturbance from our 
layers and the actual coral loss recorded at each transect during 
LTMP surveys. To explicitly account for such sub‐reef scale ef-
fects, we resampled the disturbance data in every model simulation 
(N = 1,000) to match the actual disturbance frequencies observed 
during field surveys. In other words, we “turned off” some distur-
bances assuming they would not result in a noticeable coral loss at 
the reef scale, with the frequency of these false positives (6.4% for 
coral bleaching; 6.9% for CoTS outbreaks and 9.6% for tropical cy-
clones) being determined from the LTMP disturbance history and 
field‐based records of coral loss. We further assess model sensitivity 
to the adjusted disturbance data (among other sources of model un-
certainty; see Model validation, uncertainty and sensitivity analysis).

2.7 | Modeling

2.7.1 | Predicting benthic communities 
across the GBR

We identified benthic communities using multivariate regression 
trees (De'ath, 2002) (MRT), which allowed us to model the rela-
tionship between spatial and environmental covariates, and the 
relative cover of the different benthic groups and coral taxa. MRT 
forms clusters of sites by repeated splitting of the data, with each 
split determined by habitat characteristics (De'ath, 2002) and cor-
responding to a distinct species assemblage. Tree fit is defined by 
the relative error (RE; total impurity of the final tree divided by 
the impurity of the original data). RE is an over‐optimistic estimate 
of tree accuracy, which is better estimated from the cross‐vali-
dated relative error (CVRE). We determined the best tree size (i.e. 
number of leaves or clusters formed by the tree) as that which 
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minimized CVRE, which varies from zero for a perfect predictor to 
nearly one for a poor predictor (De'ath, 2002). We then examined 
the splits and quantified the variance that each of them explained, 
based on the entire dataset and for each individual functional 
group. We used the resulting MRT to predict community mem-
bership for every 0.01° grid cell on the GBR based on the spatial 
layers available for our covariates. MRT were fit in the R package 
“mvpart”.

We subsequently characterized each cluster by its indicator taxa 
based on the Dufrêne‐Legendre index, which is based on the rel-
ative abundance and frequency of each benthic category within a 
given cluster (Dufrêne & Legendre, 1997). The index varies between 
0, no occurrences of a species within a cluster, to 100, if a species 
occurs at all sites within the cluster and in no other cluster. The index 
is associated with the probability of resulting from a random pat-
tern, based on 250 reallocations of sites among clusters (Dufrêne & 
Legendre, 1997).

2.7.2 | Gompertz model of coral growth

We reconstructed coral cover trajectories over the last 22 years 
(1996–2017) for every 0.01° grid cell based on the parameters 
estimated from a Gompertz‐based Bayesian hierarchical model 
of coral growth previously fitted to the LTMP reefs (MacNeil et 
al., 2019). This growth model is an adaptation of the Gompertz‐
based model of benthic cover developed by Fukaya et al. (Fukaya, 
Okuda, Nakaoka, Hori, & Noda, 2010) that quantifies the intrinsic 
growth rate (rs) and strength of density dependence (�) for sessile 
species, expressed as coverage of a defined sampling area. In our 
case, this was the percentage of visual points that contained hard 
coral within the LTMP data per transect (HCt). Using a Binomial 
(BIN) observation model, we assumed a hierarchy where transect 
level observations (i) at time (t), were nested within reef (r), nested 
within each benthic community (c):

with mean model:

and where

where rs is the intrinsic growth rate, � is the strength of density de-
pendence, �i is the effect size of the i

th disturbance occurring in year t 
(Disturbi,t; i.e. bleaching, CoTS outbreak, disease, cyclone or unknown), 

CA is a binary indicating which reefs are located in a closed (i.e. no‐
take) area, PFc is the water quality proxy for river plume‐like conditions 
(Petus et al., 2014) and �PFc its effect size, and �i.CA and �i.PFc are the 
effect size relating to interactions between disturbances and CA and 
PFc respectively. Our model was thus built at a yearly resolution, as-
suming that any reduction in coral cover measured during a survey (i.e. 
above the 5% threshold) reflected the impact of a disturbance occur-
ring between that survey and the previous one. We did not include in-
teractions among disturbances because only <1% of all grid cells were 
affected by two disturbances within the same year, with insufficient 
instances of LTMP reefs being exposed to co‐occurring disturbances 
during the study period. Note that in this formulation, each benthic 
community had their own global mean at the top of the hierarchy.

In the absence of disturbance, coral cover increases from its ini-
tial value (HCini, in 1996 in our case) to its asymptote (HCmax, deter-
mined by the reef carrying capacity or amount of available substrate 
in grid cell i) where

which, once combined with Equation , gives

Because the strength of density dependence (�) depends on the 
intrinsic growth rate (rs) (Fukaya et al., 2010), for which we needed 
separate predictions in each grid cell, we elected to predict HCmax 
(rather than �) in each grid cell using the same modeling technique 
to avoid circularity, and calculated � based on Equation 3.

Those models were run in a Bayesian framework, using the 
PyMC3 package in Python (Salvatier, Wiecki, & Fonnesbeck, 
2016), with inferences made from 5,000 samples of the default 
No U‐Turn Sampler (NUTS) algorithm. Parallel chains were run, 
from starting values initialized automatically by an Automatic 
Differentiation Variational Inference (ADVI) algorithm, to look for 
convergence of posterior parameter estimates using the Gelman–
Rubin convergence statistic (R‐hat); posterior traces and predic-
tive intervals were also examined for evidence of convergence and 
model fit.

2.7.3 | Predicting coral growth rate (rs), initial 
(HCini) and maximal (HCmax) cover across the GBR

We predicted rs, HCini and HCmax in each 0.01° grid cell from observed 
values at the survey reefs and as a function of spatial, environmen-
tal and disturbance‐based correlates using boosted regression trees 
(BRT). BRT is a machine learning algorithm that uses many simple 
decision trees to iteratively boost the predictive performance of 
the final models (Elith, Leathwick, & Hastie, 2008). Model settings 
include the learning rate (lr) that controls the contribution of each 
tree to the final model and tree complexity (tc) that determines the 
extent to which interactions were fitted. The number of trees (nt) 

HCcrt,i ∼ BIN(100,pc,r,t,i)

(1)
log(pc,r,t,i×100)= rs,cr+

�

1−�c,r
�

log(HCc,r,t−1,i)+
∑

i �i Disturbi,t

+
∑

i �i.CA Disturbi,t×CAr+
∑

i �i.PFc Disturbi,t×PFc,r

�c,r ∼ N(�c,��c)

rs,c,r ∼ N(rs,c+k0CAr+k1PFC,r,�rc)

�c,rs,c,k0,k1,�i ∼ N(0,100)

��c,�rc ∼ U(0,100)

(2)lim
t→∞

HCt= lim
t→∞

HCt−1=HCmax

(3)�=
rs

HCmax
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that achieved minimal predictive deviance (i.e., the loss in predic-
tive performance due to a suboptimal model) was determined using 
cross‐validation (Elith et al., 2008) (function gbm.step with tc = 2, 
lr = 0.001, bag fraction = 0.5).

We assumed a Gaussian error distribution in all three BRT, after 
a logit‐transformation of HCini and HCmax to achieve normality (no 
transformation was required for rs). In addition to spatial and environ-
mental predictors, we used past disturbance history over a 10‐year 
period based on evidence that some disturbance impacts can have 
temporally lagged and lasting effects on coral communities over this 
timeframe (Mellin et al., 2016). We thus included the mean cyclone 
severity and the mean CoTS density between 1985 and 1995 to pre-
dict the coral cover observed in 1996 (HCini); and the mean cyclone 
severity, CoTS density during 1996–2016 in addition to the per cent 
coral bleached in 1998, 2002, and 2016 to predict the maximum coral 
cover observed between 1996 and 2017 (HCmax). Because rs estimates 
already accounted for the influence of past disturbance (filtered out 
by disturbance parameters in the Bayesian hierarchical model), we 
only accounted for spatial and environmental variables in this BRT to 
avoid circularity.

The relative contribution of the predictors to the final models of 
HCini, HCmax and rs was determined based on the variable importance 
score (%). For each response variable, the mean prediction error was 
assessed using a 10‐fold cross‐validation (Davison & Hinkley, 1997). 
This bootstrap resampling procedure estimates a mean prediction 
error for 10% of observations that were randomly omitted from the 
calibration dataset; this procedure was iterated 1,000 times. We 
also verified that model residuals were not spatially autocorrelated 
using Moran's I and a Bonferroni correction (p > 0.05) (Diggle & 
Ribeiro, 2007). Finally, we generated a set of 100 model predictions 
across the GBR and calculated mean estimates of HCini, HCmax and rs 
and their standard deviation in each cell. BRT were fit in R 3.2.2 (R 
Development Core Team, 2017) using the “gbm” package, along with 
the tutorial and functions provided in Elith et al. (2008).

2.7.4 | Correction of systematic bias in manta‐
tow estimates

To improve model predictive power and spatial representation, 
we used data from the manta tow surveys (in addition to the tran-
sect‐based LTMP data) for calibrating BRT of HCini and HCmax (Table 
S2). However, due to a moderate yet systematic bias of manta‐tow 
coral cover estimates being lower than transect‐based ones (result-
ing from non‐coral habitats such as sandy back‐reef lagoons being 
included in the manta tow; Osborne et al., 2011), we first had to 
derive a corrected manta‐tow estimate of coral cover accounting for 
this bias. We thus fitted a linear regression predicting transect‐based 
coral cover (averaged to the reef level) as a function of manta tow‐
based coral cover, using data from the 44 reefs that were sampled 
both by manta‐tow and along transects. We then used this regres-
sion to predict a corrected estimate of observed coral cover for 
all reefs surveyed by manta‐tow, which we could then compare to 
transect‐based coral cover estimates. For both datasets, we defined 

initial coral cover at each reef (HCini) as the mean coral cover ob-
served in 1996 across all transects, and the maximum coral cover 
(HCmax) as the highest mean coral cover observed at that reef be-
tween 1996 and 2017.

2.7.5 | Model validation, uncertainty and 
sensitivity analysis

We validated predicted coral cover trajectories by comparing 
them with corrected manta‐tow estimates of coral cover for reefs 
that were not used for model calibration, and for which at least 10 
yearly samples were available from 1995 along with the associ-
ated disturbance history (N = 10). Based on these 10 time series, 
we calculated the mean prediction error (PredErr, %) and the co-
efficient of determination based on the regression of predictions 
against observations (R2, %).

We identified areas where model predictions were interpo-
lated (thus resulting in high confidence in model predictions (Elith 
& Leathwick, 2009, Yates et al., 2018) and those where predictions 
were extrapolated (lower confidence). We used a common procedure 
to identify the environmental envelope used for model calibration 
based on a principal component analysis (PCA) (e.g., Broennimann et 
al., 2007, Medley, 2010) with environmental and spatial predictors 
at the survey reefs as input variables, and the 12,670 grid cells as 
individuals. Based on the PCA individual factorial plan, we outlined 
the modeled environmental envelope as the convex hull containing 
all survey reefs. Grid cells falling within this environmental envelope 
were defined as interpolated locations; conversely, those outside 
this envelope were considered part of the extrapolation areas.

To account for model uncertainty, we ran a total of 1,000 model 
simulations in which we resampled every parameter from their pre-
dicted distribution. We used Latin hypercube sampling (Norton, 2015) 
(R package “lhs”) to determine a total of 1,000 combinations of percen-
tiles, evenly spread out in the new parameter space, which we used to 
draw a single value for rs, HCini, HCmax and the disturbance effect sizes 
(from their posterior distributions) in each simulation. The resulting pre-
dictions of coral cover in every grid cell (rows), year (columns) and model 
simulation were stored as 3D arrays and further aggregated across the 
third dimension to derive coral cover statistics across model simulations 
(mean, median, interquartile range and 95% confidence interval). We 
mapped model uncertainty as the coefficient of variation (%) in pre-
dicted mean annual change in coral cover across all simulations.

Finally, we ran a sensitivity analysis to identify, among all model pa-
rameters, the main sources of model uncertainty and any possible in-
teractions among them (Pearson et al., 2014). In this analysis, we used 
the mean annual change in coral cover predicted in each simulation as 
the response variable, and the (resampled) parameter estimates used 
in each simulation as the predictors of a boosted regression tree. This 
analysis allowed us to quantify the proportion of model uncertainty 
that is attributable to variation in parameter estimates (i.e., percent 
deviance explained by the BRT), the respective contribution of each 
model parameter (i.e., relative importance of each predictor, %) and 
possible interactions among them (Norton, 2015).
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2.7.6 | Mapping coral resilience

We mapped coral resilience (i.e., the net effect of resistance and re-
covery following disturbance) based on the relationship between pre-
dicted mean annual decline in coral cover and cumulative impacts of 
mean annual disturbance at each reef. To do this, we calculated the cu-
mulative disturbance index in each grid cell as the sum of all cyclones, 
bleaching and CoTS outbreak severities weighted by their respective 
effect sizes from the Bayesian HLM. We defined categories of low/high 
decline, and low/high disturbance, based on the median of each index.

We defined resilience as the second axis of a PCA based on pre-
dicted decline in coral cover and cumulative disturbance for all reefs 
(PC2; 21% variation explained). Reefs with relatively low decline fol-
lowing high disturbance (i.e., high resilience reefs) scored positively 
on PC2, while reefs with high decline following low disturbance (i.e., 
low resilience reefs) scored negatively. For this analysis, we excluded 
reefs located in extrapolated areas, for which we had lower confi-
dence in model predictions.

We investigated the relationship between coral resilience and 
potential anthropogenic covariates that included our water quality 
index (PFc), an index of reef accessibility based on potential travel 
time from nearest human settlements (Maire et al., 2016), and 
whether a reef was designated as a no‐take marine protected area 
based on the 2004 zoning plan by the Great Barrier Reef Marine 
Park Authority. We fitted a generalized additive model (Hastie & 
Tibshirani, 1990) to model the relationship between coral resilience 
and PFc, and that between resilience and reef accessibility, using a 
Gaussian error distribution and a cubic spline smoothing function 
(k = 3). We tested whether coral resilience differed among no‐take 
reefs and those open to fishing using a non‐parametric Kruskal–
Wallis test. All code was written in R (R Development Core Team, 
2017) (except for the Gompertz model in Python; see corresponding 
section) and is provided in Supplementary Information.

3  | RESULTS

3.1 | Regional impacts of disturbance on the GBR

The impact of tropical cyclones, CoTS outbreaks, and coral bleach-
ing on coral cover varied greatly in space and time across the GBR 
(Figure 1). Based on the 46 reefs regularly surveyed by the AIMS 
Long‐Term Monitoring Program (LTMP), our Bayesian hierarchical 
model showed that tropical cyclones had the strongest, most con-
sistent negative effect on coral cover, followed by CoTS outbreaks 
and coral bleaching (Figure S2). By combining these effect sizes 
with high‐resolution maps of annual disturbance severity, we were 
able to predict the impacts of each disturbance on coral cover 
across the GBR from 1996 to 2017 (Figure 1a–c) and show regional 
differences in how these disturbances likely impacted individual 
reefs.

Cyclone impact was greatest between Townsville and Mackay 
(Figure 1a), where tropical cyclones Hamish (2009) and Dylan (2014) 
generated some of the longest‐lasting destructive waves (Figure S3). 

CoTS outbreaks propagated in a southerly direction from reefs north 
of Cairns (Figure S3), and formed a second localized concentration 
further south. The highest CoTS densities on average (and thus the 
largest CoTS impact on coral cover) were recorded off Townsville and 
on offshore reefs between Mackay and Rockhampton (Figure 1b). 
The impact of coral bleaching, based on aerial surveys following 
the three mass coral bleaching events (1998, 2002, and 2016), was 
greatest on the northern half of the GBR (Figure 1c), a pattern that 
was mostly driven by the latest and most severe bleaching event 
(Figure S2).

Our coral cover predictions closely followed spatiotemporal 
trends in disturbance impacts, with the greatest decline in coral 
cover predicted for central reefs mostly impacted by cyclones and, 
to a lesser extent, northern reefs impacted by both cyclones and 
bleaching (Figure 1d). Between 1996 and 2017, we predicted an in-
crease in coral cover for approximately 10.2% of the total reef area, 
mostly for southernmost reefs that were less impacted by cyclones 
and bleaching (note this calculation excludes reefs for which pre-
dictions were extrapolated as this results in low confidence—these 
areas are enclosed within grey outlines on Figure 1d).

Between 1996 and 2017 and across the breadth of the GBR, coral 
cover declined at a mean annual rate of −0.67%/year (Figure 1f). This 
decline was steepest towards the end of the time period (2009–
2016; −1.92%/year), reflecting a response of hard corals to multiple 
severe and widespread cyclones (including Hamish in 2009, Yasi in 
2011, and Dylan in 2014) and to the 2016 mass coral bleaching event 
(Figure 1e). Coral cover also markedly declined between 1996 and 
2002 (−0.75%/year), which encompassed mass bleaching events in 
1988 and 2002 and a major CoTS outbreak (Figure S2). In between 
those time periods, mean coral cover increased by +0.73%/year on 
average (2003–2009).

3.2 | GBR‐wide recovery

Coral recovery potential varied among the different coral communi-
ties, which we identified from the survey data and predicted across 
the GBR using MRT. Among candidate MRT predictors, the distance 
to the outer barrier reef edge, as well as seasonal variation in sea sur-
face temperature and seabed oxygen concentration (strongly cor-
related to the latter: Spearman's ρ = 0.61, p < 0.001) were the main 
predictors of benthic community composition (Figure S4). Using this 
model, we were able to define 6 benthic community types across the 
GBR, which consisted of major functional groups of corals as well 
as other benthic organisms or abiotic substrate. Outer‐shelf com-
munities were characterized by the fast‐growing tabular or digitate 
Acropora spp., as opposed to inner‐shelf communities that were char-
acterized by Porites or macroalgae (Figure 2).

Our Gompertz‐based Bayesian hierarchical model revealed that 
the frequency of river plume conditions (PFc) had a strong negative 
effect on coral intrinsic growth rate (rs), which was higher for outer‐
shelf communities characterized by tabular or digitate Acropora spp. 
(Figure S2). Accordingly, high‐resolution predictions of rs derived 
from the BRT across the GBR increased from inner‐ to outer‐shelf 
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reefs, with 76% of deviance in rs posterior estimates explained by the 
BRT (Figure 2a) and a mean cross‐validated prediction error of 21%.

The distance to the reef edge (strongly correlated to PFc; 
Spearman's ρ = 0.63, p < 0.001) was the main predictor of coral 
growth rate (20% relative importance), followed by the benthic com-
munity (10%), and seasonal variation in salinity and sea surface tem-
perature (9% each) (Figure 2b). Predicted coral growth rate was the 
highest for outer‐shelf communities characterized by tabulate and 
digitate Acropora spp., and the lowest for inner‐shelf communities 
with relatively high macroalgal cover (Figure 2c). The fastest‐grow-
ing communities characterized by tabulate and digitate Acropora spp. 
were concentrated in 2.1% of the study area overlapping the outer 
edge of the GBR (Figure 2a).

Our spatially‐explicit predictions of other Gompertz parame-
ters, namely initial (i.e., HCini, in 1996) and maximum (HCmax) coral 
cover at each reef, showed that BRT explained 78% and 80% of 
the deviance in HCini and HCmax at survey reefs, respectively (Figure 
S5). The mean cyclone severity between 1985 and 1995 had the 
strongest negative effect on HCini, followed by mean seabed tem-
perature. Seasonal variation in salinity was a major driver of HCmax 
at a regional scale, followed by longitude (reflecting cross‐shelf 
environmental gradients in multiple environmental variables that 
increased or decreased with longitude). Mean cross‐validated pre-
diction error was 5% and 11% for initial and maximum cover re-
spectively, with high confidence in predictions within interpolated 
locations (64% of the study area) (Figure S5).

F I G U R E  1  Regional impact of major disturbances on the Great Barrier Reef and resulting trends in coral cover. Average 1996–2017 impact of 
(a) tropical cyclones, (b) outbreaks of the crown‐of‐thorns starfish (CoTS), and (c) coral bleaching (note that only the three mass bleaching events 
were considered). (d) Mean predicted annual rate of change in coral cover (%/year) during the same period, with greyed out areas indicating lower 
confidence in model predictions due to extrapolation. (e) Relative impact of each disturbance in each year. (f) Mean predictions of coral cover 
averaged across the entire Great Barrier Reef; envelopes indicate the 95% confidence interval across a total of 1,000 simulations (light hue), the 
interquartile range (medium hue) and the mean trajectory (dark continuous line) [Colour figure can be viewed at wileyonlinelibrary.com]
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3.3 | Mapping coral resilience across the GBR

Based on our cumulative disturbance index that represented the 
combined impacts of tropical cyclones, CoTS outbreaks, and bleach-
ing, most reefs experiencing low disturbance were predicted to show 
low decline in coral cover, and vice versa (Figure 3a). However, 15% 
of all reefs experienced strong decline following low disturbance, in-
dicating they were low‐resilience reefs. Conversely, 17% of all reefs 

exhibited low decline following high disturbance, thus representing 
high‐resilience reefs. The latter were mostly located in the southern-
most (and northernmost to a lesser extent) sections of the GBR, with 
a few clusters in the central GBR (dark green on Figure 3a).

Reef resilience was strongly and negatively related to the fre-
quency of river plume‐like conditions (general additive model; 14.7% 
deviance explained; Figure 3b), and to reef accessibility to a lesser 
extent (3% deviance explained; Figure 3c). When all reefs were 

F I G U R E  2  Great Barrier Reef (GBR)‐wide predictions of benthic communities and coral intrinsic growth rate. (a) Benthic communities (left) 
and coral growth rate (right) were predicted based on major environmental covariates using multivariate (MRT) and boosted (BRT) regression 
trees, respectively. The insert shows the relationship between posterior estimates of coral growth rate from the Gompertz model for the LTMP 
reefs, used as observations in the BRT, and BRT predictions. (b) Marginal plots showing the partial effect of major environmental drivers on coral 
growth rate (with SST = sea surface temperature, sdev = standard deviation). The relative importance of each BRT predictor (%) is indicated in 
brackets. (c) Distribution of coral growth rate predicted by BRT among benthic communities. The thick line indicates the median, hinges the 
interquartile range, whiskers the 90% confidence interval and dots the outliers [Colour figure can be viewed at wileyonlinelibrary.com]
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considered, reef resilience was substantially lower on closed reefs 
(i.e. within no‐take marine protected areas) compared to open reefs 
(Kruskal–Wallis test; p < 0.001) (Figure 3d). Most closed reefs were 
associated with less frequent plume‐like conditions (lower median 
PFc) than open reefs; however the distribution of PFc was skewed and 
resulted in greater mean PFc within closed reefs (Figure S6). When 
reefs with greater exposure to plume‐like conditions were removed 
from the analysis, resilience did not differ between closed and open 
reefs (Figure 3d; PFc < 0.5; p = 0.412) although rs remained substan-
tially higher within closed reefs (Figure S6; PFc < 0.5; p < 0.001).

3.4 | Model validation, uncertainty and 
sensitivity analysis

Projected coral trajectories closely matched historical records for 
10 reefs surveyed using manta‐tow that were not used for model 
calibration (Figure 4). For this independent dataset, our model accu-
rately captured the impact of multiple disturbances and subsequent 
coral recovery (mean prediction error = 6.7%; R2 = 0.57). When con-
sidering all reefs with at least 10 years of coral cover data available 
(N = 54), the mean prediction error was 5.8% and the goodness‐of‐fit 

(R2) was 0.64. Uncertainty in model predictions tended to be higher 
in the case of rare yet severe disturbances (e.g., Ben Reef; Figure 4) 
compared to multiple, less severe ones (e.g., Credlin or Feather Reefs; 
Figure 4). We mapped the coefficient of variation in predicted an-
nual change in coral cover across all simulations and found that aver-
age model uncertainty was 33.6% (ranging 0.7%–84.4%). The lowest 
uncertainty occurred at survey reefs and the highest in central sec-
tions of the GBR distant from them (Figure S7).

Our sensitivity analysis revealed that predicted coral decline was 
the most sensitive to variation in rs (BRT relative importance = 75%) 
followed by HCini (8.9%) and tropical cyclone impact (4.9%) (Figure 
S8). We found a weak interactive effect of rs and HCini on overall 
patterns of predicted coral decline, with this effect being greatest at 
low rs combined with high HCini (Figure S8).

4  | DISCUSSION

By reconstructing coral cover trajectories at a fine spatial resolution 
across Australia's Great Barrier Reef (GBR) over the last 22 years, 
we provide the most comprehensive, spatially explicit estimate of 

F I G U R E  3  Map and correlates of coral resilience on the Great Barrier Reef. (a) Mean annual decline in coral cover versus mean annual 
disturbance impact (i.e. the combined severity of all coral bleaching events, CoTS outbreaks, and cyclones recorded over the study period, 
and weighted by their effect size). Low and high categories corresponded to values below and above the median, respectively. High‐resilience 
reefs are characterized by low decline in coral cover following high disturbance, as shown by the resilience gradient (R arrow) used to assign 
a resilience value to each reef (see Methods). The intensity of the grey shading is proportional to the frequency of river plume‐like conditions 
(PFc). (b) Relationship between coral resilience and PFc. The regression line was fitted using a general additive model (GAM), with the envelope 
showing the 95% confidence interval. (c) Relationship between coral resilience and reef accessibility (measured as potential travel time from 
major coastal cities) and GAM fit. (d) Distribution of coral resilience between open and closed (i.e. no‐take) reefs, either considering all reefs 
(left) or only those with less frequent exposure to plume‐like conditions (right; PFc < 0.5). The white dot indicates the median, the vertical 
black bar the interquartile range, and plot width represents the proportion of all reefs [Colour figure can be viewed at wileyonlinelibrary.com]
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long‐term coral cover trajectories for any marine system, and disen-
tangle the relative impact of multiple agents of disturbance on coral 
growth at local‐to‐regional scales. We show that coral cover is likely to 
have declined on 90% of all reefs. Historically, this decline has primar-
ily been attributed to tropical cyclones and CoTS outbreaks (De'ath 
et al., 2012), and in more recent years to coral bleaching (Hughes et 
al., 2017). High water quality correlates strongly with coral resilience, 
with low reef accessibility (remoteness) also having a positive, albeit 
weaker, association. Surprisingly, reef resilience was substantially 
lower within no‐take marine protected areas; however, this differ-
ence was driven by the effect of water quality and was not evident 
among reefs with less frequent exposure to plume‐like conditions. 
We have high confidence in these results because model predictions 
closely matched independent observation records. By incorporating 
the main environmental drivers of coral cover and its growth rate into 
a disturbance‐based model of coral decline and recovery, we offer a 
new and robust framework for similar applications to other reef re-
gions around the world—a critical requirement for sustainable reef 
management over the coming decades (Hughes et al., 2017).

Tropical cyclones were the strongest driver of coral cover on 
the GBR over the last 22 years, which stems from a combination of 
greater effect size and frequency compared to CoTS outbreaks or 
bleaching. Only a broad‐scale and high‐resolution approach such as 
ours that explicitly maps spatial variation across individual reefs could 
reveal these spatiotemporal patterns, because most of the cyclone 
impacts occurred within unmonitored reef sections (e.g., Figure S2) 
that were not considered in previous studies (De'ath et al., 2012; 
Osborne et al., 2017). The stronger effect size of cyclones likely re-
flects that cyclones typically alter habitat structural complexity im-
mediately, unlike other disturbances that can leave coral skeletons 
intact (Osborne et al., 2017). This loss of habitat complexity affects 
a range of coral‐associated organisms such as herbivorous fishes and 
invertebrates that otherwise facilitate coral recruitment and recovery 
through grazing (Cheal, Macneil, Emslie, & Sweatman, 2017; Osborne 
et al., 2017). In contrast, coral cover generally recovers faster follow-
ing CoTS outbreaks because the coral skeletons that remain in place 
provide suitable habitat for coral recruits and can sometimes shelter 
remnants of healthy living coral (Osborne et al., 2017).

F I G U R E  4  Model validation. Predicted trajectories of coral cover (blue envelopes) compared with independent observations (black dots) for 
manta‐tow reefs. Light blue envelopes indicate the 95% confidence interval across 1,000 simulations; medium blue envelopes show the interquartile 
range (25th and 75th percentiles), and the dark blue line shows the median. Vertical lines indicate disturbances with blue = coral bleaching, 
orange = crown‐of‐thorns starfish outbreak, red = tropical cyclone, grey = coral disease [Colour figure can be viewed at wileyonlinelibrary.com]
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In our study, the relatively smaller effect of bleaching is partly due 
to the most severe bleaching event (2016) being only recent (com-
pared to 14 years of cyclone impacts out of a total of 22 years consid-
ered), as well as the possibility that some corals might have regained 
their symbionts and recovered by the time LTMP surveys were con-
ducted. Furthermore, sampling bias might have reduced our estimates 
of bleaching impacts as we excluded the northernmost reefs (where 
bleaching impacts were the most severe) due to data paucity, and 
calibrated our model using observations from the 6‐9m depth zone. 
Corals at these depths might have escaped the most damaging ef-
fects of bleaching, which were typically observed on shallow reef flats 
and crests where low water mixing allowed little cooling from deeper 
waters (Hughes et al., 2017). However, such spatial patterns of coral 
bleaching on shallow reefs are typically patchy (up to a 10‐100m scale; 
S. Heron, unpublished data) and are currently difficult to resolve at the 
scale of the GBR. Given that coral bleaching is predicted to increase 
both in frequency and severity over the next decades (van Hooidonk 
et al., 2016; Wolff et al., 2018), its impact on coral cover will also likely 
increase and potentially surpass that of tropical cyclones in the future.

Lower coral resilience coincided with a greater exposure to river 
plume‐like conditions, suggesting that water quality could play an 
important role in exacerbating the effect of cumulative disturbances 
and synergies among them. Indeed, chronic stress related to land 
run‐off and poor water quality can affect the functional diversity of 
benthic communities and result in a loss of resilience (Wolff et al., 
2018), potentially aggravating the impact of subsequent acute dis-
turbances (Ortiz et al., 2018; Osborne et al., 2017). Although many 
indicators of water quality exist, our results indicate that nutrient 
and suspended sediment concentrations (as predicted by plume‐like 
water body characterization; Petus et al., 2014) are likely to have a 
strong negative effect on coral cover and, therefore represent a key 
management priority (Brodie & Pearson, 2016). Conversely, high coral 
resilience characterized reefs that were previously identified as small 
and isolated (Mellin, Huchery, Caley, Meekan, & Bradshaw, 2010), and 
thus less prone to deleterious, collateral effects from disturbances 
at neighbouring reefs. For example, isolated reefs are typically ex-
posed to reduced levels of colonization by CoTS larvae (Hock, Wolff, 
Condie, Anthony, & Mumby, 2014), representing important spatial re-
fugia from outbreaks that tend to propagate along prevailing currents 
(Pratchett et al., 2014). Identifying the exact drivers of coral resilience 
warrants further investigation, yet the clear spatial pattern in their 
distribution suggests that the relative importance of terrestrial influ-
ence, cross‐shelf location, and spatial connectivity could play a key 
role in determining coral resilience to multiple disturbances.

Assessing spatial resilience is an important step toward prioritiz-
ing areas for future reef management and conservation, whether the 
objective is to rescue the weakest or protect the healthiest reefs first 
(Game, Mcdonald‐Madden, Puotinen, & Possingham, 2008). Yet the ef-
fect of no‐take marine protected areas on reef resilience was strongly 
determined by water quality, with lower resilience within no‐take areas 
when all reefs were considered. In contrast, when reefs frequently ex-
posed to plume‐like conditions were excluded from the analysis, resil-
ience did not differ between no‐take or open areas and rs, our proxy 

for recovery potential in the absence of disturbance, was higher within 
no‐take areas. This corroborates earlier results suggesting that marine 
protected areas have the potential to promote reef resistance and re-
covery following disturbance (Mellin et al., 2016). The survey design 
of this earlier study was essentially paired within and outside no‐take 
marine protected areas, with inshore reefs being underrepresented. 
Another study of inshore reefs found that coral cover was lower within 
no‐take areas than on reefs open to fishing, especially after major 
flooding events, indicating that repeated exposure to reduced water 
quality impairs reef recovery following disturbance, regardless of their 
protection status (Wenger et al., 2016). Together, these results indi-
cate that while no‐take marine protected areas have the potential to 
promote reef resilience due to increased intrinsic growth rate of corals, 
this potential might not suffice to counteract the deleterious effect of 
frequent plume‐like conditions on reef resilience, suggesting that the 
location and environmental context of marine protected areas strongly 
determine their net benefit in terms of resilience.

Assessing the spatial resilience of the GBR has so far remained 
elusive and understandably ignored in the design of protective 
zoning. The southern region of the GBR, where we identified most 
high‐resilience reefs, was previously predicted to act as a spatial ref-
uge that will experience warming later than other coral reefs of the 
GBR and beyond (van Hooidonk, Maynard, & Planes, 2013). Such 
delayed warming in the southern GBR could contribute both to re-
duced bleaching‐induced mortality, and reduced sub‐lethal effects 
of thermal stress that can lead to lower coral growth rates (Osborne 
et al., 2017), fecundity, and resistance to disease over many years. 
Furthermore, more gradual warming may allow a shift to more resis-
tant algal symbionts (Day, Nagel, Oppen, & Caley, 2008), thus facil-
itating the selective emergence of more heat tolerant communities 
(Hughes et al., 2017). Our finding of greater resilience in some areas 
of the southern GBR corroborates the potential for opportunities 
to intervene and enhance coral resilience through the integration of 
assisted evolution into coral reef restoration elsewhere on the GBR 
(van Oppen et al., 2017). However, future forecasts predict that even 
this “protective” thermal tolerance induced by sub‐lethal bleaching 
events might soon be lost under current climate change (Ainsworth 
et al., 2016) if the increased frequency of temperature anomalies 
outpaces the capacity of reefs to acclimatize and adapt to novel 
climatic conditions. This means that, ultimately, reducing carbon 
emissions and mitigating global warming represent the only ways to 
secure reef persistence in the long term (Hughes et al., 2017).

Environmental gradients accounted for 76% of variation in coral 
growth rate (the most influential parameter in our coral cover model), 
indicating that regional scale assessments based on comprehensive 
environmental data are key to capturing both the drivers and spatial 
patterns of coral cover decline and recovery. Low seasonal variation 
in salinity, temperature and oxygen levels were associated with the 
fastest growing coral communities, characterized by tabulate and dig-
itate Acropora corals among others. This result seems intuitive, given 
that these taxa are characterized by a “competitive” life history that 
can dominate communities in suitable environments, but are also very 
sensitive to environmental changes such as temperature anomalies 



     |  2443MELLIN et al.

(Darling, Alvarez‐Filip, Oliver, Mcclanahan, & Cote, 2012). Temperature 
gradients are among the main natural drivers of species distributions, 
affecting somatic growth and body size (Lurgi, Lopez, & Montoya, 
2012), and directly reflecting the physiological influence that tem-
perature exerts on individual species (Mellin, 2015). Furthermore, the 
importance of seasonal variation in oxygen levels as a determinant of 
benthic communities indicates that different taxa respond differently 
to oxygen depletion (Pitcher et al., 2012), which can reduce coral calci-
fication rates (Colombo‐Pallotta, Rodriguez‐Roman, & Iglesias‐Prieto, 
2010) and appeared strongly temperature dependent in our data. 
However, modeling coral growth rate across the breadth of the GBR 
was also greatly improved by including spatial variables (such as the 
distance to the reef edge) that can provide a proxy for environmental 
gradients either not considered or poorly estimated (Mellin, 2015).

Based on 20 years of data, our model provides a platform for 
projecting coral cover trajectories under past and future scenarios 
of climate change, which has and will continue to affect the fre-
quency and severity of coral bleaching (van Hooidonk et al., 2016), 
tropical cyclones (Walsh et al., 2016) and CoTS outbreaks (Uthicke 
et al., 2015). The critical question remains whether and when the 
capacity of reefs to absorb and recover from disturbances might 
be outpaced by future changes in these disturbance patterns. Our 
modeling approach is broadly applicable across reef ecosystems, 
especially given that relevant environmental and spatial layers are 
now increasingly available through the routine use of remotely 
sensed products (Mellin, Andrefouet, Kulbicki, Dalleau, & Vigliola, 
2009). Our framework thus provides the advance needed to fore-
cast which reefs will remain as important refugia for sustaining coral 
reef ecosystems under increasing pressures from global change.
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