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Abstract
In	the	face	of	 increasing	cumulative	effects	 from	human	and	natural	disturbances,	
sustaining	coral	reefs	will	require	a	deeper	understanding	of	the	drivers	of	coral	resil-
ience	in	space	and	time.	Here	we	develop	a	high‐resolution,	spatially	explicit	model	of	
coral	dynamics	on	Australia's	Great	Barrier	Reef	(GBR).	Our	model	accounts	for	bio-
logical,	ecological	and	environmental	processes,	as	well	as	spatial	variation	in	water	
quality	and	the	cumulative	effects	of	coral	diseases,	bleaching,	outbreaks	of	crown‐
of‐thorns	starfish	(Acanthaster	cf.	solaris),	and	tropical	cyclones.	Our	projections	re-
construct	coral	cover	trajectories	between	1996	and	2017	over	a	total	reef	area	of	
14,780	km2,	predicting	a	mean	annual	coral	 loss	of	−0.67%/year	mostly	due	to	the	
impact	of	cyclones,	followed	by	starfish	outbreaks	and	coral	bleaching.	Coral	growth	
rate	was	the	highest	for	outer	shelf	coral	communities	characterized	by	digitate	and	
tabulate Acropora	spp.	and	exposed	to	low	seasonal	variations	in	salinity	and	sea	sur-
face	temperature,	and	the	 lowest	 for	 inner‐shelf	communities	exposed	to	reduced	
water	quality.	We	show	that	coral	resilience	(defined	as	the	net	effect	of	resistance	
and	recovery	following	disturbance)	was	negatively	related	to	the	frequency	of	river	
plume	conditions,	and	to	reef	accessibility	to	a	lesser	extent.	Surprisingly,	reef	resil-
ience	was	substantially	 lower	within	no‐take	marine	protected	areas,	however	this	
difference	was	mostly	driven	by	the	effect	of	water	quality.	Our	model	provides	a	
new	validated,	spatially	explicit	platform	for	identifying	the	reefs	that	face	the	great-
est	risk	of	biodiversity	loss,	and	those	that	have	the	highest	chances	to	persist	under	
increasing	disturbance	regimes.
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1  | INTRODUC TION

Natural	ecosystems	are	facing	unprecedented	and	accelerating	deg-
radation	 (Ceballos	 et	 al.,	 2015),	 as	 exemplified	 by	 increasing	 rates	
of	 losses	 of	 coral	 reef	 biodiversity	 in	 the	21st	 century	 due	 to	 an-
thropogenic	and	natural	stresses	and	their	 interactions	(Hughes	et	
al.,	2017;	Knowlton,	2001).	Coral	reefs	are	among	the	most	species‐
rich	ecosystems	globally	(Caley,	Fisher,	&	Mengersen,	2014),	hosting	
hundreds	of	thousands	of	species	(Fisher	et	al.,	2015)	and	providing	
important	ecosystem	services	(Costanza	et	al.,	2014).	Consequently,	
the	potential	impacts	of	anthropogenic	stresses	are	especially	high	
for	coral	reef	ecosystems.

The	 resilience	 of	 an	 ecosystem	 can	 be	 defined	 as	 its	 capacity	
to	absorb	the	impact	of	a	disturbance	and	return	to	its	initial	state	
(Folke	 et	 al.,	 2004;	 Hughes	 et	 al.,	 2003;	 Hughes,	 NaJ,	 Jackson,	
Mumby,	&	 Steneck,	 2010),	 thereby	 conferring	 upon	 it	 low	 vulner-
ability	(Mumby,	Chollett,	Bozec,	&	Wolff,	2014).	In	this	framework,	
temporal	 trends	 in	 coral	 cover	 are	 the	most	 common	 indicator	 of	
coral	 reef	 resilience	 (Mumby	&	Anthony,	2015),	 reflecting	both	 its	
resistance	(capacity	to	withstand	disturbance)	and	recovery	(the	rate	
at	which	 coral	 cover	 returns	 to	 its	 pre‐disturbance	 level).	 Threats	
that	 undermine	 coral	 reef	 resilience	 can	 be	 broadly	 grouped	 into	
chronic	stressors	(such	as	ocean	warming,	pollution,	sedimentation,	
and	 over‐harvesting)	 and	 acute	 stressors	 or	 disturbances	 (such	 as	
coral	 predation	 by	 crown‐of‐thorns	 starfish	 (CoTS)	Acanthaster	 cf.	
solaris,	 coral	 bleaching,	 coral	 disease,	 and	 tropical	 cyclones)	 that	
interact	 in	 complex	 ways	 (Vercelloni,	 Caley,	 &	Mengersen,	 2017).	
For	example,	nutrient	enhancement	 from	terrestrial	 runoff	can	 in-
crease	coral	susceptibility	to	disease	and	bleaching	(Thurber	et	al.,	
2014),	 and	potentially	 initiate	 outbreaks	 of	CoTS	 (Fabricius,	Okaji,	
&	De'ath,	2010).	Previous	studies	have	begun	to	unravel	the	factors	
that	make	a	reef	more	resilient,	 including	herbivory	(Hughes	et	al.,	
2007),	 connectivity	 (Hughes,	 Bellwood,	 Folke,	 Steneck,	 &	Wilson,	
2005),	and	protection	 from	fishing	 (Mellin,	Macneil,	Cheal,	Emslie,	
&	Caley,	2016).	However,	 the	small	percentage	of	 locations	where	
there	is	regular	and	detailed	data	collection	represents	a	bottleneck	
for	understanding	resilience	at	scales	relevant	to	regional	conserva-
tion	and	management.	Spatial	resilience	(sensu	Cumming,	Morrison,	
&	Hughes,	2017),	a	subset	of	the	resilience	theory,	focuses	on	pro-
cesses	 influencing	 a	 system's	 ability	 to	 maintain	 its	 integrity	 and	
functions	that	operate	across	multiple	 locations	and	spatial	scales,	
from	 local	 (e.g.,	 environmental	 conditions,	 habitat	 characteristics)	
to	 regional	 or	 global	 (e.g.,	 management	 regimes	 or	 the	 impact	 of	
regional	 disturbances	 exacerbated	 by	 global	 change).	 Yet	 there	 is	
currently	no	framework	available	for	predicting	which	reefs	are	the	
most	resilient	based	on	spatial	variation	in	underlying	environmen-
tal,	biological,	 and	ecological	processes	at	multiple	 spatiotemporal	
scales.	Consequently,	management	plans	are	routinely	designed	and	
implemented	with	 little	 capacity	 to	quantify	 their	 effectiveness	 in	
supporting	reef	resilience,	and	to	improve	such	plans	adaptively.

Australia's	Great	Barrier	Reef	(GBR)	offers	a	unique	opportunity	
to	disentangle	the	effects	of	acute	disturbances	from	the	 impacts	
of	 fishing,	 which	 has	 remained	 low	 and	 well	 regulated	 compared	

to	most	 reefs	 worldwide.	 Previous	 statistical	 assessments	 of	 his-
torical	trends	for	the	GBR	found	a	50%	decline	in	coral	cover	over	
the	 last	 three	 decades,	mostly	 due	 to	 the	 effect	 of	 cyclones	 and	
CoTS	 outbreaks	 (De'ath,	 Fabricius,	 Sweatman,	&	 Puotinen,	 2012).	
However,	 those	results	were	based	on	a	subset	of	214	reefs,	 rep-
resenting	7%	of	the	total	reef	area	of	the	GBR	with	few	inner‐shelf	
reefs.	 Furthermore,	 this	 assessment	 did	 not	 account	 for	 coral	 re-
covery	following	disturbance—a	critical	requirement	for	accurately	
reconstructing	coral	trajectories	and	identifying	key	drivers	of	reef	
resilience.	Recent	advances	have	helped	quantify	the	effect	of	cu-
mulative	stress	on	coral	recovery	potential	(Ortiz	et	al.,	2018);	how-
ever,	 they	 were	 based	 on	 even	 fewer	 samples	 collected	 prior	 to	
2010,	and	consequently,	do	not	include	the	latest	and	most	severe	
bleaching	events	(Hughes	et	al.,	2017)	and	recent	major	cyclone	im-
pacts	(Puotinen,	Maynard,	Beeden,	Radford,	&	Williams,	2016).	Only	
few	studies	thus	far	have	attempted	to	identify	the	environmental	
drivers	of	coral	growth	rate	(e.g.,	Madin,	Hoogenboom,	&	Connolly,	
2012,	Pratchett	et	al.,	2015,	MacNeil	et	al.,	2019),	and	none	has	de-
rived	high‐resolution	predictions	of	coral	cover	over	the	entire	time	
series	of	available	data.

Here	 we	 develop	 a	 high‐resolution	 dynamic	 model	 of	 coral	
cover	 for	 reefs	 of	 the	GBR	 that	 directly	 incorporates	 the	 cumula-
tive	effects	of	disturbances	such	as	coral	bleaching,	disease,	CoTS	
outbreaks,	and	 tropical	cyclones.	By	accounting	 for	key	ecological	
processes	(coral	growth	and	recovery	potential),	environmental	driv-
ers	of	coral	cover,	and	observed	disturbance	history,	we	reconstruct	
coral	 cover	 trajectories	 for	>1,500	 reefs	at	a	0.01°	 (~1	km)	 resolu-
tion	 over	 the	 last	 22	years	 (1996–2017).	 Importantly,	 for	 the	 first	
time,	our	model	 includes	a	 spatially	explicit	 index	of	water	quality	
for	the	frequency	of	river	plume‐like	conditions	(Petus,	Silva,	Devlin,	
Wenger,	&	Alvarez‐Romero,	2014),	which	can	negatively	affect	cor-
als	 (Fabricius,	2005;	Wolff,	Mumby,	Devlin,	&	Anthony,	2018).	We	
independently	 validate	 our	 model	 predictions	 and	 provide	 quan-
titative	 estimates	 of	model	 uncertainty—a	 critical	 requirement	 for	
informing	decision‐making	and	 risk	 analyses	 (Mumby	et	 al.,	 2011).	
We	use	this	model	to	map	the	resilience	of	corals	to	anthropogenic	
and	natural	stressors	across	the	GBR	and	show	that	resilience	was	
negatively	related	to	plume	conditions.

2  | METHODS

2.1 | Experimental design

Model	development	followed	two	main	steps	(Figure	S1):	(i)	estimate	
the	Gompertz‐based	model	parameters	from	long‐term	surveys	and	
predict	them	in	every	0.01°	grid	cell	across	the	Great	Barrier	Reef	
(GBR),	and	(ii)	couple	these	spatially	explicit	estimates	of	coral	cover	
with	 spatial	 layers	 of	 disturbance	 history	 and	water	 quality	 to	 re-
construct	 coral	 cover	 trajectories	 between	 1996	 and	 2017	 across	
the	GBR.

Step	(i)	 involved	predicting	benthic	communities	 (i.e.	ecological	
communities	composed	of	hard	corals	and	other	benthic	organisms	
or	abiotic	substrate)	based	on	environmental	and	spatial	correlates	
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using	multivariate	regression	trees.	This	was	done	using	surveys	of	
average	benthic	 cover	 for	 a	 subset	of	 reefs	on	 the	GBR.	We	 then	
developed	a	Gompertz‐based	Bayesian	hierarchical	model	that	esti-
mated	intrinsic	coral	growth	rate	(rs),	as	well	as	the	effect	of	various	
disturbances	on	coral	cover,	 for	 individual	 transects	nested	within	
survey	 reefs	 and	 benthic	 communities.	 From	 these	 estimates,	 we	
predicted	intrinsic	coral	growth	rate	across	the	GBR,	using	boosted	
regression	 trees	 (BRT)	based	on	environmental	 and	spatial	predic-
tors.	We	 also	 used	 our	 BRT	model	 to	 predict	 the	 coral	 cover	 ob-
served	in	1996	(HCini)	and	maximum	(HCmax)	coral	cover	in	every	0.01°	
grid	cell	based	on	observations	at	surveyed	reefs.

Step	 (ii)	 involved	 predicting	 coral	 cover	 in	 each	 year	 of	 the	
time	 series	 by	 combining	 BRT	 predictions	 of	HCini,	HCmax and rs 
with	the	impact	(severity	×	effect	size)	of	the	various	disturbance	
agents	including	coral	bleaching,	disease,	CoTS	outbreaks,	tropi-
cal	cyclones,	and	unknown	disturbance.	This	allowed	us	to	predict	
coral cover in every grid cell and in every year between 1996 and 
2017.	 We	 validated	 model	 predictions	 using	 an	 out‐of‐sample,	
independent	set	of	survey	reefs,	mapped	model	uncertainty	and	
identified	its	main	sources	based	on	a	sensitivity	analysis.	Last,	we	
compared	predictions	of	mean	annual	change	in	coral	cover	with	
an	 index	 of	 cumulative	 disturbance	 to	 quantify	 reef	 resilience,	
defined	 as	 the	 net	 effect	 of	 resistance	 and	 recovery	 following	
disturbance.

2.2 | Survey reefs

Australia's	Great	Barrier	Reef	(GBR)	consists	of	more	than	2,900	in-
dividual	reefs	extending	over	2,300	km	between	9	and	24°S	latitude.	
Reef	communities	of	the	GBR	have	been	monitored	yearly	between	
1993	 and	 2005,	 and	 then	 biennially	 thereafter,	 by	 the	 Australian	
Institute	of	Marine	Science's	(AIMS)	Long‐Term	Monitoring	Program	
(LTMP)	(Sweatman	et	al.,	2008).	As	part	of	the	LTMP,	a	total	of	46	
reefs	 were	 monitored	 for	 transect‐based	 benthic	 cover	 between	
1996	 and	 2017	 in	 six	 latitudinal	 sectors	 (Cooktown‐Lizard	 Island,	
Cairns,	Townsville,	Whitsunday,	Swain	and	Capricorn‐Bunker)	span-
ning	150,000	km2	 of	 the	GBR.	 In	 each	 sector	 (with	 the	 exception	
of	the	Swain	and	Capricorn‐Bunker	sectors)	at	least	two	reefs	were	
sampled	in	each	of	three	shelf	positions	(i.e.,	inner,	mid‐	and	outer).	
An	additional	45	reefs	were	surveyed	using	the	same	methodology	
as	 part	 of	 the	 Representative	Areas	 Program	 (RAP)	 (Sweatman	 et	
al.,	2008),	and	17	reefs	as	part	of	 the	Marine	Monitoring	Program	
(MMP)	 (Thompson	 et	 al.,	 2016).	 Finally,	 reef‐level	 information	 on	
hard	coral	cover	was	collected	by	manta‐tow	for	97	reefs	surveyed	
in	1996	and	thereafter	(44	of	those	being	also	surveyed	for	transect‐
based	benthic	cover).

We	used	 information	from	the	46	LTMP	reefs	 in	every	step	of	
model	development,	in	addition	to	those	from	other	monitoring	pro-
grams	where	possible,	depending	on	the	number	of	survey	years	and	
whether	associated	disturbance	data	were	available	(Table	S2).	We	
validated	coral	cover	trajectories	based	on	10	manta‐tow	reefs	that	
were	not	used	for	model	calibration,	and	for	which	disturbance	his-
tory	as	well	as	≥10	years	of	data	post‐1996	were	available.

2.3 | Survey methods and data collection

For	 LTMP	 and	 RAP,	 transect‐based	 data	 on	 benthic	 assemblages	
were	 collected	 at	 three	 sites	 separated	 by	 >50	m	within	 a	 single	
habitat	 on	 the	 reef	 slope	 (the	 first	 stretch	 of	 continuous	 reef	 on	
the	northeast	flank	of	the	reef,	excluding	vertical	drop‐offs).	Within	
each	site,	 five	permanently	marked	50‐m	long	transects	were	de-
ployed	parallel	to	the	reef	crest,	each	separated	by	10	m	along	the	
6–9	m	depth	contour.	Percentage	cover	of	benthic	categories	was	
estimated	for	each	transect	using	point	sampling	of	a	randomly	se-
lected	sequence	of	 images	 (Jonker,	Johns,	&	Osborne,	2008).	The	
benthic	organisms	under	five	points	arranged	in	a	quincunx	pattern	
in	 each	 image	were	 identified	 to	 the	 finest	 taxonomic	 resolution	
possible	(n	=	200	points	per	transect)	and	the	data	were	converted	
into	percent	cover.	For	MMP,	the	smaller	size	of	inshore	reefs	dic-
tated	a	reduced	design	that	included	two	sites	at	each	reef	within	
which	 five	 20‐m	 long	 transects	 with	 n	=	160	 points	 per	 transect	
were	used	for	estimation	of	percent	cover.	In	this	study,	we	consid-
ered	the	combined	cover	of	all	hard	corals,	hereafter	referred	to	as	
hard	coral	cover	(HC;	%).

Manta‐tow	surveys	were	conducted	around	the	perimeter	of	en-
tire	reefs	to	estimate	hard	coral	cover	and	densities	of	CoTS	(Miller	&	
Müller,	1999).	Manta‐tow	surveys	involved	a	snorkeler	with	a	“manta	
board”	 (hydrofoil)	 being	 towed	 slowly	 behind	 a	 small	 boat	 around	
the	entire	perimeter	of	each	survey	reef	close	to	the	reef	crest	so	
that	the	observer	surveyed	a	10‐m‐wide‐swathe	of	the	shallow	reef	
slope	(Bass	&	Miller,	1996).	The	boat	stopped	every	2	min	to	allow	
the	observer	to	record	the	mean	coral	cover	into	one	of	10	catego-
ries	(Bass	&	Miller,	1996),	giving	one	cover	estimate	per	tow	(~200	m	
of	reef	edge)	with	the	number	of	tows	per	reef	varying	from	3	to	325	
depending	on	reef	size.

2.4 | Environmental and spatial covariates

A	set	of	31	environmental	variables	were	collated	across	 the	GBR	
at	 a	 0.01°	 resolution	 (12,670	 grid	 cells,	 spanning	 a	 total	 area	 of	
14,778	km2)	 (Matthews	et	 al.,	 2019).	 From	 these	variables,	we	 se-
lected	 those	with	a	 reported	effect	on	coral	ecophysiology	as	our	
candidate	 model	 predictors	 (Table	 S1).	 These	 environmental	 vari-
ables	 include	 long‐term	annual	 averages	 and	 seasonal	 variation	of	
temperature,	 salinity,	 chlorophyll	 a	 and	 nutrient	 concentrations	
(nitrate,	phosphorus),	oxygen	levels	and	light	availability,	as	well	as	
sediment	covers	and	bathymetry,	which	are	all	important	predictors	
of	coral	reef	and	seabed	biodiversity	on	the	GBR	(Mellin,	Bradshaw,	
Meekan,	 &	 Caley,	 2010;	 Sutcliffe,	 Mellin,	 Pitcher,	 Possingham,	 &	
Caley,	 2014)	 (Table	 S1).	 In	 addition,	 spatial	 variables	 including	 the	
shortest	distances	to	the	coast	and	to	the	barrier	reef	were	calcu-
lated	for	each	grid	cell	of	the	GBR	using	great‐circle	distance	(i.e.,	the	
shortest	distance	between	two	points	on	the	surface	of	the	Earth).	
Within	 this	 0.01°	 resolution	 grid,	 reefs	 (polygons)	were	 identified,	
using	 the	 marine	 bioregion	 classification	 from	 the	 Great	 Barrier	
Marine	Park	Authority	(GBRMPA),	excluding	any	non‐reef	locations	
(e.g.,	 cays,	 islands,	mangroves)	 and	 restricting	 coverage	 to	 depths	
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<30	m.	The	grid	was	truncated	by	removing	all	cells	with	a	latitude	of	
<12°S	due	to	data	scarcity	in	northernmost	locations.

2.5 | Water quality

We	used	the	average	frequency	of	exposure	to	river	plume‐like	con-
ditions	(PFc)	as	a	proxy	for	exposure	to	dissolved	nutrients	and	fine	
sediments	 delivered	during	 the	wet	 season	 (MacNeil	 et	 al.,	 2019).	
Based	on	satellite	observations	during	the	2005–2013	wet	seasons,	
the	 frequency	 (i.e.,	number	of	weeks	per	year)	of	exposure	 to	pri-
mary,	secondary	and	tertiary	river	plumes	were	estimated	at	a	1‐km	
resolution	(Petus	et	al.,	2014).	Primary	water	consists	of	the	turbid,	
sediment‐dominated	parts	of	 the	plume,	secondary	water	consists	
of	the	chlorophyll‐dominated	parts	of	the	plume,	and	tertiary	water	
consists	of	the	furthest	extent	of	the	relatively	clearer	parts	of	the	
plume.	Here	we	pooled	these	three	water	types	to	estimate	the	fre-
quency	of	inundation	of	any	plume	water,	expressed	as	a	proportion	
of	total	wet	season	weeks.

2.6 | Disturbance data

The	 disturbance	 data	 included	 two	 components	 (i)	 point‐based	
records	 of	 coral	 damage	 collected	 concurrently	 with	 the	 benthic	
surveys	 (e.g.,	 Mellin	 et	 al.,	 2016)	 and	 (ii)	 spatial	 layers	 of	 distur-
bance	history	 and	 associated	 severity	 across	 the	GBR	available	 in	
Matthews	et	al.	(2019).

(i)	 In	 point‐based	 records	 of	 coral	 damage,	 disturbances	 were	
classified	 into	five	categories	 (i.e.	coral	bleaching,	CoTS	outbreaks,	
coral	 disease,	 cyclones	 or	 unknown)	 following	 Osborne,	 Dolman,	
Burgess,	 and	 Johns	 (2011)	 based	 on	 visual	 assessment	 by	 expe-
rienced	 divers	 during	 reef‐scale	 manta	 tow	 and	 intensive	 SCUBA	
surveys.	A	disturbance	was	recorded	when	the	total	coral	cover	de-
creased	by	more	 than	5%	 from	 its	pre‐disturbance	value	between	
two	consecutive	periods.	Each	disturbance	was	identified	by	distinc-
tive	and	identifiable	effects	on	corals,	such	as	the	presence	of	CoTS	
individuals	or	feeding	scars,	or	dislodged	and	broken	coral	indicative	
of	 cyclone	 damage	 (Osborne	 et	 al.,	 2011).	 An	 additional	 category	
labeled	 “unknown”	was	used	 to	 classify	unidentified	disturbances.	
This	dataset	thus	resulted	in	a	series	of	five	binary	variables	coding	
the	presence	(1)	or	absence	(0)	of	each	type	of	disturbance	in	each	
year	and	at	each	reef	where	transect‐based	surveys	of	benthic	as-
semblages	were	conducted.

(ii)	Spatial	layers	of	disturbance	severity	during	the	study	period	
were	available	at	a	0.01°	 resolution	 for	coral	bleaching,	CoTS	out-
breaks	and	cyclones	(Matthews	et	al.,	2019).	In	this	dataset,	per	cent	
coral	cover	bleached	was	interpolated	using	inverse	distance	weight-
ing	(maximum	distance	=	1°;	minimum	observations	=	3)	from	exten-
sive	aerial	surveys	at	641	reefs	for	the	1998,	2002,	and	2016	mass	
bleaching	 events	 on	 the	GBR	 (Berkelmans,	De'ath,	 Kininmonth,	&	
Skirving,	2004;	Hughes	et	al.,	2017).	Interpolated	maps	of	CoTS	den-
sities	were	also	generated	by	inverse	distance	weighting	(maximum	
distance	=	1°;	minimum	observations	=	3)	from	the	manta	tow	data	
collected	by	the	Australian	Institute	of	Marine	Science	in	every	year	

from	1996	to	2017	(Miller	&	Müller,	1999).	The	potential	for	cyclone	
damage	was	estimated	based	on	4‐km	resolution	reconstructed	sea	
state	as	per	Puotinen	et	al.	(2016).	This	model	predicts	the	incidence	
of	 seas	 rough	enough	 to	 severely	damage	 corals	 (top	one‐third	of	
wave	heights	>4	m)	caused	by	cyclones	for	every	cyclone	between	
1996	and	2016.	We	then	used	these	spatial	layers	to	associate	the	
binary	occurrence	of	each	disturbance	resulting	 in	coral	cover	 loss	
(as	per	[i])	with	its	severity.	Note	that,	at	the	time	of	writing,	aerial	
surveys	following	the	2017	bleaching	event	as	well	as	the	impact	of	
the	2017	tropical	cyclone	Debbie	(based	on	the	methodology	devel-
oped	by	Puotinen	et	al.,	2016)	were	unavailable.	Due	to	the	unavail-
ability	 of	 spatially	 continuous	 information	 on	 the	 occurrence	 and	
severity	of	coral	disease	and	unidentified	disturbance	 (which	both	
had	a	 low	 influence	on	coral	cover	compared	 to	cyclones	or	CoTS	
outbreaks),	we	 randomly	generated	 spatial	 layers	 for	 these	distur-
bances	in	every	year	and	every	model	simulation	(N	=	1,000)	match-
ing	their	observed	frequency	as	per	the	LTMP	historical	records.

Disturbance	impacts	are	typically	patchy	at	sub‐reef	scales,	be-
cause	some	sections	of	the	reef	might	not	be	exposed	to	cyclone‐
generated	waves	and/or	be	structurally	vulnerable	(Puotinen	et	al.,	
2016),	 or	 because	 of	 local	 CoTS	 aggregation	 patterns	 (Pratchett,	
Caballes,	Rivera‐Posada,	&	Sweatman,	2014).	The	consequence	is	a	
discrepancy	between	the	expected	effect	of	disturbance	from	our	
layers	 and	 the	 actual	 coral	 loss	 recorded	 at	 each	 transect	 during	
LTMP	 surveys.	 To	 explicitly	 account	 for	 such	 sub‐reef	 scale	 ef-
fects,	we	resampled	the	disturbance	data	in	every	model	simulation	
(N	=	1,000)	 to	match	 the	 actual	 disturbance	 frequencies	observed	
during	 field	 surveys.	 In	other	words,	we	 “turned	off”	 some	distur-
bances	assuming	they	would	not	result	in	a	noticeable	coral	loss	at	
the	reef	scale,	with	the	frequency	of	these	false	positives	(6.4%	for	
coral	bleaching;	6.9%	for	CoTS	outbreaks	and	9.6%	for	tropical	cy-
clones)	 being	 determined	 from	 the	 LTMP	 disturbance	 history	 and	
field‐based	records	of	coral	loss.	We	further	assess	model	sensitivity	
to	the	adjusted	disturbance	data	(among	other	sources	of	model	un-
certainty;	see	Model	validation,	uncertainty	and	sensitivity	analysis).

2.7 | Modeling

2.7.1 | Predicting benthic communities 
across the GBR

We	 identified	benthic	communities	using	multivariate	 regression	
trees	 (De'ath,	2002)	 (MRT),	which	allowed	us	 to	model	 the	 rela-
tionship	 between	 spatial	 and	 environmental	 covariates,	 and	 the	
relative	cover	of	the	different	benthic	groups	and	coral	taxa.	MRT	
forms	clusters	of	sites	by	repeated	splitting	of	the	data,	with	each	
split	determined	by	habitat	characteristics	(De'ath,	2002)	and	cor-
responding	to	a	distinct	species	assemblage.	Tree	fit	is	defined	by	
the	 relative	 error	 (RE;	 total	 impurity	of	 the	 final	 tree	divided	by	
the	impurity	of	the	original	data).	RE	is	an	over‐optimistic	estimate	
of	 tree	 accuracy,	 which	 is	 better	 estimated	 from	 the	 cross‐vali-
dated	relative	error	(CVRE).	We	determined	the	best	tree	size	(i.e.	
number	 of	 leaves	 or	 clusters	 formed	 by	 the	 tree)	 as	 that	 which	
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minimized	CVRE,	which	varies	from	zero	for	a	perfect	predictor	to	
nearly	one	for	a	poor	predictor	(De'ath,	2002).	We	then	examined	
the	splits	and	quantified	the	variance	that	each	of	them	explained,	
based	 on	 the	 entire	 dataset	 and	 for	 each	 individual	 functional	
group.	We	 used	 the	 resulting	MRT	 to	 predict	 community	mem-
bership	for	every	0.01°	grid	cell	on	the	GBR	based	on	the	spatial	
layers	available	for	our	covariates.	MRT	were	fit	in	the	R	package	
“mvpart”.

We	subsequently	characterized	each	cluster	by	its	indicator	taxa	
based	on	 the	Dufrêne‐Legendre	 index,	which	 is	 based	on	 the	 rel-
ative	abundance	and	 frequency	of	each	benthic	 category	within	a	
given	cluster	(Dufrêne	&	Legendre,	1997).	The	index	varies	between	
0,	no	occurrences	of	a	species	within	a	cluster,	to	100,	if	a	species	
occurs	at	all	sites	within	the	cluster	and	in	no	other	cluster.	The	index	
is	 associated	with	 the	 probability	 of	 resulting	 from	 a	 random	pat-
tern,	based	on	250	reallocations	of	sites	among	clusters	(Dufrêne	&	
Legendre,	1997).

2.7.2 | Gompertz model of coral growth

We	reconstructed	coral	 cover	 trajectories	over	 the	 last	22	years	
(1996–2017)	 for	 every	 0.01°	 grid	 cell	 based	 on	 the	 parameters	
estimated	 from	 a	 Gompertz‐based	 Bayesian	 hierarchical	 model	
of	 coral	 growth	previously	 fitted	 to	 the	 LTMP	 reefs	 (MacNeil	 et	
al.,	2019).	This	growth	model	 is	 an	adaptation	of	 the	Gompertz‐
based	model	of	benthic	cover	developed	by	Fukaya	et	al.	(Fukaya,	
Okuda,	Nakaoka,	Hori,	&	Noda,	2010)	that	quantifies	the	intrinsic	
growth	rate	(rs)	and	strength	of	density	dependence	(�)	for	sessile	
species,	expressed	as	coverage	of	a	defined	sampling	area.	In	our	
case,	this	was	the	percentage	of	visual	points	that	contained	hard	
coral	within	 the	 LTMP	 data	 per	 transect	 (HCt).	 Using	 a	 Binomial	
(BIN)	observation	model,	we	assumed	a	hierarchy	where	transect	
level	observations	(i)	at	time	(t),	were	nested	within	reef	(r),	nested	
within	each	benthic	community	(c):

with	mean	model:

and	where

where	rs	 is	the	intrinsic	growth	rate,	�	 is	the	strength	of	density	de-
pendence,	�i	is	the	effect	size	of	the	i

th	disturbance	occurring	in	year	t 
(Disturbi,t;	i.e.	bleaching,	CoTS	outbreak,	disease,	cyclone	or	unknown),	

CA	 is	a	binary	 indicating	which	reefs	are	 located	 in	a	closed	(i.e.	no‐
take)	area,	PFc	is	the	water	quality	proxy	for	river	plume‐like	conditions	
(Petus	et	al.,	2014)	and	�PFc	 its	effect	size,	and	�i.CA and �i.PFc	are	the	
effect	size	relating	to	interactions	between	disturbances	and	CA and 
PFc	respectively.	Our	model	was	thus	built	at	a	yearly	resolution,	as-
suming	that	any	reduction	in	coral	cover	measured	during	a	survey	(i.e.	
above	the	5%	threshold)	reflected	the	impact	of	a	disturbance	occur-
ring	between	that	survey	and	the	previous	one.	We	did	not	include	in-
teractions	among	disturbances	because	only	<1%	of	all	grid	cells	were	
affected	by	two	disturbances	within	the	same	year,	with	insufficient	
instances	of	LTMP	reefs	being	exposed	to	co‐occurring	disturbances	
during	the	study	period.	Note	that	 in	this	 formulation,	each	benthic	
community	had	their	own	global	mean	at	the	top	of	the	hierarchy.

In	the	absence	of	disturbance,	coral	cover	increases	from	its	ini-
tial	value	(HCini,	 in	1996	in	our	case)	to	its	asymptote	(HCmax,	deter-
mined	by	the	reef	carrying	capacity	or	amount	of	available	substrate	
in grid cell i)	where

which,	once	combined	with	Equation	,	gives

Because	the	strength	of	density	dependence	(�)	depends	on	the	
intrinsic	growth	rate	(rs)	(Fukaya	et	al.,	2010),	for	which	we	needed	
separate	predictions	in	each	grid	cell,	we	elected	to	predict	HCmax 
(rather	than	�)	in	each	grid	cell	using	the	same	modeling	technique	
to	avoid	circularity,	and	calculated	�	based	on	Equation	3.

Those	 models	 were	 run	 in	 a	 Bayesian	 framework,	 using	 the	
PyMC3	 package	 in	 Python	 (Salvatier,	 Wiecki,	 &	 Fonnesbeck,	
2016),	with	 inferences	made	 from	 5,000	 samples	 of	 the	 default	
No	 U‐Turn	 Sampler	 (NUTS)	 algorithm.	 Parallel	 chains	 were	 run,	
from	 starting	 values	 initialized	 automatically	 by	 an	 Automatic	
Differentiation	Variational	Inference	(ADVI)	algorithm,	to	look	for	
convergence	of	posterior	parameter	estimates	using	the	Gelman–
Rubin	 convergence	 statistic	 (R‐hat);	 posterior	 traces	 and	 predic-
tive	intervals	were	also	examined	for	evidence	of	convergence	and	
model	fit.

2.7.3 | Predicting coral growth rate (rs), initial 
(HCini) and maximal (HCmax) cover across the GBR

We	predicted	rs,	HCini and HCmax	in	each	0.01°	grid	cell	from	observed	
values	at	the	survey	reefs	and	as	a	function	of	spatial,	environmen-
tal	and	disturbance‐based	correlates	using	boosted	regression	trees	
(BRT).	BRT	 is	 a	machine	 learning	algorithm	 that	uses	many	 simple	
decision	 trees	 to	 iteratively	 boost	 the	 predictive	 performance	 of	
the	final	models	 (Elith,	Leathwick,	&	Hastie,	2008).	Model	settings	
include	 the	 learning	 rate	 (lr)	 that	controls	 the	contribution	of	each	
tree	to	the	final	model	and	tree	complexity	(tc)	that	determines	the	
extent	 to	which	 interactions	were	 fitted.	The	number	of	 trees	 (nt)	

HCcrt,i ∼ BIN(100,pc,r,t,i)

(1)
log(pc,r,t,i×100)= rs,cr+

�

1−�c,r
�

log(HCc,r,t−1,i)+
∑

i �i Disturbi,t

+
∑

i �i.CA Disturbi,t×CAr+
∑

i �i.PFc Disturbi,t×PFc,r

�c,r ∼ N(�c,��c)

rs,c,r ∼ N(rs,c+k0CAr+k1PFC,r,�rc)

�c,rs,c,k0,k1,�i ∼ N(0,100)

��c,�rc ∼ U(0,100)

(2)lim
t→∞

HCt= lim
t→∞

HCt−1=HCmax

(3)�=
rs

HCmax
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that	 achieved	minimal	 predictive	 deviance	 (i.e.,	 the	 loss	 in	 predic-
tive	performance	due	to	a	suboptimal	model)	was	determined	using	
cross‐validation	 (Elith	 et	 al.,	 2008)	 (function	 gbm.step	 with	 tc	=	2,	
lr	=	0.001,	bag	fraction	=	0.5).

We	assumed	a	Gaussian	error	distribution	in	all	three	BRT,	after	
a	 logit‐transformation	 of	HCini and HCmax	 to	 achieve	 normality	 (no	
transformation	was	required	for	rs).	In	addition	to	spatial	and	environ-
mental	predictors,	we	used	past	disturbance	history	over	a	10‐year	
period	based	on	evidence	that	some	disturbance	 impacts	can	have	
temporally	lagged	and	lasting	effects	on	coral	communities	over	this	
timeframe	(Mellin	et	al.,	2016).	We	thus	included	the	mean	cyclone	
severity	and	the	mean	CoTS	density	between	1985	and	1995	to	pre-
dict	the	coral	cover	observed	in	1996	(HCini);	and	the	mean	cyclone	
severity,	CoTS	density	during	1996–2016	in	addition	to	the	per	cent	
coral	bleached	in	1998,	2002,	and	2016	to	predict	the	maximum	coral	
cover	observed	between	1996	and	2017	(HCmax).	Because	rs	estimates	
already	accounted	for	the	influence	of	past	disturbance	(filtered	out	
by	 disturbance	parameters	 in	 the	Bayesian	 hierarchical	model),	we	
only	accounted	for	spatial	and	environmental	variables	in	this	BRT	to	
avoid circularity.

The	relative	contribution	of	the	predictors	to	the	final	models	of	
HCini,	HCmax and rs	was	determined	based	on	the	variable	importance	
score	(%).	For	each	response	variable,	the	mean	prediction	error	was	
assessed	using	a	10‐fold	cross‐validation	(Davison	&	Hinkley,	1997).	
This	bootstrap	 resampling	procedure	estimates	 a	mean	prediction	
error	for	10%	of	observations	that	were	randomly	omitted	from	the	
calibration	 dataset;	 this	 procedure	 was	 iterated	 1,000	 times.	We	
also	verified	that	model	residuals	were	not	spatially	autocorrelated	
using	 Moran's	 I	 and	 a	 Bonferroni	 correction	 (p	>	0.05)	 (Diggle	 &	
Ribeiro,	2007).	Finally,	we	generated	a	set	of	100	model	predictions	
across	the	GBR	and	calculated	mean	estimates	of	HCini,	HCmax and rs 
and	their	standard	deviation	in	each	cell.	BRT	were	fit	in	R	3.2.2	(R	
Development	Core	Team,	2017)	using	the	“gbm”	package,	along	with	
the	tutorial	and	functions	provided	in	Elith	et	al.	(2008).

2.7.4 | Correction of systematic bias in manta‐
tow estimates

To	 improve	 model	 predictive	 power	 and	 spatial	 representation,	
we	used	data	from	the	manta	tow	surveys	(in	addition	to	the	tran-
sect‐based	LTMP	data)	for	calibrating	BRT	of	HCini and HCmax	(Table	
S2).	However,	due	to	a	moderate	yet	systematic	bias	of	manta‐tow	
coral	cover	estimates	being	lower	than	transect‐based	ones	(result-
ing	from	non‐coral	habitats	such	as	sandy	back‐reef	 lagoons	being	
included	 in	 the	manta	 tow;	Osborne	 et	 al.,	 2011),	we	 first	 had	 to	
derive	a	corrected	manta‐tow	estimate	of	coral	cover	accounting	for	
this	bias.	We	thus	fitted	a	linear	regression	predicting	transect‐based	
coral	cover	(averaged	to	the	reef	level)	as	a	function	of	manta	tow‐
based	coral	cover,	using	data	from	the	44	reefs	that	were	sampled	
both	by	manta‐tow	and	along	transects.	We	then	used	this	regres-
sion	 to	 predict	 a	 corrected	 estimate	 of	 observed	 coral	 cover	 for	
all	 reefs	surveyed	by	manta‐tow,	which	we	could	then	compare	to	
transect‐based	coral	cover	estimates.	For	both	datasets,	we	defined	

initial	 coral	 cover	 at	 each	 reef	 (HCini)	 as	 the	mean	 coral	 cover	 ob-
served	 in	1996	across	 all	 transects,	 and	 the	maximum	coral	 cover	
(HCmax)	 as	 the	 highest	mean	 coral	 cover	 observed	 at	 that	 reef	 be-
tween	1996	and	2017.

2.7.5 | Model validation, uncertainty and 
sensitivity analysis

We	 validated	 predicted	 coral	 cover	 trajectories	 by	 comparing	
them	with	corrected	manta‐tow	estimates	of	coral	cover	for	reefs	
that	were	not	used	for	model	calibration,	and	for	which	at	least	10	
yearly	 samples	were	 available	 from	 1995	 along	with	 the	 associ-
ated	disturbance	history	(N	=	10).	Based	on	these	10	time	series,	
we	calculated	the	mean	prediction	error	 (PredErr,	%)	and	the	co-
efficient	of	determination	based	on	the	regression	of	predictions	
against	observations	(R2,	%).

We	 identified	 areas	 where	 model	 predictions	 were	 interpo-
lated	 (thus	 resulting	 in	high	confidence	 in	model	predictions	 (Elith	
&	Leathwick,	2009,	Yates	et	al.,	2018)	and	those	where	predictions	
were	extrapolated	(lower	confidence).	We	used	a	common	procedure	
to	 identify	 the	environmental	envelope	used	for	model	calibration	
based	on	a	principal	component	analysis	(PCA)	(e.g.,	Broennimann	et	
al.,	2007,	Medley,	2010)	with	environmental	and	spatial	predictors	
at	 the	survey	reefs	as	 input	variables,	and	the	12,670	grid	cells	as	
individuals.	Based	on	the	PCA	individual	factorial	plan,	we	outlined	
the	modeled	environmental	envelope	as	the	convex	hull	containing	
all	survey	reefs.	Grid	cells	falling	within	this	environmental	envelope	
were	 defined	 as	 interpolated	 locations;	 conversely,	 those	 outside	
this	envelope	were	considered	part	of	the	extrapolation	areas.

To	account	for	model	uncertainty,	we	ran	a	total	of	1,000	model	
simulations	 in	which	we	 resampled	 every	 parameter	 from	 their	 pre-
dicted	distribution.	We	used	Latin	hypercube	sampling	(Norton,	2015)	
(R	package	“lhs”)	to	determine	a	total	of	1,000	combinations	of	percen-
tiles,	evenly	spread	out	in	the	new	parameter	space,	which	we	used	to	
draw	a	single	value	for	rs,	HCini,	HCmax	and	the	disturbance	effect	sizes	
(from	their	posterior	distributions)	in	each	simulation.	The	resulting	pre-
dictions	of	coral	cover	in	every	grid	cell	(rows),	year	(columns)	and	model	
simulation	were	stored	as	3D	arrays	and	further	aggregated	across	the	
third	dimension	to	derive	coral	cover	statistics	across	model	simulations	
(mean,	median,	 interquartile	 range	and	95%	confidence	 interval).	We	
mapped	model	uncertainty	as	 the	coefficient	of	variation	 (%)	 in	pre-
dicted	mean	annual	change	in	coral	cover	across	all	simulations.

Finally,	we	ran	a	sensitivity	analysis	to	identify,	among	all	model	pa-
rameters,	the	main	sources	of	model	uncertainty	and	any	possible	in-
teractions	among	them	(Pearson	et	al.,	2014).	In	this	analysis,	we	used	
the	mean	annual	change	in	coral	cover	predicted	in	each	simulation	as	
the	response	variable,	and	the	(resampled)	parameter	estimates	used	
in	each	simulation	as	the	predictors	of	a	boosted	regression	tree.	This	
analysis	allowed	us	 to	quantify	 the	proportion	of	model	uncertainty	
that	 is	 attributable	 to	 variation	 in	 parameter	 estimates	 (i.e.,	 percent	
deviance	explained	by	the	BRT),	 the	respective	contribution	of	each	
model	parameter	 (i.e.,	 relative	 importance	of	 each	predictor,	%)	 and	
possible	interactions	among	them	(Norton,	2015).
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2.7.6 | Mapping coral resilience

We	mapped	coral	resilience	(i.e.,	 the	net	effect	of	resistance	and	re-
covery	following	disturbance)	based	on	the	relationship	between	pre-
dicted	mean	annual	decline	in	coral	cover	and	cumulative	impacts	of	
mean	annual	disturbance	at	each	reef.	To	do	this,	we	calculated	the	cu-
mulative	disturbance	index	in	each	grid	cell	as	the	sum	of	all	cyclones,	
bleaching	and	CoTS	outbreak	severities	weighted	by	their	respective	
effect	sizes	from	the	Bayesian	HLM.	We	defined	categories	of	low/high	
decline,	and	low/high	disturbance,	based	on	the	median	of	each	index.

We	defined	resilience	as	the	second	axis	of	a	PCA	based	on	pre-
dicted	decline	in	coral	cover	and	cumulative	disturbance	for	all	reefs	
(PC2;	21%	variation	explained).	Reefs	with	relatively	low	decline	fol-
lowing	high	disturbance	(i.e.,	high	resilience	reefs)	scored	positively	
on	PC2,	while	reefs	with	high	decline	following	low	disturbance	(i.e.,	
low	resilience	reefs)	scored	negatively.	For	this	analysis,	we	excluded	
reefs	 located	 in	extrapolated	areas,	 for	which	we	had	 lower	confi-
dence	in	model	predictions.

We	 investigated	 the	 relationship	 between	 coral	 resilience	 and	
potential	anthropogenic	covariates	that	 included	our	water	quality	
index	 (PFc),	 an	 index	of	 reef	accessibility	based	on	potential	 travel	
time	 from	 nearest	 human	 settlements	 (Maire	 et	 al.,	 2016),	 and	
whether	a	reef	was	designated	as	a	no‐take	marine	protected	area	
based	 on	 the	 2004	 zoning	 plan	 by	 the	Great	Barrier	 Reef	Marine	
Park	 Authority.	We	 fitted	 a	 generalized	 additive	model	 (Hastie	 &	
Tibshirani,	1990)	to	model	the	relationship	between	coral	resilience	
and	PFc,	and	that	between	resilience	and	reef	accessibility,	using	a	
Gaussian	 error	 distribution	 and	 a	 cubic	 spline	 smoothing	 function	
(k	=	3).	We	tested	whether	coral	resilience	differed	among	no‐take	
reefs	 and	 those	 open	 to	 fishing	 using	 a	 non‐parametric	 Kruskal–
Wallis	 test.	All	code	was	written	 in	R	 (R	Development	Core	Team,	
2017)	(except	for	the	Gompertz	model	in	Python;	see	corresponding	
section)	and	is	provided	in	Supplementary	Information.

3  | RESULTS

3.1 | Regional impacts of disturbance on the GBR

The	impact	of	tropical	cyclones,	CoTS	outbreaks,	and	coral	bleach-
ing	on	coral	cover	varied	greatly	in	space	and	time	across	the	GBR	
(Figure	1).	Based	on	the	46	reefs	regularly	surveyed	by	the	AIMS	
Long‐Term	Monitoring	Program	(LTMP),	our	Bayesian	hierarchical	
model	showed	that	tropical	cyclones	had	the	strongest,	most	con-
sistent	negative	effect	on	coral	cover,	followed	by	CoTS	outbreaks	
and	 coral	 bleaching	 (Figure	 S2).	 By	 combining	 these	 effect	 sizes	
with	high‐resolution	maps	of	annual	disturbance	severity,	we	were	
able	 to	 predict	 the	 impacts	 of	 each	 disturbance	 on	 coral	 cover	
across	the	GBR	from	1996	to	2017	(Figure	1a–c)	and	show	regional	
differences	 in	 how	 these	 disturbances	 likely	 impacted	 individual	
reefs.

Cyclone	 impact	was	 greatest	 between	 Townsville	 and	Mackay	
(Figure	1a),	where	tropical	cyclones	Hamish	(2009)	and	Dylan	(2014)	
generated	some	of	the	longest‐lasting	destructive	waves	(Figure	S3).	

CoTS	outbreaks	propagated	in	a	southerly	direction	from	reefs	north	
of	Cairns	(Figure	S3),	and	formed	a	second	localized	concentration	
further	south.	The	highest	CoTS	densities	on	average	(and	thus	the	
largest	CoTS	impact	on	coral	cover)	were	recorded	off	Townsville	and	
on	offshore	 reefs	between	Mackay	and	Rockhampton	 (Figure	1b).	
The	 impact	 of	 coral	 bleaching,	 based	 on	 aerial	 surveys	 following	
the	three	mass	coral	bleaching	events	(1998,	2002,	and	2016),	was	
greatest	on	the	northern	half	of	the	GBR	(Figure	1c),	a	pattern	that	
was	mostly	 driven	 by	 the	 latest	 and	most	 severe	 bleaching	 event	
(Figure	S2).

Our	 coral	 cover	 predictions	 closely	 followed	 spatiotemporal	
trends	 in	 disturbance	 impacts,	 with	 the	 greatest	 decline	 in	 coral	
cover	predicted	for	central	reefs	mostly	impacted	by	cyclones	and,	
to	 a	 lesser	 extent,	 northern	 reefs	 impacted	 by	 both	 cyclones	 and	
bleaching	(Figure	1d).	Between	1996	and	2017,	we	predicted	an	in-
crease	in	coral	cover	for	approximately	10.2%	of	the	total	reef	area,	
mostly	for	southernmost	reefs	that	were	less	impacted	by	cyclones	
and	 bleaching	 (note	 this	 calculation	 excludes	 reefs	 for	which	 pre-
dictions	were	extrapolated	as	this	results	in	low	confidence—these	
areas	are	enclosed	within	grey	outlines	on	Figure	1d).

Between	1996	and	2017	and	across	the	breadth	of	the	GBR,	coral	
cover	declined	at	a	mean	annual	rate	of	−0.67%/year	(Figure	1f).	This	
decline	was	 steepest	 towards	 the	 end	 of	 the	 time	 period	 (2009–
2016;	−1.92%/year),	reflecting	a	response	of	hard	corals	to	multiple	
severe	and	widespread	cyclones	(including	Hamish	in	2009,	Yasi	in	
2011,	and	Dylan	in	2014)	and	to	the	2016	mass	coral	bleaching	event	
(Figure	1e).	Coral	cover	also	markedly	declined	between	1996	and	
2002	(−0.75%/year),	which	encompassed	mass	bleaching	events	 in	
1988	and	2002	and	a	major	CoTS	outbreak	(Figure	S2).	In	between	
those	time	periods,	mean	coral	cover	increased	by	+0.73%/year	on	
average	(2003–2009).

3.2 | GBR‐wide recovery

Coral	recovery	potential	varied	among	the	different	coral	communi-
ties,	which	we	identified	from	the	survey	data	and	predicted	across	
the	GBR	using	MRT.	Among	candidate	MRT	predictors,	the	distance	
to	the	outer	barrier	reef	edge,	as	well	as	seasonal	variation	in	sea	sur-
face	 temperature	 and	 seabed	 oxygen	 concentration	 (strongly	 cor-
related	to	the	latter:	Spearman's	ρ	=	0.61,	p	<	0.001)	were	the	main	
predictors	of	benthic	community	composition	(Figure	S4).	Using	this	
model,	we	were	able	to	define	6	benthic	community	types	across	the	
GBR,	which	consisted	of	major	 functional	groups	of	corals	as	well	
as	 other	 benthic	 organisms	 or	 abiotic	 substrate.	Outer‐shelf	 com-
munities	were	characterized	by	the	fast‐growing	tabular	or	digitate	
Acropora spp.,	as	opposed	to	inner‐shelf	communities	that	were	char-
acterized	by	Porites	or	macroalgae	(Figure	2).

Our	Gompertz‐based	Bayesian	hierarchical	model	revealed	that	
the	frequency	of	river	plume	conditions	(PFc)	had	a	strong	negative	
effect	on	coral	intrinsic	growth	rate	(rs),	which	was	higher	for	outer‐
shelf	communities	characterized	by	tabular	or	digitate	Acropora	spp.	
(Figure	 S2).	 Accordingly,	 high‐resolution	 predictions	 of	 rs derived 
from	the	BRT	across	the	GBR	 increased	from	inner‐	to	outer‐shelf	
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reefs,	with	76%	of	deviance	in	rs	posterior	estimates	explained	by	the	
BRT	(Figure	2a)	and	a	mean	cross‐validated	prediction	error	of	21%.

The	 distance	 to	 the	 reef	 edge	 (strongly	 correlated	 to	 PFc; 
Spearman's	 ρ	=	0.63,	 p	<	0.001)	 was	 the	 main	 predictor	 of	 coral	
growth	rate	(20%	relative	importance),	followed	by	the	benthic	com-
munity	(10%),	and	seasonal	variation	in	salinity	and	sea	surface	tem-
perature	(9%	each)	(Figure	2b).	Predicted	coral	growth	rate	was	the	
highest	 for	outer‐shelf	 communities	characterized	by	 tabulate	and	
digitate Acropora	 spp.,	 and	 the	 lowest	 for	 inner‐shelf	 communities	
with	relatively	high	macroalgal	cover	(Figure	2c).	The	fastest‐grow-
ing	communities	characterized	by	tabulate	and	digitate	Acropora	spp.	
were	concentrated	in	2.1%	of	the	study	area	overlapping	the	outer	
edge	of	the	GBR	(Figure	2a).

Our	spatially‐explicit	predictions	of	other	Gompertz	parame-
ters,	namely	initial	 (i.e.,	HCini,	 in	1996)	and	maximum	(HCmax)	coral	
cover	at	each	 reef,	 showed	 that	BRT	explained	78%	and	80%	of	
the	deviance	in	HCini and HCmax	at	survey	reefs,	respectively	(Figure	
S5).	The	mean	cyclone	severity	between	1985	and	1995	had	the	
strongest	negative	effect	on	HCini,	followed	by	mean	seabed	tem-
perature.	Seasonal	variation	in	salinity	was	a	major	driver	of	HCmax 
at	 a	 regional	 scale,	 followed	 by	 longitude	 (reflecting	 cross‐shelf	
environmental	gradients	 in	multiple	environmental	variables	that	
increased	or	decreased	with	longitude).	Mean	cross‐validated	pre-
diction	error	was	5%	and	11%	for	 initial	and	maximum	cover	 re-
spectively,	with	high	confidence	in	predictions	within	interpolated	
locations	(64%	of	the	study	area)	(Figure	S5).

F I G U R E  1  Regional	impact	of	major	disturbances	on	the	Great	Barrier	Reef	and	resulting	trends	in	coral	cover.	Average	1996–2017	impact	of	
(a)	tropical	cyclones,	(b)	outbreaks	of	the	crown‐of‐thorns	starfish	(CoTS),	and	(c)	coral	bleaching	(note	that	only	the	three	mass	bleaching	events	
were	considered).	(d)	Mean	predicted	annual	rate	of	change	in	coral	cover	(%/year)	during	the	same	period,	with	greyed	out	areas	indicating	lower	
confidence	in	model	predictions	due	to	extrapolation.	(e)	Relative	impact	of	each	disturbance	in	each	year.	(f)	Mean	predictions	of	coral	cover	
averaged	across	the	entire	Great	Barrier	Reef;	envelopes	indicate	the	95%	confidence	interval	across	a	total	of	1,000	simulations	(light	hue),	the	
interquartile	range	(medium	hue)	and	the	mean	trajectory	(dark	continuous	line)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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3.3 | Mapping coral resilience across the GBR

Based	 on	 our	 cumulative	 disturbance	 index	 that	 represented	 the	
combined	impacts	of	tropical	cyclones,	CoTS	outbreaks,	and	bleach-
ing,	most	reefs	experiencing	low	disturbance	were	predicted	to	show	
low	decline	in	coral	cover,	and	vice	versa	(Figure	3a).	However,	15%	
of	all	reefs	experienced	strong	decline	following	low	disturbance,	in-
dicating	they	were	low‐resilience	reefs.	Conversely,	17%	of	all	reefs	

exhibited	low	decline	following	high	disturbance,	thus	representing	
high‐resilience	reefs.	The	latter	were	mostly	located	in	the	southern-
most	(and	northernmost	to	a	lesser	extent)	sections	of	the	GBR,	with	
a	few	clusters	in	the	central	GBR	(dark	green	on	Figure	3a).

Reef	 resilience	was	 strongly	 and	negatively	 related	 to	 the	 fre-
quency	of	river	plume‐like	conditions	(general	additive	model;	14.7%	
deviance	explained;	Figure	3b),	and	to	reef	accessibility	to	a	 lesser	
extent	 (3%	 deviance	 explained;	 Figure	 3c).	 When	 all	 reefs	 were	

F I G U R E  2  Great	Barrier	Reef	(GBR)‐wide	predictions	of	benthic	communities	and	coral	intrinsic	growth	rate.	(a)	Benthic	communities	(left)	
and	coral	growth	rate	(right)	were	predicted	based	on	major	environmental	covariates	using	multivariate	(MRT)	and	boosted	(BRT)	regression	
trees,	respectively.	The	insert	shows	the	relationship	between	posterior	estimates	of	coral	growth	rate	from	the	Gompertz	model	for	the	LTMP	
reefs,	used	as	observations	in	the	BRT,	and	BRT	predictions.	(b)	Marginal	plots	showing	the	partial	effect	of	major	environmental	drivers	on	coral	
growth	rate	(with	SST	=	sea	surface	temperature,	sdev	=	standard	deviation).	The	relative	importance	of	each	BRT	predictor	(%)	is	indicated	in	
brackets.	(c)	Distribution	of	coral	growth	rate	predicted	by	BRT	among	benthic	communities.	The	thick	line	indicates	the	median,	hinges	the	
interquartile	range,	whiskers	the	90%	confidence	interval	and	dots	the	outliers	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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considered,	 reef	 resilience	was	substantially	 lower	on	closed	 reefs	
(i.e.	within	no‐take	marine	protected	areas)	compared	to	open	reefs	
(Kruskal–Wallis	test;	p	<	0.001)	(Figure	3d).	Most	closed	reefs	were	
associated	with	 less	 frequent	plume‐like	 conditions	 (lower	median	
PFc)	than	open	reefs;	however	the	distribution	of	PFc	was	skewed	and	
resulted	in	greater	mean	PFc	within	closed	reefs	(Figure	S6).	When	
reefs	with	greater	exposure	to	plume‐like	conditions	were	removed	
from	the	analysis,	resilience	did	not	differ	between	closed	and	open	
reefs	(Figure	3d;	PFc < 0.5; p	=	0.412)	although	rs	remained	substan-
tially	higher	within	closed	reefs	(Figure	S6;	PFc < 0.5; p	<	0.001).

3.4 | Model validation, uncertainty and 
sensitivity analysis

Projected	 coral	 trajectories	 closely	matched	 historical	 records	 for	
10	 reefs	 surveyed	using	manta‐tow	 that	were	not	used	 for	model	
calibration	(Figure	4).	For	this	independent	dataset,	our	model	accu-
rately	captured	the	impact	of	multiple	disturbances	and	subsequent	
coral	recovery	(mean	prediction	error	=	6.7%;	R2	=	0.57).	When	con-
sidering	all	reefs	with	at	least	10	years	of	coral	cover	data	available	
(N	=	54),	the	mean	prediction	error	was	5.8%	and	the	goodness‐of‐fit	

(R2)	was	0.64.	Uncertainty	in	model	predictions	tended	to	be	higher	
in	the	case	of	rare	yet	severe	disturbances	(e.g.,	Ben	Reef;	Figure	4)	
compared	to	multiple,	less	severe	ones	(e.g.,	Credlin	or	Feather	Reefs;	
Figure	4).	We	mapped	the	coefficient	of	variation	 in	predicted	an-
nual	change	in	coral	cover	across	all	simulations	and	found	that	aver-
age	model	uncertainty	was	33.6%	(ranging	0.7%–84.4%).	The	lowest	
uncertainty	occurred	at	survey	reefs	and	the	highest	in	central	sec-
tions	of	the	GBR	distant	from	them	(Figure	S7).

Our	sensitivity	analysis	revealed	that	predicted	coral	decline	was	
the	most	sensitive	to	variation	in	rs	(BRT	relative	importance	=	75%)	
followed	by	HCini	 (8.9%)	and	tropical	cyclone	 impact	 (4.9%)	 (Figure	
S8).	We	 found	 a	weak	 interactive	 effect	 of	 rs and HCini on overall 
patterns	of	predicted	coral	decline,	with	this	effect	being	greatest	at	
low rs	combined	with	high	HCini	(Figure	S8).

4  | DISCUSSION

By	reconstructing	coral	cover	trajectories	at	a	fine	spatial	resolution	
across	 Australia's	 Great	 Barrier	 Reef	 (GBR)	 over	 the	 last	 22	years,	
we	 provide	 the	 most	 comprehensive,	 spatially	 explicit	 estimate	 of	

F I G U R E  3  Map	and	correlates	of	coral	resilience	on	the	Great	Barrier	Reef.	(a)	Mean	annual	decline	in	coral	cover	versus	mean	annual	
disturbance	impact	(i.e.	the	combined	severity	of	all	coral	bleaching	events,	CoTS	outbreaks,	and	cyclones	recorded	over	the	study	period,	
and	weighted	by	their	effect	size).	Low	and	high	categories	corresponded	to	values	below	and	above	the	median,	respectively.	High‐resilience	
reefs	are	characterized	by	low	decline	in	coral	cover	following	high	disturbance,	as	shown	by	the	resilience	gradient	(R	arrow)	used	to	assign	
a	resilience	value	to	each	reef	(see	Methods).	The	intensity	of	the	grey	shading	is	proportional	to	the	frequency	of	river	plume‐like	conditions	
(PFc).	(b)	Relationship	between	coral	resilience	and	PFc.	The	regression	line	was	fitted	using	a	general	additive	model	(GAM),	with	the	envelope	
showing	the	95%	confidence	interval.	(c)	Relationship	between	coral	resilience	and	reef	accessibility	(measured	as	potential	travel	time	from	
major	coastal	cities)	and	GAM	fit.	(d)	Distribution	of	coral	resilience	between	open	and	closed	(i.e.	no‐take)	reefs,	either	considering	all	reefs	
(left)	or	only	those	with	less	frequent	exposure	to	plume‐like	conditions	(right;	PFc	<	0.5).	The	white	dot	indicates	the	median,	the	vertical	
black	bar	the	interquartile	range,	and	plot	width	represents	the	proportion	of	all	reefs	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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long‐term	coral	cover	trajectories	for	any	marine	system,	and	disen-
tangle	the	relative	impact	of	multiple	agents	of	disturbance	on	coral	
growth	at	local‐to‐regional	scales.	We	show	that	coral	cover	is	likely	to	
have	declined	on	90%	of	all	reefs.	Historically,	this	decline	has	primar-
ily	been	attributed	to	tropical	cyclones	and	CoTS	outbreaks	(De'ath	
et	al.,	2012),	and	in	more	recent	years	to	coral	bleaching	(Hughes	et	
al.,	2017).	High	water	quality	correlates	strongly	with	coral	resilience,	
with	low	reef	accessibility	(remoteness)	also	having	a	positive,	albeit	
weaker,	 association.	 Surprisingly,	 reef	 resilience	 was	 substantially	
lower	within	 no‐take	marine	 protected	 areas;	 however,	 this	 differ-
ence	was	driven	by	the	effect	of	water	quality	and	was	not	evident	
among	 reefs	with	 less	 frequent	 exposure	 to	 plume‐like	 conditions.	
We	have	high	confidence	in	these	results	because	model	predictions	
closely	matched	independent	observation	records.	By	incorporating	
the	main	environmental	drivers	of	coral	cover	and	its	growth	rate	into	
a	disturbance‐based	model	of	coral	decline	and	recovery,	we	offer	a	
new	and	robust	framework	for	similar	applications	to	other	reef	re-
gions	 around	 the	world—a	 critical	 requirement	 for	 sustainable	 reef	
management	over	the	coming	decades	(Hughes	et	al.,	2017).

Tropical	 cyclones	 were	 the	 strongest	 driver	 of	 coral	 cover	 on	
the	GBR	over	the	last	22	years,	which	stems	from	a	combination	of	
greater	 effect	 size	 and	 frequency	 compared	 to	CoTS	 outbreaks	 or	
bleaching.	Only	a	broad‐scale	and	high‐resolution	approach	such	as	
ours	that	explicitly	maps	spatial	variation	across	individual	reefs	could	
reveal	 these	spatiotemporal	patterns,	because	most	of	 the	cyclone	
impacts	occurred	within	unmonitored	reef	sections	(e.g.,	Figure	S2)	
that	 were	 not	 considered	 in	 previous	 studies	 (De'ath	 et	 al.,	 2012;	
Osborne	et	al.,	2017).	The	stronger	effect	size	of	cyclones	likely	re-
flects	that	cyclones	typically	alter	habitat	structural	complexity	 im-
mediately,	 unlike	 other	 disturbances	 that	 can	 leave	 coral	 skeletons	
intact	(Osborne	et	al.,	2017).	This	loss	of	habitat	complexity	affects	
a	range	of	coral‐associated	organisms	such	as	herbivorous	fishes	and	
invertebrates	that	otherwise	facilitate	coral	recruitment	and	recovery	
through	grazing	(Cheal,	Macneil,	Emslie,	&	Sweatman,	2017;	Osborne	
et	al.,	2017).	In	contrast,	coral	cover	generally	recovers	faster	follow-
ing	CoTS	outbreaks	because	the	coral	skeletons	that	remain	in	place	
provide	suitable	habitat	for	coral	recruits	and	can	sometimes	shelter	
remnants	of	healthy	living	coral	(Osborne	et	al.,	2017).

F I G U R E  4  Model	validation.	Predicted	trajectories	of	coral	cover	(blue	envelopes)	compared	with	independent	observations	(black	dots)	for	
manta‐tow	reefs.	Light	blue	envelopes	indicate	the	95%	confidence	interval	across	1,000	simulations;	medium	blue	envelopes	show	the	interquartile	
range	(25th	and	75th	percentiles),	and	the	dark	blue	line	shows	the	median.	Vertical	lines	indicate	disturbances	with	blue	=	coral	bleaching,	
orange	=	crown‐of‐thorns	starfish	outbreak,	red	=	tropical	cyclone,	grey	=	coral	disease	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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In	our	study,	the	relatively	smaller	effect	of	bleaching	is	partly	due	
to	 the	most	 severe	 bleaching	 event	 (2016)	 being	 only	 recent	 (com-
pared	to	14	years	of	cyclone	impacts	out	of	a	total	of	22	years	consid-
ered),	as	well	as	the	possibility	that	some	corals	might	have	regained	
their	symbionts	and	recovered	by	the	time	LTMP	surveys	were	con-
ducted.	Furthermore,	sampling	bias	might	have	reduced	our	estimates	
of	bleaching	impacts	as	we	excluded	the	northernmost	reefs	(where	
bleaching	 impacts	 were	 the	most	 severe)	 due	 to	 data	 paucity,	 and	
calibrated	our	model	using	observations	from	the	6‐9m	depth	zone.	
Corals	 at	 these	 depths	might	 have	 escaped	 the	most	 damaging	 ef-
fects	of	bleaching,	which	were	typically	observed	on	shallow	reef	flats	
and	crests	where	low	water	mixing	allowed	little	cooling	from	deeper	
waters	(Hughes	et	al.,	2017).	However,	such	spatial	patterns	of	coral	
bleaching	on	shallow	reefs	are	typically	patchy	(up	to	a	10‐100m	scale;	
S.	Heron,	unpublished	data)	and	are	currently	difficult	to	resolve	at	the	
scale	of	the	GBR.	Given	that	coral	bleaching	is	predicted	to	increase	
both	in	frequency	and	severity	over	the	next	decades	(van	Hooidonk	
et	al.,	2016;	Wolff	et	al.,	2018),	its	impact	on	coral	cover	will	also	likely	
increase	and	potentially	surpass	that	of	tropical	cyclones	in	the	future.

Lower	coral	resilience	coincided	with	a	greater	exposure	to	river	
plume‐like	 conditions,	 suggesting	 that	 water	 quality	 could	 play	 an	
important	role	in	exacerbating	the	effect	of	cumulative	disturbances	
and	 synergies	 among	 them.	 Indeed,	 chronic	 stress	 related	 to	 land	
run‐off	and	poor	water	quality	can	affect	the	functional	diversity	of	
benthic	 communities	 and	 result	 in	 a	 loss	 of	 resilience	 (Wolff	 et	 al.,	
2018),	 potentially	 aggravating	 the	 impact	 of	 subsequent	 acute	 dis-
turbances	 (Ortiz	et	al.,	2018;	Osborne	et	al.,	2017).	Although	many	
indicators	 of	 water	 quality	 exist,	 our	 results	 indicate	 that	 nutrient	
and	suspended	sediment	concentrations	(as	predicted	by	plume‐like	
water	body	characterization;	Petus	et	al.,	2014)	are	 likely	 to	have	a	
strong	negative	effect	on	coral	cover	and,	therefore	represent	a	key	
management	priority	(Brodie	&	Pearson,	2016).	Conversely,	high	coral	
resilience	characterized	reefs	that	were	previously	identified	as	small	
and	isolated	(Mellin,	Huchery,	Caley,	Meekan,	&	Bradshaw,	2010),	and	
thus	 less	 prone	 to	 deleterious,	 collateral	 effects	 from	 disturbances	
at	 neighbouring	 reefs.	 For	 example,	 isolated	 reefs	 are	 typically	 ex-
posed	to	reduced	levels	of	colonization	by	CoTS	larvae	(Hock,	Wolff,	
Condie,	Anthony,	&	Mumby,	2014),	representing	important	spatial	re-
fugia	from	outbreaks	that	tend	to	propagate	along	prevailing	currents	
(Pratchett	et	al.,	2014).	Identifying	the	exact	drivers	of	coral	resilience	
warrants	 further	 investigation,	 yet	 the	 clear	 spatial	 pattern	 in	 their	
distribution	suggests	that	the	relative	importance	of	terrestrial	influ-
ence,	cross‐shelf	 location,	and	spatial	 connectivity	could	play	a	key	
role	in	determining	coral	resilience	to	multiple	disturbances.

Assessing	spatial	 resilience	 is	an	 important	step	toward	prioritiz-
ing	areas	for	future	reef	management	and	conservation,	whether	the	
objective	is	to	rescue	the	weakest	or	protect	the	healthiest	reefs	first	
(Game,	Mcdonald‐Madden,	Puotinen,	&	Possingham,	2008).	Yet	the	ef-
fect	of	no‐take	marine	protected	areas	on	reef	resilience	was	strongly	
determined	by	water	quality,	with	lower	resilience	within	no‐take	areas	
when	all	reefs	were	considered.	In	contrast,	when	reefs	frequently	ex-
posed	to	plume‐like	conditions	were	excluded	from	the	analysis,	resil-
ience	did	not	differ	between	no‐take	or	open	areas	and	rs,	our	proxy	

for	recovery	potential	in	the	absence	of	disturbance,	was	higher	within	
no‐take	areas.	This	corroborates	earlier	results	suggesting	that	marine	
protected	areas	have	the	potential	to	promote	reef	resistance	and	re-
covery	following	disturbance	(Mellin	et	al.,	2016).	The	survey	design	
of	this	earlier	study	was	essentially	paired	within	and	outside	no‐take	
marine	protected	 areas,	with	 inshore	 reefs	being	underrepresented.	
Another	study	of	inshore	reefs	found	that	coral	cover	was	lower	within	
no‐take	 areas	 than	 on	 reefs	 open	 to	 fishing,	 especially	 after	 major	
flooding	events,	 indicating	that	repeated	exposure	to	reduced	water	
quality	impairs	reef	recovery	following	disturbance,	regardless	of	their	
protection	status	 (Wenger	et	al.,	2016).	Together,	 these	 results	 indi-
cate	that	while	no‐take	marine	protected	areas	have	the	potential	to	
promote	reef	resilience	due	to	increased	intrinsic	growth	rate	of	corals,	
this	potential	might	not	suffice	to	counteract	the	deleterious	effect	of	
frequent	plume‐like	conditions	on	reef	resilience,	suggesting	that	the	
location	and	environmental	context	of	marine	protected	areas	strongly	
determine	their	net	benefit	in	terms	of	resilience.

Assessing	the	spatial	resilience	of	the	GBR	has	so	far	remained	
elusive	 and	 understandably	 ignored	 in	 the	 design	 of	 protective	
zoning.	The	southern	region	of	the	GBR,	where	we	identified	most	
high‐resilience	reefs,	was	previously	predicted	to	act	as	a	spatial	ref-
uge	that	will	experience	warming	later	than	other	coral	reefs	of	the	
GBR	 and	 beyond	 (van	Hooidonk,	Maynard,	&	 Planes,	 2013).	 Such	
delayed	warming	in	the	southern	GBR	could	contribute	both	to	re-
duced	bleaching‐induced	mortality,	and	reduced	sub‐lethal	effects	
of	thermal	stress	that	can	lead	to	lower	coral	growth	rates	(Osborne	
et	al.,	2017),	fecundity,	and	resistance	to	disease	over	many	years.	
Furthermore,	more	gradual	warming	may	allow	a	shift	to	more	resis-
tant	algal	symbionts	(Day,	Nagel,	Oppen,	&	Caley,	2008),	thus	facil-
itating	the	selective	emergence	of	more	heat	tolerant	communities	
(Hughes	et	al.,	2017).	Our	finding	of	greater	resilience	in	some	areas	
of	 the	 southern	GBR	 corroborates	 the	 potential	 for	 opportunities	
to	intervene	and	enhance	coral	resilience	through	the	integration	of	
assisted	evolution	into	coral	reef	restoration	elsewhere	on	the	GBR	
(van	Oppen	et	al.,	2017).	However,	future	forecasts	predict	that	even	
this	“protective”	thermal	tolerance	induced	by	sub‐lethal	bleaching	
events	might	soon	be	lost	under	current	climate	change	(Ainsworth	
et	 al.,	 2016)	 if	 the	 increased	 frequency	 of	 temperature	 anomalies	
outpaces	 the	 capacity	 of	 reefs	 to	 acclimatize	 and	 adapt	 to	 novel	
climatic	 conditions.	 This	 means	 that,	 ultimately,	 reducing	 carbon	
emissions	and	mitigating	global	warming	represent	the	only	ways	to	
secure	reef	persistence	in	the	long	term	(Hughes	et	al.,	2017).

Environmental	gradients	accounted	for	76%	of	variation	 in	coral	
growth	rate	(the	most	influential	parameter	in	our	coral	cover	model),	
indicating	 that	 regional	 scale	 assessments	 based	 on	 comprehensive	
environmental	data	are	key	to	capturing	both	the	drivers	and	spatial	
patterns	of	coral	cover	decline	and	recovery.	Low	seasonal	variation	
in	 salinity,	 temperature	and	oxygen	 levels	were	associated	with	 the	
fastest	growing	coral	communities,	characterized	by	tabulate	and	dig-
itate Acropora	corals	among	others.	This	result	seems	intuitive,	given	
that	these	taxa	are	characterized	by	a	“competitive”	 life	history	that	
can	dominate	communities	in	suitable	environments,	but	are	also	very	
sensitive	 to	 environmental	 changes	 such	 as	 temperature	 anomalies	
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(Darling,	Alvarez‐Filip,	Oliver,	Mcclanahan,	&	Cote,	2012).	Temperature	
gradients	are	among	the	main	natural	drivers	of	species	distributions,	
affecting	 somatic	 growth	 and	 body	 size	 (Lurgi,	 Lopez,	 &	Montoya,	
2012),	 and	 directly	 reflecting	 the	 physiological	 influence	 that	 tem-
perature	exerts	on	individual	species	(Mellin,	2015).	Furthermore,	the	
importance	of	seasonal	variation	in	oxygen	levels	as	a	determinant	of	
benthic	communities	indicates	that	different	taxa	respond	differently	
to	oxygen	depletion	(Pitcher	et	al.,	2012),	which	can	reduce	coral	calci-
fication	rates	(Colombo‐Pallotta,	Rodriguez‐Roman,	&	Iglesias‐Prieto,	
2010)	 and	 appeared	 strongly	 temperature	 dependent	 in	 our	 data.	
However,	modeling	coral	growth	rate	across	the	breadth	of	the	GBR	
was	also	greatly	 improved	by	including	spatial	variables	(such	as	the	
distance	to	the	reef	edge)	that	can	provide	a	proxy	for	environmental	
gradients	either	not	considered	or	poorly	estimated	(Mellin,	2015).

Based	on	20	years	of	data,	our	model	provides	a	platform	for	
projecting	coral	cover	trajectories	under	past	and	future	scenarios	
of	 climate	 change,	which	has	 and	will	 continue	 to	 affect	 the	 fre-
quency	and	severity	of	coral	bleaching	(van	Hooidonk	et	al.,	2016),	
tropical	cyclones	(Walsh	et	al.,	2016)	and	CoTS	outbreaks	(Uthicke	
et	al.,	2015).	The	critical	question	remains	whether	and	when	the	
capacity	of	 reefs	 to	 absorb	 and	 recover	 from	disturbances	might	
be	outpaced	by	future	changes	in	these	disturbance	patterns.	Our	
modeling	 approach	 is	 broadly	 applicable	 across	 reef	 ecosystems,	
especially	given	that	relevant	environmental	and	spatial	layers	are	
now	 increasingly	 available	 through	 the	 routine	 use	 of	 remotely	
sensed	products	(Mellin,	Andrefouet,	Kulbicki,	Dalleau,	&	Vigliola,	
2009).	Our	framework	thus	provides	the	advance	needed	to	fore-
cast	which	reefs	will	remain	as	important	refugia	for	sustaining	coral	
reef	ecosystems	under	increasing	pressures	from	global	change.

DATA AND MATERIAL AVAIL ABILIT Y

The	data	and	code	used	in	this	study	are	available	at	https://www.
dropbox.com/s/2b6s5epx6mpokc5/Coral%20cover%20model.
zip?dl=0

ACKNOWLEDG EMENTS

We	 thank	members	 of	 the	 Australian	 Institute	 of	Marine	 Science	
Long‐Term	Monitoring	Program	that	have	contributed	to	collection	
of	 the	data	used	 in	these	analyses;	and	B	Shaffelke,	K	Fabricius,	S	
Connolly,	 S	 Heron	 and	 J	 Brodie	 for	 providing	 helpful	 comments.	
This	publication	was	supported	through	funding	from	the	Australian	
Government's	National	Environmental	Science	Programme.	CM	was	
funded	by	an	ARC	grant	(DE140100701).

ORCID

Camille Mellin  https://orcid.org/0000‐0002‐7369‐2349 

Kate Osborne  https://orcid.org/0000‐0002‐9804‐6335 

Nicholas H. Wolff  https://orcid.org/0000‐0003‐1162‐3556 

Damien A. Fordham  https://orcid.org/0000‐0003‐2137‐5592 

R E FE R E N C E S

Ainsworth,	T.	D.,	Heron,	S.	F.,	Ortiz,	J.	C.,	Mumby,	P.	J.,	Grech,	A.,	Ogawa,	
D.,	…	Leggat,	W.	(2016).	Climate	change	disables	coral	bleaching	pro-
tection	on	the	Great	Barrier	Reef.	Science,	352,	338–342.	https://doi.
org/10.1126/science.aac7125

Bass,	D.	K.,	&	Miller,	I.	R.	(1996).	Crown‐of‐thorns starfish and coral surveys 
using the manta tow and scuba search techniques.	Townsville,	Australia:	
Australian	Institute	of	Marine	Science.

Berkelmans,	 R.,	 De’ath,	 G.,	 Kininmonth,	 S.,	 &	 Skirving,	W.	 J.	 (2004).	
A	 comparison	 of	 the	 1998	 and	 2002	 coral	 bleaching	 events	
on	 the	 Great	 Barrier	 Reef:	 Spatial	 correlation,	 patterns,	 and	
predictions.	 Coral Reefs,	 23,	 74–83.	 https://doi.org/10.1007/
s00338‐003‐0353‐y

Brodie,	J.,	&	Pearson,	R.	G.	(2016).	Ecosystem	health	of	the	Great	Barrier	
Reef:	 Time	 for	 effective	 management	 action	 based	 on	 evidence.	
Estuarine, Coastal and Shelf Science,	 183,	 438–451.	 https://doi.
org/10.1016/j.ecss.2016.05.008

Broennimann,	O.,	Treier,	U.,	Müller‐Schärer,	H.,	Thuiller,	W.,	&	Peterson,	
A.,	Guisan,	A.	(2007).	Evidence	of	climatic	niche	shift	during	biologi-
cal	invasion,	Ecology Letters,	10,	701–709.

Caley,	M.	J.,	Fisher,	R.,	&	Mengersen,	K.	(2014).	Global	species	richness	
estimates	have	not	converged.	Trends in Ecology & Evolution,	29,	187–
188.	https://doi.org/10.1016/j.tree.2014.02.002

Ceballos,	 G.,	 Ehrlich,	 P.	 R.,	 Barnosky,	 A.	 D.,	 García,	 A.,	 Pringle,	 R.	M.,	
&	 Palmer,	 T.	M.	 (2015).	 Accelerated	 modern	 human–induced	 spe-
cies	 losses:	Entering	the	sixth	mass	extinction.	Science Advances,	1,	
e1400253.	https://doi.org/10.1126/sciadv.1400253

Cheal,	 A.	 J.,	 Macneil,	 M.	 A.,	 Emslie,	 M.	 J.,	 &	 Sweatman,	 H.	 (2017).	
The	 threat	 to	 coral	 reefs	 from	 more	 intense	 cyclones	 under	 cli-
mate	 change.	 Global Change Biology,	 23,	 1511–1524.	 https://doi.
org/10.1111/gcb.13593

Colombo‐Pallotta,	 M.	 F.,	 Rodriguez‐Roman,	 A.,	 &	 Iglesias‐Prieto,	 R.	
(2010).	Calcification	in	bleached	and	unbleached	Montastraea	fave-
olata:	 Evaluating	 the	 role	 of	 oxygen	 and	 glycerol.	 Coral Reefs,	 29,	
899–907.	https://doi.org/10.1007/s00338‐010‐0638‐x

Costanza,	R.,	de	Groot,	R.,	Sutton,	P.,	van	der	Ploeg,	S.,	Anderson,	S.	J.,	
Kubiszewski,	 I.,	…	Turner,	R.	K.	 (2014).	Changes	 in	 the	global	value	
of	 ecosystem	 services.	Global Environmental Change,	 26,	 152–158.	
https://doi.org/10.1016/j.gloenvcha.2014.04.002

Cumming,	 G.	 S.,	 Morrison,	 T.	 H.,	 &	 Hughes,	 T.	 P.	 (2017).	 New	 direc-
tions	 for	 understanding	 the	 spatial	 resilience	 of	 social‐ecologi-
cal	 systems.	 Ecosystems,	 20,	 649–664.	 https://doi.org/10.1007/
s10021‐016‐0089‐5

Darling,	 E.	 S.,	 Alvarez‐Filip,	 L.,	 Oliver,	 T.	 A.,	 Mcclanahan,	 T.	 R.,	 &	
Cote,	 I.	 M.	 (2012).	 Evaluating	 life‐history	 strategies	 of	 reef	 cor-
als	 from	 species	 traits.	Ecology Letters,	15,	 1378–1386.	https://doi.
org/10.1111/j.1461‐0248.2012.01861.x

Davison,	A.	C.,	&	Hinkley,	D.	V.	(1997).	Bootstrap methods and their appli‐
cation.	Cambridge:	Cambridge	University	Press.

Day,	T.,	Nagel,	 L.,	Van	Oppen,	M.	 J.	H.,	&	Caley,	M.	 J.	 (2008).	 Factors	
affecting	 the	 evolution	 of	 bleaching	 resistance	 in	 corals.	American 
Naturalist,	171,	E72–E88.	https://doi.org/10.1086/524956

De'ath,	 G.	 (2002).	Multivariate	 regression	 trees:	 A	 new	 technique	 for	
modeling	species‐environment	relationships.	Ecology,	83,	1105–1117.

De'ath,	G.,	 Fabricius,	K.	 E.,	 Sweatman,	H.,	&	Puotinen,	M.	 (2012).	 The	
27‐year	 decline	 of	 coral	 cover	 on	 the	 Great	 Barrier	 Reef	 and	 its	
causes.	Proceedings of the National Academy of Sciences of the United 
States of America,	 109,	 17995–17999.	 https://doi.org/10.1073/
pnas.1208909109

R	Development	Core	Team.	(2017).	R:	A	language	and	environment	for	
statistical	computing,	Vienna,	Austria.	ISBN	3‐900051‐07‐0,	http://
www.R‐project.org/.	R	Foundation	for	Statistical	Computing.

Diggle,	P.	J.,	&	Ribeiro,	P.	J.	Jr	(2007).	Model‐based geostatistics.	New	York:	
Springer.

https://www.dropbox.com/s/2b6s5epx6mpokc5/Coral cover model.zip?dl=0
https://www.dropbox.com/s/2b6s5epx6mpokc5/Coral cover model.zip?dl=0
https://www.dropbox.com/s/2b6s5epx6mpokc5/Coral cover model.zip?dl=0
https://orcid.org/0000-0002-7369-2349
https://orcid.org/0000-0002-7369-2349
https://orcid.org/0000-0002-9804-6335
https://orcid.org/0000-0002-9804-6335
https://orcid.org/0000-0003-1162-3556
https://orcid.org/0000-0003-1162-3556
https://orcid.org/0000-0003-2137-5592
https://orcid.org/0000-0003-2137-5592
https://doi.org/10.1126/science.aac7125
https://doi.org/10.1126/science.aac7125
https://doi.org/10.1007/s00338-003-0353-y
https://doi.org/10.1007/s00338-003-0353-y
https://doi.org/10.1016/j.ecss.2016.05.008
https://doi.org/10.1016/j.ecss.2016.05.008
https://doi.org/10.1016/j.tree.2014.02.002
https://doi.org/10.1126/sciadv.1400253
https://doi.org/10.1111/gcb.13593
https://doi.org/10.1111/gcb.13593
https://doi.org/10.1007/s00338-010-0638-x
https://doi.org/10.1016/j.gloenvcha.2014.04.002
https://doi.org/10.1007/s10021-016-0089-5
https://doi.org/10.1007/s10021-016-0089-5
https://doi.org/10.1111/j.1461-0248.2012.01861.x
https://doi.org/10.1111/j.1461-0248.2012.01861.x
https://doi.org/10.1086/524956
https://doi.org/10.1073/pnas.1208909109
https://doi.org/10.1073/pnas.1208909109
http://www.R-project.org/
http://www.R-project.org/


2444  |     MELLIN Et aL.

Dufrêne,	M.,	&	Legendre,	P.	 (1997).	Species	assemblages	and	 indicator	
species:	 The	 need	 for	 a	 flexible	 asymmetrical	 approach.	Ecological 
Monographs,	67,	345–366.	https://doi.org/10.2307/2963459

Elith,	J.,	&	Leathwick,	J.	R.	(2009).	Species	distribution	models:	Ecological	
explanation	 and	 prediction	 across	 space	 and	 time.	 Annual Review 
of Ecology Evolution and Systematics,	 40,	 677–697.	 https://doi.
org/10.1146/annurev.ecolsys.110308.120159

Elith,	J.,	Leathwick,	J.	R.,	&	Hastie,	T.	(2008).	A	working	guide	to	boosted	
regression	trees.	Journal of Animal Ecology,	77,	802–813.	https://doi.
org/10.1111/j.1365‐2656.2008.01390.x

Fabricius,	K.	E.	(2005).	Effects	of	terrestrial	runoff	on	the	ecology	of	cor-
als	and	coral	 reefs:	Review	and	synthesis.	Marine Pollution Bulletin,	
50,	125–146.	https://doi.org/10.1016/j.marpolbul.2004.11.028

Fabricius,	K.,	Okaji,	K.,	&	De'ath,	G.	(2010).	Three	lines	of	evidence	to	link	
outbreaks	of	 the	crown‐of‐thorns	seastar	Acanthaster planci	 to	 the	
release	of	larval	food	limitation.	Coral Reefs,	29,	593–605.	https://doi.
org/10.1007/s00338‐010‐0628‐z

Fisher,	 R.,	O’Leary,	 R.	 A.,	 Low‐Choy,	 S.,	Mengersen,	 K.,	 Knowlton,	N.,	
Brainard,	R.	E.,	&	Caley,	M.	J.	(2015).	Species	richness	on	coral	reefs	
and	the	pursuit	of	convergent	global	estimates.	Current Biology,	25,	
500–505.	https://doi.org/10.1016/j.cub.2014.12.022

Folke,	C.,	Carpenter,	S.,	Walker,	B.,	Scheffer,	M.,	Elmqvist,	T.,	Gunderson,	
L.,	 &	Holling,	 C.	 S.	 (2004).	 Regime	 shifts,	 resilience,	 and	 biodiver-
sity	 in	 ecosystem	management.	Annual Review of Ecology Evolution 
and Systematics,	 35,	 557–581.	 https://doi.org/10.1146/annurev.
ecolsys.35.021103.105711

Fukaya,	 K.,	 Okuda,	 T.,	 Nakaoka,	 M.,	 Hori,	 M.,	 &	 Noda,	 T.	
(2010).	 Seasonality	 in	 the	 strength	 and	 spatial	 scale	 of	 pro-
cesses	 determining	 intertidal	 barnacle	 population	 growth.	
Journal of Animal Ecology,	 79,	 1270–1279.	 https://doi.
org/10.1111/j.1365‐2656.2010.01727.x

Game,	E.	T.,	Mcdonald‐Madden,	E.,	Puotinen,	M.	L.,	&	Possingham,	H.	P.	
(2008).	Should	we	protect	the	strong	or	the	weak?	Risk,	resilience,	
and	the	selection	of	marine	protected	areas.	Conservation Biology,	22,	
1619–1629.	https://doi.org/10.1111/j.1523‐1739.2008.01037.x

Hastie,	T.,	&	Tibshirani,	R.	 (1990).	Generalized Additive Models.	London:	
Chapman	and	Hall.

Hock,	K.,	Wolff,	N.	H.,	Condie,	S.	A.,	Anthony,	K.	R.	N.,	&	Mumby,	P.	J.	
(2014).	 Connectivity	 networks	 reveal	 the	 risks	 of	 crown‐of‐thorns	
starfish	 outbreaks	 on	 the	 Great	 Barrier	 Reef.	 Journal of Applied 
Ecology,	51,	1188–1196.	https://doi.org/10.1111/1365‐2664.12320

Hughes,	 T.,	 Baird,	 A.	 H.,	 Bellwood,	 D.	 R.,	 Card,	 M.,	 Connolly,	 S.	 R.,	
Folke,	 C.,	 …	 Lough,	 J.	M.	 (2003).	 Climate	 change,	 human	 impacts,	
and	the	resilience	of	coral	reefs.	Science,	301,	929–933.	https://doi.
org/10.1126/science.1085046

Hughes,	T.,	Bellwood,	D.	R.,	Folke,	C.,	Steneck,	R.	S.,	&	Wilson,	J.	(2005).	
New	 paradigms	 for	 supporting	 the	 resilience	 of	 marine	 ecosys-
tems.	 Trends in Ecology and Evolution,	 20,	 380–386.	 https://doi.
org/10.1016/j.tree.2005.03.022

Hughes,	 T.	 P.,	 Kerry,	 J.	 T.,	 Alvarez‐Noriega,	M.,	 Álvarez‐Romero,	 J.	G.,	
Anderson,	K.	D.,	Baird,	A.	H.	...	Bridge,	T.	C.	(2017).	Global	warming	
and	recurrent	mass	bleaching	of	corals.	Nature,	543,	373‐+.

Hughes,	T.	P.,	NaJ,	G.,	 Jackson,	 J.	B.	C.,	Mumby,	P.	 J.,	&	Steneck,	R.	S.	
(2010).	 Rising	 to	 the	 challenge	 of	 sustaining	 coral	 reef	 resilience.	
Trends in Ecology & Evolution,	25,	633–642.	https://doi.org/10.1016/j.
tree.2010.07.011

Hughes,	T.	P.,	Rodrigues,	M.	 J.,	Bellwood,	D.	R.,	Ceccarelli,	D.,	Hoegh‐
Guldberg,	O.,	McCook,	L.,	…	Willis,	B.	(2007).	Phase	shifts,	herbivory,	
and	the	resilience	of	coral	reefs	to	climate	change.	Current Biology,	17,	
360–365.	https://doi.org/10.1016/j.cub.2006.12.049

Jonker,	M.,	Johns,	K.,	&	Osborne,	K.	(2008).	Surveys of benthic reef com‐
munities using digital photography and counts of juvenile corals. Long‐
term monitoring of the Great Barrier Reef standard operational proce‐
dure number 10.	Townsville,	Australia:	Australian	Institute	of	Marine	
Science.

Knowlton,	N.	(2001).	The	future	of	coral	reefs.	Proceedings of the National 
Academy of Sciences of the United States of America,	98,	5419–5425.	
https://doi.org/10.1073/pnas.091092998

Lurgi,	 M.,	 Lopez,	 B.	 C.,	 &	 Montoya,	 J.	 M.	 (2012).	 Novel	 communities	
from	 climate	 change.	Philosophical Transactions of the Royal Society 
B‐Biological Sciences,	 367,	 2913–2922.	 https://doi.org/10.1098/
rstb.2012.0238

Macneil,	M.	A.,	Mellin,	C.,	Matthews,	S.,	Wolff,	N.	H.,	McClanahan,	T.	R.,	
Devlin,	M.	...	Graham,	N.	A.	(2019).	Water	quality	mediated	resilience	
on	the	Great	Barrier	Reef.	Nature Ecology and Evolution,	https://doi.
org/10.1038/s41559‐019‐0832‐3

Madin,	J.	S.,	Hoogenboom,	M.	O.,	&	Connolly,	S.	R.	 (2012).	 Integrating	
physiological	and	biomechanical	drivers	of	population	growth	over	
environmental	gradients	on	coral	 reefs.	The Journal of Experimental 
Biology,	215,	968.	https://doi.org/10.1242/jeb.061002

Maire,	 E.,	 Cinner,	 J.,	 Velez,	 L.,	 Huchery,	 C.,	 Mora,	 C.,	 Dagata,	 S.,	 …	
Mouillot,	 D.	 (2016).	 How	 accessible	 are	 coral	 reefs	 to	 people?	 A	
global	assessment	based	on	travel	time.	Ecology Letters,	19,	351–360.	
https://doi.org/10.1111/ele.12577

Matthews,	 S.,	Mellin,	C.,	Macneil,	M.	A.,	Heron,	 S.,	 Puotinen,	M.	 L.,	&	
Pratchett,	 M.	 (2019).	 Disturbance	 and	 environment	 data	 for	 the	
Great	Barrier	Reef:	A	comprehensive	characterisation	of	the	abiotic	
environment	and	disturbances	regimes;	1985–2016.	Ecology,	https://
doi.org/10.1002/ecy.2574

Medley,	K.	A.	(2010).	Niche	shifts	during	the	global	invasion	of	the	Asian	
tiger	mosquito,	Aedes	albopictus	Skuse	(Culicidae),	revealed	by	recipro-
cal	distribution	models.	Global Ecology and Biogeography,	19,	122–133.

Mellin,	C.	 (2015).	Abiotic	 surrogates	 in	 support	 of	marine	 biodiversity	
conservation.	 In	D.	B.	 Lindenmayer,	 P.	 Barton,	&	Pierson,	 J.	 (Eds.),	
Indicators and Surrogates of Biodiversity and Environmental Change 
(216	p).	Melbourne,	Australia:	CSIRO	Publishing.

Mellin,	C.,	Andrefouet,	S.,	Kulbicki,	M.,	Dalleau,	M.,	&	Vigliola,	L.	(2009).	
Remote	sensing	and	 fish‐habitat	 relationships	 in	coral	 reef	ecosys-
tems:	Review	and	pathways	 for	 systematic	multi‐scale	hierarchical	
research.	Marine Pollution Bulletin,	58,	11–19.

Mellin,	 C.,	 Bradshaw,	 C.	 J.	 A.,	 Meekan,	 M.	 G.,	 &	 Caley,	 M.	 J.	 (2010).	
Environmental	and	spatial	predictors	of	species	richness	and	abun-
dance	 in	 coral	 reef	 fishes.	 Global Ecology and Biogeography,	 19,	
212–222.

Mellin,	C.,	Huchery,	C.,	Caley,	M.	J.,	Meekan,	M.	G.,	&	Bradshaw,	C.	J.	A.	
(2010).	 Reef	 size	 and	 isolation	 determine	 the	 temporal	 stability	 of	
coral	reef	fish	populations.	Ecology,	91,	3138–3145.

Mellin,	C.,	Macneil,	M.	A.,	Cheal,	A.	J.,	Emslie,	M.	J.,	&	Caley,	M.	J.	(2016).	
Marine	 protected	 areas	 increase	 resilience	 among	 coral	 reef	 com-
munities.	 Ecology Letters,	 19,	 629–637.	 https://doi.org/10.1111/
ele.12598

Miller,	 I.,	 &	 Müller,	 R.	 (1999).	 Validity	 and	 reproducibility	 of	 benthic	
cover	 estimates	made	 during	 broadscale	 surveys	 of	 coral	 reefs	 by	
manta tow. Coral Reefs,	 18,	 353–356.	 https://doi.org/10.1007/
s003380050212

Mumby,	P.	 J.,	&	Anthony,	K.	R.	N.	 (2015).	Resilience	metrics	 to	 inform	
ecosystem	 management	 under	 global	 change	 with	 application	 to	
coral	reefs.	Methods in Ecology and Evolution,	6,	1088–1096.	https://
doi.org/10.1111/2041-210X.12380

Mumby,	P.	J.,	Chollett,	I.,	Bozec,	Y.‐M.,	&	Wolff,	N.	H.	(2014).	Ecological	
resilience,	 robustness	 and	 vulnerability:	 How	 do	 these	 concepts	
benefit	 ecosystem	 management?	 Current Opinion in Environmental 
Sustainability,	7,	22–27.

Mumby,	P.	J.,	Elliott,	I.	A.,	Eakin,	C.	M.,	Skirving,	W.,	Paris,	C.	B.,	Edwards,	
H.	J.,	…	Stevens,	J.	R.	(2011).	Reserve	design	for	uncertain	responses	
of	coral	reefs	to	climate	change.	Ecology Letters,	14,	132–140.	https://
doi.org/10.1111/j.1461‐0248.2010.01562.x

Norton,	J.	(2015).	An	introduction	to	sensitivity	assessment	of	simulation	
models.	Environmental Modelling & Software,	69,	166–174.	https://doi.
org/10.1016/j.envsoft.2015.03.020

https://doi.org/10.2307/2963459
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1016/j.marpolbul.2004.11.028
https://doi.org/10.1007/s00338-010-0628-z
https://doi.org/10.1007/s00338-010-0628-z
https://doi.org/10.1016/j.cub.2014.12.022
https://doi.org/10.1146/annurev.ecolsys.35.021103.105711
https://doi.org/10.1146/annurev.ecolsys.35.021103.105711
https://doi.org/10.1111/j.1365-2656.2010.01727.x
https://doi.org/10.1111/j.1365-2656.2010.01727.x
https://doi.org/10.1111/j.1523-1739.2008.01037.x
https://doi.org/10.1111/1365-2664.12320
https://doi.org/10.1126/science.1085046
https://doi.org/10.1126/science.1085046
https://doi.org/10.1016/j.tree.2005.03.022
https://doi.org/10.1016/j.tree.2005.03.022
https://doi.org/10.1016/j.tree.2010.07.011
https://doi.org/10.1016/j.tree.2010.07.011
https://doi.org/10.1016/j.cub.2006.12.049
https://doi.org/10.1073/pnas.091092998
https://doi.org/10.1098/rstb.2012.0238
https://doi.org/10.1098/rstb.2012.0238
https://doi.org/10.1038/s41559-019-0832-3
https://doi.org/10.1038/s41559-019-0832-3
https://doi.org/10.1242/jeb.061002
https://doi.org/10.1111/ele.12577
https://doi.org/10.1002/ecy.2574
https://doi.org/10.1002/ecy.2574
https://doi.org/10.1111/ele.12598
https://doi.org/10.1111/ele.12598
https://doi.org/10.1007/s003380050212
https://doi.org/10.1007/s003380050212
https://doi.org/10.1111/2041-210X.12380
https://doi.org/10.1111/2041-210X.12380
https://doi.org/10.1111/j.1461-0248.2010.01562.x
https://doi.org/10.1111/j.1461-0248.2010.01562.x
https://doi.org/10.1016/j.envsoft.2015.03.020
https://doi.org/10.1016/j.envsoft.2015.03.020


     |  2445MELLIN Et aL.

Ortiz,	 J.	 C.,	 Wolff,	 N.	 H.,	 Anthony,	 K.	 R.	 N.,	 Devlin,	 M.,	 Lewis,	 S.,	 &	
Mumby,	 P.	 J.	 (2018).	 Impaired	 recovery	 of	 the	 Great	 Barrier	 Reef	
under	cumulative	stress.	Science.	Advances,	4,	eaar6127.	https://doi.
org/10.1126/sciadv.aar6127

Osborne,	 K.,	 Dolman,	 A.	 M.,	 Burgess,	 S.	 C.,	 &	 Johns,	 K.	 A.	 (2011).	
Disturbance	and	 the	dynamics	of	 coral	 cover	on	 the	Great	Barrier	
Reef	(1995–2009).	PLoS ONE,	6,	1–10.	https://doi.org/10.1371/jour-
nal.pone.0017516

Osborne,	K.,	Thompson,	A.	A.,	Cheal,	A.	 J.,	Emslie,	M.	 J.,	 Johns,	K.	A.,	
Jonker,	M.	J.,	…	Sweatman,	H.	P.	A.	(2017).	Delayed	coral	recovery	in	
a warming ocean. Global Change Biology,	23,	3869–3881.	https://doi.
org/10.1111/gcb.13707

Pearson,	R.	G.,	Stanton,	J.	C.,	Shoemaker,	K.	T.,	Aiello‐Lammens,	M.	E.,	
Ersts,	P.	J.,	Horning,	N.	...	Akçakaya,	H.	R.	(2014).	Life	history	and	spa-
tial	traits	predict	extinction	risk	due	to	climate	change.	Nature Clim. 
Change,	4,	217–221.

Petus,	C.,	Da	Silva,	E.	T.,	Devlin,	M.,	Wenger,	A.	S.,	&	Alvarez‐Romero,	J.	
G.	(2014).	Using	MODIS	data	for	mapping	of	water	types	within	river	
plumes	in	the	Great	Barrier	Reef,	Australia:	Towards	the	production	
of	river	plume	risk	maps	for	reef	and	seagrass	ecosystems.	Journal of 
Environmental Management,	137,	163–177.

Pratchett,	M.,	Anderson,	K.,	Hoogenboom,	M.,	Widman,	E.,	Baird,	A.	H.,	
Pandolfi,	J.	M.	...	Lough,	J.	M.	(2015).	Spatial,	temporal	and	taxonomic	
variation	in	coral	growth	‐	implications	for	the	structure	and	function	
of	coral	reef	ecosystems.	Oceanography and Marine Biology: an Annual 
Review,	53,	215–295.

Pratchett,	M.	S.,	Caballes,	C.	F.,	Rivera‐Posada,	J.	A.,	&	Sweatman,	H.	P.	
(2014).	Limits	to	understanding	and	managing	outbreaks	of	crown‐
of‐thorns	 starfish	 (Acanthaster	 Spp.).	 Oceanography	 and	 Marine.	
Biology: an Annual Review,	52, 52,	133–199.

Puotinen,	M.,	Maynard,	J.	A.,	Beeden,	R.,	Radford,	B.,	&	Williams,	G.	J.	
(2016).	A	robust	operational	model	for	predicting	where	tropical	cy-
clone	waves	damage	coral	reefs.	Scientific Reports,	6,	26009.	https://
doi.org/10.1038/srep26009

Roland	Pitcher,	C.,	Lawton,	P.,	Ellis,	N.,	Smith,	S.	J.,	Incze,	L.	S.,	Wei,	C.‐L.,	
…	 Snelgrove,	 P.	 V.	 R.	 (2012).	 Exploring	 the	 role	 of	 environmental	
variables	 in	shaping	patterns	of	seabed	biodiversity	composition	 in	
regional‐scale	 ecosystems.	 Journal of Applied Ecology,	49,	 670–679.	
https://doi.org/10.1111/j.1365‐2664.2012.02148.x

Salvatier,	 J.,	Wiecki,	 T.	 V.,	 &	 Fonnesbeck,	 C.	 (2016).	 Probabilistic	 pro-
gramming	 in	Python	using	PyMC3.	PeerJ Computer Science,	2,	 e55.	
https://doi.org/10.7717/peerj‐cs.55

Sutcliffe,	P.,	Mellin,	C.,	Pitcher,	C.,	Possingham,	H.,	&	Caley,	M.	 (2014).	
Regional‐scale	patterns	and	predictors	of	species	richness	and	abun-
dance	 across	 twelve	 major	 tropical	 inter‐reef	 taxa.	 Ecography,	 37,	
162–171.	https://doi.org/10.1111/j.1600‐0587.2013.00102.x

Sweatman,	 H.,	 Cheal,	 A.,	 Coleman,	 G.,	 Emslie,	 M.,	 Johns,	 K.,	 Jonker,	
M.,	…	Osborne,	K.	 (2008).	Long‐term monitoring of the Great Barrier 
Reef. Status Report no8.	Townsville,	Australia:	Australian	Institute	of	
Marine	Science.

Thompson,	 A.,	 Costello,	 P.,	 Davidson,	 J.,	 Logan,	 M.,	 Gunn,	 K.,	 &	
Schaffelke,	 B.	 (2016).	 Marine monitoring program: Annual report 
for inshore coral reef monitoring.	 Townsville,	 Australian	 Institute	
of	Marine	Science:	Report	for	the	Great	Barrier	Reef	Marine	Park	
Authority.

Thurber,	R.	L.	V.,	Burkepile,	D.	E.,	Fuchs,	C.,	Shantz,	A.	A.,	Mcminds,	R.,	&	
Zaneveld,	J.	R.	 (2014).	Chronic	nutrient	enrichment	increases	prev-
alence	 and	 severity	 of	 coral	 disease	 and	 bleaching.	Global Change 
Biology,	20,	544–554.	https://doi.org/10.1111/gcb.12450

Uthicke,	 S.,	 Logan,	M.,	 Liddy,	M.,	 Francis,	D.,	Hardy,	N.,	&	 Lamare,	M.	
(2015).	Climate	change	as	an	unexpected	co‐factor	promoting	coral	
eating	seastar	(Acanthaster	planci)	outbreaks.	Scientific Reports,	5.

Van	Hooidonk,	R.,	Maynard,	J.	A.,	&	Planes,	S.	(2013).	Temporary	refugia	
for	coral	 reefs	 in	a	warming	world.	Nature Climate Change,	3,	508–
511.	https://doi.org/10.1038/nclimate1829

Van	Hooidonk,	 R.,	Maynard,	 J.,	 Tamelander,	 J.,	 Gove,	 J.,	 Ahmadia,	 G.,	
Raymundo,	 L.,	…	Planes,	 S.	 (2016).	 Local‐scale	projections	of	 coral	
reef	 futures	 and	 implications	 of	 the	 Paris	 Agreement.	 Scientific 
Reports,	6.

van	Oppen,	M.	J.	H.,	Gates,	R.	D.,	Blackall,	L.	L.,	Cantin,	N.,	Chakravarti,	
L.	J.,	Chan,	W.	Y.,	…	Putnam,	H.	M.	(2017).	Shifting	paradigms	in	res-
toration	of	the	world's	coral	reefs.	Global Change Biology,	23,	3437–
3448.	https://doi.org/10.1111/gcb.13647

Vercelloni,	 J.,	 Caley,	 M.	 J.,	 &	 Mengersen,	 K.	 (2017).	 Crown‐of‐thorns	
starfish	undermine	the	resilience	of	coral	populations	on	the	Great	
Barrier	Reef.	Global Ecology and Biogeography,	26,	846–853.	https://
doi.org/10.1111/geb.12590

Walsh,	K.	J.	E.,	McBride,	J.	L.,	Klotzbach,	P.	J.,	Balachandran,	S.,	Camargo,	
S.	 J.,	Holland,	G.,	…	 Sugi,	M.	 (2016).	 Tropical	 cyclones	 and	 climate	
change.	 Wiley Interdisciplinary Reviews: Climate Change,	 7,	 65–89.	
https://doi.org/10.1002/wcc.371

Wenger,	 A.	 S.,	 Williamson,	 D.	 H.,	 Da	 Silva,	 E.	 T.,	 Ceccarelli,	 D.	 M.,	
Browne,	N.	K.,	Petus,	C.,	&	Devlin,	M.	J.	(2016).	Effects	of	reduced	
water	quality	on	coral	reefs	in	and	out	of	no‐take	marine	reserves.	
Conservation Biology,	 30,	 142–153.	 https://doi.org/10.1111/
cobi.12576

Wolff,	 N.	 H.,	 Mumby,	 P.	 J.,	 Devlin,	 M.,	 &	 Anthony,	 K.	 R.	 N.	 (2018).	
Vulnerability	of	 the	Great	Barrier	Reef	 to	climate	change	and	 local	
pressures.	 Global Change Biology,	 24,	 1978–1991.	 https://doi.
org/10.1111/gcb.14043

Yates,	 K.	 L.,	 Bouchet,	 P.	 J.,	 Caley,	 M.	 J.,	 Mengersen,	 K.,	 Randin,	 C.	
F.,	 Parnell,	 S.,	 …	 Sequeira,	 A.	 M.	 M.	 (2018).	 Outstanding	 chal-
lenges	 in	 the	 transferability	 of	 ecological	 models.	 Trends in 
Ecology & Evolution,	 33,	 790–802.	 https://doi.org/10.1016/j.
tree.2018.08.001

SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	the	article.	

How to cite this article:	Mellin	C,	Matthews	S,	Anthony	KRN,	
et	al.	Spatial	resilience	of	the	Great	Barrier	Reef	under	
cumulative	disturbance	impacts.	Glob Change Biol. 
2019;25:2431–2445. https://doi.org/10.1111/gcb.14625

https://doi.org/10.1126/sciadv.aar6127
https://doi.org/10.1126/sciadv.aar6127
https://doi.org/10.1371/journal.pone.0017516
https://doi.org/10.1371/journal.pone.0017516
https://doi.org/10.1111/gcb.13707
https://doi.org/10.1111/gcb.13707
https://doi.org/10.1038/srep26009
https://doi.org/10.1038/srep26009
https://doi.org/10.1111/j.1365-2664.2012.02148.x
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1111/j.1600-0587.2013.00102.x
https://doi.org/10.1111/gcb.12450
https://doi.org/10.1038/nclimate1829
https://doi.org/10.1111/gcb.13647
https://doi.org/10.1111/geb.12590
https://doi.org/10.1111/geb.12590
https://doi.org/10.1002/wcc.371
https://doi.org/10.1111/cobi.12576
https://doi.org/10.1111/cobi.12576
https://doi.org/10.1111/gcb.14043
https://doi.org/10.1111/gcb.14043
https://doi.org/10.1016/j.tree.2018.08.001
https://doi.org/10.1016/j.tree.2018.08.001
https://doi.org/10.1111/gcb.14625

