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Abstract
Aim: The geographic range and ecological niche of species are widely used concepts 
in ecology, evolution and conservation and many modelling approaches have been 
developed to quantify each. Niche and distribution modelling methods require a lit‐
any of design choices; differences among subdisciplines have created communication 
barriers that increase isolation of scientific advances. As a result, understanding and 
reproducing the work of others is difficult, if not impossible. It is often challenging to 
evaluate whether a model has been built appropriately for its intended application or 
subsequent reuse. Here, we propose a standardized model metadata framework that 
enables researchers to understand and evaluate modelling decisions while making 
models fully citable and reproducible. Such reproducibility is critical for both scien‐
tific and policy reports, while international standardization enables better compari‐
son between different scenarios and research groups.
Innovation: Range modelling metadata (RMMS) address three challenges: they  
(a) are designed for convenience to encourage use, (b) accommodate a wide variety 
of applications, and (c) are extensible to allow the research community to steer them 
as needed. RMMS are based on a metadata dictionary that specifies a hierarchical 
structure to catalogue different aspects of the range modelling process. The diction‐
ary balances a constrained, minimalist vocabulary to improve standardization with 
flexibility for users to modify and extend. To facilitate use, we have developed an R 
package, rangeModelMetaData, to build templates, automatically fill values from 
common modelling objects, check for inconsistencies with standards, and suggest 
values.
Main conclusions: Range Modelling Metadata tools foster cross‐disciplinary ad‐
vances in biogeography, conservation and allied disciplines by improving evaluation, 
model sharing, model searching, comparisons and reproducibility among studies. Our 
initially proposed standards here are designed to be modified and extended to evolve 
with research trends and needs.
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1  | INTRODUC TION

Species' geographic ranges and environmental niches are fundamen‐
tal units of biogeography and among the most widely used summaries 
in biology (Guisan & Thuiller, 2005; Jetz, McPherson, & Guralnick, 
2012). Correlative range models (i.e., species distribution models, en‐
vironmental niche models, resource selection models) describe how 
occurrence or abundance varies in environmental and/or geographic 
space and are applied to biodiversity assessments and forecasts, 
conservation planning, niche evolution, invasion biology and many 
other fields (Franklin, 2010; Guisan, Thuiller, & Zimmermann, 2017; 
Peterson, Soberón, Pearson, & Anderson, 2011). Many modelling ap‐
proaches have been developed to quantitatively characterize ranges 
and environmental niches with different goals in each field, and user‐
friendly software has enabled many thousands of studies. However, 
differences in approaches and methodologies – some based on dif‐
ferent study foci and others on field‐specific jargon – have created 
barriers to communication and led to increasing isolation of scientific 
advances. For example, wildlife ecology has a literature on resource 
selection modelling that is rather distinct from environmental niche 
modelling in plant ecology, in spite of very similar data, concepts and 
objectives (Warton & Aarts, 2013). Recent calls have been made to 
standardize range model metadata to enable reuse of models both 
generally (Borba & Correa, 2015; Costa et al., 2018) and with the 
specific goal of estimating biodiversity patterns (Araújo et al., 2019), 
but detailed metadata standards remain lacking. Here, we propose 
range modelling metadata standards (RMMS) that aim to improve 
communication, reproducibility and reusability of published models.

1.1 | Why do we need RMMS?

Range modelling is a highly varied field with little consensus and calls 
for greater standardization and transparency (Joppa et al., 2013). 
Without standardized metadata that describe range models, it can 
be difficult to evaluate if a model has been built appropriately for 
its intended use or if it is suitable for reuse in subsequent studies. A 
number of studies have outlined clear connections between model‐
ling decisions and resulting inferences (Guillera‐Arroita et al., 2015; 
Guisan et al., 2017; Merow et al., 2014), and advances in biological 
metadata have already standardized and connected primary biodi‐
versity data (Guralnick, Walls, & Jetz, 2017; Wieczorek et al., 2012). 
By specifying standards, methodologies will become more immedi‐
ately transparent for peers as researchers adopt a standard meta‐
data vocabulary. Easy‐to‐use metadata will considerably simplify the 
reviewing process by automating the reporting of decisions, which 
can take considerable time for reviewers and help them better un‐
derstand the methodological context of a study’s insights. Metadata 
can also help relieve manuscripts from laborious methodological de‐
scriptions, increasing valuable space to focus on results.

Range models constitute valuable information products that 
have been recognized as key for developing an understanding of 
the status and trends in species distributions. They are vital to large 
biodiversity modelling projects such as Botanical Information and 

Ecology Network (BIEN; biendata.org) and Map of Life (MOL, mol.
org) and synthetic conservation efforts such as defining species dis‐
tribution essential biodiversity variables (Jetz et al., 2019; Pereira et 
al., 2013). The large taxonomic scale of the range models in these 
efforts leverages standardized approaches to improve model reli‐
ability, but such mass production places an even stronger onus to 
report how models were produced. The potential inclusion of range 
models produced by the research community in these databases 
necessitates metadata that enable comparisons and integration. 
Making range model products easily citable via searchable meta‐
data increases accessibility to other subdisciplines of biology and 
environmental science and provides credit for the researchers who 
developed the models. Standardization also helps connect related 
subdisciplines that have evolved their own language or best prac‐
tices but may benefit from cross‐pollination. Over time, adherence 
to metadata standards would support a catalogue where research‐
ers could search for modelling studies based on features of interest 
(e.g., data sources, model method and settings, reported evaluation 
metrics) that would otherwise likely be inaccessible from metadata 
on a published paper. Meta‐analyses leveraging this resource might 
have applications ranging from community ecology to biogeography 
to methodological development.

Taken together, advancing standardized range model metadata 
will enable more reproducible, standardized, searchable and citable 
science. As these standards are meant to grow with the field, they 
will benefit from engagement and improvements from the user com‐
munity. After an initial phase of testing and validation, we hope that 
RMMS can become a completely community‐driven enterprise with‐
out need for management by a given entity or our research team. 
These gains in scientific precision and communication are well posi‐
tioned to outweigh the effort required to report standardized meta‐
data. Furthermore, our efforts will bring range modelling in line with 
other successful efforts in reproducible research systems (Mesirov, 
2010) in other domains in the life sciences (Goecks, Nekrutenko, 
Taylor, & Team, 2010).

To promote adoption of our proposed metadata standard, we 
have designed convenient and flexible tools for its implementation, 
including a user‐friendly interface to enable researchers to provide 
such descriptions with minimal effort and errors. We provide an R 
package, rangeModelMetadata, that automatically completes 
many required fields and can be extended to automatically fill them 
from common modelling objects in R.

2  | rangeModelMetadata  (rmm )  FORMAT

The rangeModelMetadata (rmm) format that we propose is de‐
signed to be human readable to accommodate more flexible speci‐
fication of inputs, as well as ensure generality beyond specific 
software or present‐day use cases. After sharing a minimum set of 
critical metadata, provision of additional information is optional. This 
flexibility gives researchers three advantages: (a) it is adaptable to 
new technologies (e.g., algorithms, applications), (b) it will ensure 
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relevance to a broad user base, and (c) it permits customization as 
needed. The standards are comprehensive enough to provide guid‐
ance and clarity, but not onerous.

The basic unit of RMMS is a single study with a single model per taxon 
to reduce the burden on researchers, in contrast to building a metadata 
object for each species or model (although this is a custom option). This 
follows standards from the biosciences standards community to focus 
on the study or experiment (Taylor et al., 2008). The structure of rmm 
objects correspond to eight top‐level fields: authorship, studyObjective, 
data, dataPrep (data preparation), modelFit, prediction, evaluation and 
code (Table 1). Within each of these top‐level fields are subfields, which 
may contain further granular reporting. The named values assigned to 
unique combinations of fields (e.g., data:environment:extent) are termed 
“entities” (see a subset of the metadata dictionary in Table 1 and a com‐
plete version in Supporting Information Supplement S1). Entities have 
values that are vectors of characters or numbers.

Our metadata dictionary includes the hierarchical structure 
of the metadata entities, provides standardized and suggested in‐
puts, and defines all the content needed to produce an rmm object 
(Table 1; Supporting Information S1). Each row defines a single en-
tity in a rmm object, classified by columns specifying the field hier‐
archy described above. Some entities with commonly used settings 
have a constrained vocabulary to standardize values (noted in the 
constrainedValues column of the dictionary), while others may take 
on any value. To balance flexibility with standardization, many enti‐
ties are partially constrained such that a standardized vocabulary is 
available for certain common values while user‐defined values are 
also accepted. To add further flexibility, many fields have a :Notes 
entity (e.g., data:notes, dataPrep:notes, modelFit:notes) to allow 
authors to mention any additional high‐level critical information. 
Formatted examples as well as descriptions of guidelines for user‐
defined values are also included in the dictionary. All values can be 
entered programmatically with our R package rangeModelMeta-
data or manually into a csv file (templates provided in Supporting 
Information S5 and S6).

3  | STANDARDS

The standards below provide background on the predefined enti-
ties and guidance on how to extend them to include user‐specified 
options.

3.1 | A case study

As an example for constructing an rmm object in the sections that 
follow, we built a simplified range model for Bradypus variegatus, the 
brown‐throated sloth, in South America. Specifically, we use Maxent 
(Phillips, Anderson, & Schapire, 2006) and dismo (Hijmans, Phillips, 
Leathwick, & Elith, 2017) applied to occurrence data from the Global 
Biodiversity Information Facility (GBIF; GBIF.org, 2019) and cli‐
mate data from Worldclim (Fick & Hijmans, 2017). See Supporting 
Information S4 for complete workflow. Various modelling decisions 

are described below in the context of constructing a metadata ob‐
ject. Notably, we begin with a study involving only a single species 
and describe how to extend this below in “Multispecies studies”. The 
resulting rmm object is shown in Figure 1.

3.2 | Authorship

The authorship: field provides information on citation, contact infor‐
mation, related studies using the models and licensing/use restrictions 
associated with the models. Each rmm object is given a unique name in 
the format Author_Year_Taxa_Model_fw. We suggest the convention that 
Author be limited to surnames and that multiple authors be included 
via camel case (e.g., MerowMaitnerOwensKassEnquistJetzGuralnick). Year 
should include a four‐digit year. Taxa can be specified at the authors’ 
discretion and include common or scientific names at any appropriate 
taxonomic level (e.g., Sloth, Bradypus, BradypusVariegatus). Model should 
describe the algorithm used [multiple models can be specified when 
using ensemble models (Araújo & New, 2007; Thuiller, Lafourcade, 
Engler, & Araújo, 2009)] – standardized model names can be viewed in 
the modelFit:algorithm field of the metadata dictionary. Finally, two 
random alphanumeric characters should be appended to the rmm name to 
prevent cases where ambiguity might arise. A complete example could take 
the form (Figure 1): MerowMaitnerOwensKassEnquistJetzGuralnick_2018_
BradypusVariegatus_Maxent_b3.

3.3 | Study objective

Entities under studyObjective, including :purpose, 

:rangeType, :invasion, :transfer, and so forth, provide authors 
with a text field to briefly describe the intended application of their 
study to set the context for modelling decisions specified in other 
fields. In our example study, the model it was fit in the northern part 
of South America, and transferred to the southern part in order to 
determine whether there is any potentially suitable habitat in a re‐
gion where no records exist:

studyObjective:purpose='transfer'

studyObjective:rangeType='potential'

studyObjective:transfer='detect unoccupied 

suitable habitat'

3.4 | Data

Information within the data field pertains to occur‐
rence records (data:occurrence) and environ‐
mental data (data:environment) used to train or 
transfer models. The :occurrence field may contain taxon names 
(:occurrence:taxaVector), the type of occurrence data used (:oc
currence:occurrenceDataType; e.g., presence‐only, pres‐
ence–absence, abundance), the temporal extent of the occurrence 
records (:occurrence:yearMin, :occurrence:yearMax), 
occurrence data sources (:occurrence:sources) and in‐
formation on sample sizes. The data:environment 
field may contain information on the environmental 
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variables used (:environment:variableName), the temporal 
extent of the environmental layers (:environment:yearMin, 
:environment:yearMax) and the source of the environmental 
data (:environment:sources). For example, occurrence infor‐
mation for our example includes (additional entities in Supporting 
Information S4):

data:occurrence:presenceSampleSize=290

data:occurrence:backgroundSampleSize=5084

data:occurrence:yearMin=1970

data:occurrence:yearMax=2000

3.5 | Data preparation

Information within the dataPrep field details any changes, cleaning 
or validation done to the data. Errors or inherent biases (i.e., spatial) in 
publicly available occurrence data are common (Serra‐Diaz, Enquist, 
Maitner, Merow, & Svenning, 2018) and may have serious conse‐
quences for modelling (Merow, Allen, Aiello‐Lammens, & Silander, 
2016; Phillips et al., 2009). Common reasons for excluding coordinates 
include: coordinates not falling in the specified political division, co‐
ordinates reflecting non‐native or cultivated occurrences, coordinates 
representing centroids of a political division, duplicated coordinates 
or biased spatial clustering (Aiello‐Lammens, Boria, Radosavljevic, 
Vilela, & Anderson, 2015; Maitner et al., 2017; Robertson, Visser, & 
Hui, 2016; Serra‐Diaz et al., 2018). Valid points may also need to be 
removed if they constitute environmental outliers that may strongly 
bias a model (Soley‐Guardia, Radosavljevic, Rivera, & Anderson, 2014).

Within the dataPrep field there are four subfields: :errors, 
:biological, :environmental and :geographic. The :errors 
field contains information regarding any removal of duplicate (:er-
rors:duplicate) or suspicious points (:errors:question-
ablePointRemoval). The :geographic field contains information 
related to geographic name standardization (:geographic:geo-
graphicStandardization) and occurrence point validations 
(geographic:geographicOutlierRemoval, :geograph-

ic:centroidRemoval, :geographic:pointInPolygon) on 
the basis of geopolitical regions as well as geographic outlier removal 
(:geographic:geographicOutlierRemoval). The :biological 
field contains information related to taxonomic name standardiza‐
tion (:biological:taxonomicHarmonization) as well as the 
identification of records that are likely to represent introduced or cul‐
tivated species (:biological:nonNativeRemoval, :biologi-
cal:cultivatedRemoval). The :environmental field contains 
data related to changes made to the environmental layers used, as 
well as occurrence point exclusion on the basis of environmental 
data (:environmental:environmentalOutlierRemoval).

In our simplified example, we removed records duplicated within 
cells (on the 10‐km grid of the environmental layers) and thinned 
the occurrence data to reduce the effects of spatial autocorrelation:

dataPrep:biological:duplicateRemoval:rule='one 

observation per cell'

dataPrep:geographic:spatialThin:rule="20km used 

as minimum distance between points"

fie
ld

1
fie

ld
2

fie
ld

3
en

tit
y

fa
m

ily
ex

am
pl

es

pr
ed

ic
tio

n
tr
an
sf
er

en
vi

ro
nm

en
t1

th
re
sh
ol
dR
ul
e

tr
an
sf
er
En
v1

5%
 q
ua
nt
ile
 o
f t
ra
in
in
g 
pr
es
en
ce
s

pr
ed

ic
tio

n
tr
an
sf
er

en
vi

ro
nm

en
t1

ex
tr
ap
ol
at
io
n

ba
se

cl
am
pi
ng
; e
xt
ra
po
la
te
 fu
nc
tio
n

ev
al

ua
tio

n
tr

ai
ni

ng
D

at
a‐

St
at
s

AU
C

bi
na
ry
C
la
ss
ifi
ca
tio
n

0.
92

3

ev
al

ua
tio

n
te
st
in
gD
at
aS
ta
ts

AU
C

bi
na
ry
C
la
ss
ifi
ca
tio
n

0.
92

3

ev
al

ua
tio

n
ev

al
ua

tio
nD

at
a‐

St
at
s

AU
C

bi
na
ry
C
la
ss
ifi
ca
tio
n

0.
92

3

co
de

so
ft
w
ar
e

pl
at
fo
rm

ba
se

@
M
an
ua
l{t
itl
e 
= 
{R
: A
 L
an
gu
ag
e 
an
d 
En
vi
ro
nm
en
t f
or
 S
ta
tis
tic
al
 

C
om
pu
tin
g}
,a
ut
ho
r =
 {{
R 
C
or
e 
Te
am
}},
or
ga
ni
za
tio
n 
= 
{R
 F
ou
nd
at
io
n 
fo
r 

St
at
is
tic
al
 C
om
pu
tin
g}
,a
dd
re
ss
 =
 {V
ie
nn
a,
 A
us
tr
ia
},y
ea
r =
 {2
01
7}
,u
rl 
= 
{h
tt
ps
​://

w
w
w
.R
-p
ro
je
​ct
.o
rg
/}
,}

N
ot

e.
: A
U
C 
= 
ar
ea
 u
nd
er
 th
e 
cu
rv
e.
 T
he
 fu
ll 
di
ct
io
na
ry
 is
 a
va
ila
bl
e 
in
 S
up
po
rt
in
g 
In
fo
rm
at
io
n 
S1
. F

ie
ld

s s
pe
ci
fy
 th
e 
hi
er
ar
ch
y 
of
 th
e 
m
et
ad
at
a 
ob
je
ct
 w
hi
le
 e

nt
iti

es
 d
ef
in
e 
th
e 
qu
an
tit
y 
of
 in
te
re
st
. E

nt
iti

es
 

ar
e 
as
si
gn
ed
 v

al
ue

s a
s 
sh
ow
n 
in
 th
e 
ex
am
pl
es
 (e
xa
m
pl
e 
va
lu
es
 a
re
 s
ep
ar
at
ed
 b
y 
se
m
ic
ol
on
s)
. F

am
ili

es
 s
pe
ci
fy
 c
ol
le
ct
io
ns
 o
f r
el
at
ed
 e
nt
iti
es
 u
se
d 
fo
r g
en
er
at
in
g 
te
m
pl
at
es
 a
nd
 c
he
ck
in
g 
fo
r c
on
di
tio
na
lly
 

ob
lig
at
e 
en
tit
ie
s.
 T
he
 e
xa
m
pl
es
 c
ol
um
n 
sh
ow
s 
a 
va
rie
ty
 o
f a
pp
ro
pr
ia
te
 v
al
ue
s 
th
at
 m
ig
ht
 b
e 
re
le
va
nt
 in
 d
iff
er
en
t s
tu
di
es
.

TA
B

LE
 1

 
(C
on
tin
ue
d)

https://www.R-project.org/
https://www.R-project.org/


6  |     MEROW et al.

3.6 | Model fitting

The modelfit field has the largest variety of entities owing to the profu‐

sion of modelling algorithms and decisions applied in their use. A subfield 

specifies the algorithm name and can be user‐defined to accommodate 
newly developed algorithms. In cases where ambiguity may exist about 
algorithm definitions, for example, determining whether one should 
define modelFit:algorithm = ‘Poisson point process’ 

F I G U R E  1  An example rmm object 
with values, based on the example 
from the main text. Top level fields are 
indicated with bold. Note that some 
output has been omitted from the figure 
for space, indicated by truncated
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or ‘glm’ because the latter can be fit with GLM (generalized linear 
model) software, we leave this to the authors’ discretion and provide 
the modelFit:algorithmNotes entity if needed. It is worth remem‐
bering that the intention of rmm objects is to be human readable and 
therefore subject to context and interpretation. …Notes entities, such as 
modelFit:notes, allow users to describe this context to the desired 
level of detail. The modelFit field contains subfields for specifying data 
partitioning methods (e.g., k‐fold cross‐validation), specification of how 
covariates are treated (e.g., scaled, z‐scores) and algorithm‐specific set‐
tings. For Maxent modelling, we have specified comprehensive examples, 
while providing only minimal recommendations for other algorithms. We 
leave extensions to other algorithms for their expert users to recom‐
mend as part of our efforts to engage the research community in further 
development. For example, users can also specify their own custom enti-
ties to accommodate less common metadata. This flexibility ensures that 
our metadata framework is not so prescriptive that it excludes less‐com‐
mon modelling tools or those yet to be developed.

In our simplified example, we used Maxent via the ENMeval R 
package (Muscarella et al., 2014) to compare different combinations 
of feature classes and different regularization parameters. Models 
were compared based on area under the curve (AUC) evaluated on 
test data, obtained from spatial block cross‐validation. As rmm ob‐
jects are designed to handle a single model per species, we report 
the optimal model settings only and include information in the rele‐
vant …Notes entities on the model selection strategy. Had we used 
ensemble averaging over these candidate models, we would have 
reported the attributes of the ensemble and including attributes of 
the component models in the …Notes fields.

rmm$modelFit$partition$partitionRule='spatial 

block cross validation’

rmm$modelFit$maxent$featureSet='LQ'

rmm$modelFit$maxent$regularizationMultiplier-

Set=1

rmm$modelFit$maxent$samplingBiasRule='ignored'

rmm$modelFit$maxent$notes='ENMeval was used to 

compare models with L (linear) and LQ (linear 

and quadtratic) features, each using regular-

ization multipliers of 1,2,3. The best model 

was selected based on test AUC evaluated 

under spatial block cross-validation.'

3.7 | Prediction

The prediction field describes common attributes of a variety of 
possible output types, including the prediction in geographic space (op‐
tionally a single prediction or the mean of multiple models), predictions 
transferred in space or time, and prediction uncertainty. For each of 
these prediction types, users specify the units (e.g., binary presence/ab‐
sence, abundance, absolute probability of occurrence), the maximum and 
minimum values, and notes associated with interpretation. For each pre‐
diction type (except uncertainty), users can optionally specify a threshold 
value or rule to convert continuous predictions to binary. Finally, text can 
be provided to describe rules for extrapolation, building ensembles of 

models and other optional attributes of model reporting. In our example 
study, we make predictions using Maxent’s “raw” (or relative occurrence 
rate; Merow, Smith, & Silander, 2013) values. Note the use of functions 
(raster::cellStats(); Hijmans, 2019) to fill in entities, where p is the predic‐
tion raster. Further, analogous entities related to transferring predictions 
to a new region, are shown in Supporting Information S4 for brevity.

rmm$prediction$continuous$units="relative oc-

currence rate"

rmm$prediction$continuous$minVal=raster::cell-

Stats(p,min)

rmm$prediction$continuous$maxVal=raster::cell-

Stats(p,max)

rmm$prediction$extrapolation="clamping"

3.8 | Evaluation

The evaluation: field stores a range of statistics used to quantify 
model training, testing or overall evaluation. This follows recommen‐
dations common in machine learning (Hastie, Tibshirani, & Friedman, 
2009) for splitting data into three subsets before model building: train‐
ing, testing and evaluation. Training statistics are evaluated on the data 
used to fit, or train, the model. Testing statistics are calculated on data 
withheld from training and describe evaluation on test data to assess 
generality. Such testing statistics can be used for model selection or for 
weighting in model ensembles, and can help determine which model 
settings are optimal of those tested (answering the question “of the 
models run, which is ‘best’?”). The evaluation data are independent of 
both training and testing data and provide a means to assess how well 
the selected/average model performs with out‐of‐sample prediction 
(answering the question “how good is the best model?”). While we rec‐
ommend data partitioning as the most robust option, we realize that 
many studies do not have sufficient data – it is thus common to use 
testing data for evaluation. In this case, researchers should report their 
statistics as testing, and provide an evaluation:notes that these 
statistics were also used for evaluation. For training, testing and evalua‐
tion a common set of names of standardized statistics are provided (e.g., 
AUC, TSS (true skill statistic)); users can also include their own statistics 
and cite them in evaluation:references. Notably, we have de‐
signed the rmm object structure to accommodate a single model per 
taxon; this model can either be the output of a single algorithm, or the 
summary (i.e., mean or median) of a single algorithm fit to subsets of the 
data (e.g., k‐fold cross‐validation), or multiple models [e.g., an ensem‐
ble, as from the biomod2 R package (Thuiller, Georges, Engler, & Breiner, 
2019)]. In studies where multiple models are relevant to report for each 
species, a separate rmm object should be used for each model type.

In our example study, only AUC evaluated on test data was used 
to select optimal model settings. In general, it is better practice to 
examine multiple metrics. Note that we fill in values directly from 
those stored in an ENMeval object called e.

rm m$evaluation$trainingDataStats$AUC=e@

results[i,]$trainAUC

rmm$evaluation$testingDataStats$AUC=e@re-

sults[i,]$avg.test.AUC
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3.9 | Code

The code: field stores obligate information about software refer‐
ences and versions as well as optional links to scripts hosted online. 
As rmm objects are designed to be human readable, information that 
enables true reproducibility is stored in these scripts, for example, 
hosted by journals in supplemental information or on Github. We 
recommend these files be free of constraints beyond those used by 
journals to avoid a prohibitive amount of work by authors, which dis‐
courages sharing their code. As biologists continue to strive toward 
greater reproducibility, we hope standards do emerge, but this is be‐
yond the current scope of our metadata standards. We do however 
offer entities for different types of code, which currently include 
code:demoCodeLink (for brief, reduced functionality examples), 
code:vignetteCodeLink (for commented, tutorial‐styled code) 
and code:fullCodeLink (for a full reproduction of the analysis). 
These distinctions aim to help users better understand what to expect 
from the code and for authors to target different audiences needing 
different levels of detail. We recommend that code:codeNotes in‐
clude information on which platforms the code has been tested. In our 
example study, we cite the relevant R packages with:

rmm=rmmAutofillPackageCitation(rmm=rmm,

packages=c('rgbif','sp','raster','dismo','ENMe-

val'))

3.10 | Vector‐valued entities

Some entities are naturally defined as vectors so we adopt JSON format‐
ting (JavaScript Object Notation; www.json.org) to help clearly define 
named vector‐valued entities. For example, when specifying the spatial 
extent of the modelling domain, it is common to use the minimum and 
maximum coordinates (i.e., bounding box). To specify these limits unam‐
biguously with JSON, we use (from the example study): [{"xmin":‐
125,"xmax":‐32,"ymin":‐56,"ymax":40}]. (In JSON syntax,  
the “string” describing the name of a quantity is in double quotations 
and its “value” is given following a colon.) Vector‐valued entities are 
apparent in a number of cases: data:environment:minVal and 
:maxVal indicate the extremes of each environmental layer in the 
analysis (e.g., [{"bio1":289,"bio12":7682,"bio16":2458}]). 
Even if users are not familiar with JSON, the jsonlite package 
(Ooms, 2014) provides convenient tools to convert an R data.frame 
to JSON text (see vignettes). A number of vector‐valued entities already 
have names defined, but we expect that use cases will arise that require 
users to extend JSON formatting to other entities.

3.11 | Multispecies studies

Thus far we have focused on studies that have a single species; 
however, RMMS are readily extended to include multiple species. 
As many model properties can (and arguably should) be specific to 
a particular species, we have also designed the metadata structure 
to accommodate multispecies studies through the use of a taxon-
Specific column in the metadata dictionary (Table 1). This column 

defines whether a given entity applies to all taxa in the study (e.g., 
data:occurrence:dataType), applies to each species separately 
by specifying a vector with a value for each species (e.g., data:o
ccurrence:presenceSampleSize) or is a single value or vec‐
tor with a value for each species (e.g., data:occurrence:backg
roundSampleSizeSet). Hence the taxonSpecific column indicates 
whether or not a vector‐valued entity describes different taxa (e.g., 
data:environment:sources may contain a vector of references 
to different sources and a value of taxonSpecific = no indicates that 
these sources apply generally and not to different taxa). Note that 
any entity with taxon‐specific values can optionally be specified 
as [{“species1”:value1, “species2”:value2}], but users 
can also choose the simpler multispecies vector formatting with 
value1,value2, etc.

In multispecies studies, entities can take single or multiple val‐
ues and are associated with a vector of taxon names. Thus an en-
tity may have a single value if it is constant for all study taxa, or a 
vector of values associated with their respective taxa. This frame‐
work can also be thought of as a table with columns for taxa and 
rows for entities. For example, a study containing two species would 
specify their names (using R syntax for convenience) as data:oc-
currence:taxon=c('taxon1','taxon2'), and all subsequent 
entities can be provided with values as vectors of length 2 when 
the value differs among species or length 1 when the value is the 
same among species [e.g., data:occurrence:presenceSample-
Size=c(24137, 4520) and data:occurrence:yearMax=2018, 
respectively]. Models of each taxon in a study are likely to have dif‐
ferent properties, such as presence sample size, but may also have 
different model settings. Indeed, model evaluation and ecological 
reality of the response may be greatly improved by tuning param‐
eters to individual datasets (Merow et al., 2014, 2013; Muscarella 
et al., 2014).

For simplicity in multispecies studies, users can specify unique 
values of an entity for each species as just described or a charac‐
ter string describing a methodological rule for choosing the value. 
Most model settings have …Set and …Rule entities that users can 
choose from. For example, when thresholding continuous predic‐
tions to make a binary map, modelFit:prediction:threshold-
Set=c(.003,.002) could be used to indicate the specific threshold 
values or alternatively modelFit:prediction:threshol-
dRule=‘5% training presence’ could be used to identify the 
rule to determine the thresholds applied to multiple taxa. In cases 
where multiple modelling algorithms are relevant, we recommend 
making a separate rmm object for each algorithm – this is designed to 
keep rmm objects easily human readable and avoid confusion about 
entities that might have similar inputs but different names/interpre‐
tations with different modelling approaches.

3.12 | Common use cases

To help guide users through determining which entities to include, 
we define a suite of common families of entities in the metadata 
dictionary that may be relevant for a given study. As a baseline, 

http://www.json.org
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the base family defines the minimum set of entities used to define 
a typical model. Certain entities are obligate, such as those relat‐
ing to data sources, while others are recommended as typically 
sufficient to meet research community standards, and yet others 
are entirely optional. Researchers can modularly combine the base 
family with other families to represent different workflows that 
most closely match their study type as a template (examples in 
Table 1). Entities can then be added or removed as seen fit (except 
for obligate entities, which can be left empty but not deleted so 
that the decision to omit them is readily apparent). Some entities 
are conditionally obligate: for example, if any entities in the op‐
tional field prediction:transfer:environment1 (defining 
the environmental conditions, perhaps for some data set on future 
conditions for model transfer) are non‐NULL, related entities must 
have non‐NULL values (:yearMin, :yearMax, :resolution, 
:extent, :sources). Hence someone modelling the future ex‐
tinction risk of a species with Maxent could combine the families 
obligate, dataPrep, maxent (entities associated with the Maxent 
modelling algorithm), and transferEnv1 (entities associated with en‐
vironmental conditions where a model is projected) as a starting 
point for their metadata template.

4  | rangeModelMetadata  R PACK AGE

Although our RMMS framework is software agnostic, we simplify 
the process of building a metadata list by providing an R package, 
rangeModelMetadata, which provides a number of user‐friendly 
tools that define, print, autofill, query and check rmm S3 objects. 
It begins by defining the families of entities relevant to the study to 
generate an empty template. These templates are defined as lists of 
lists that capture the natural hierarchical structure of our metadata 
documentation scheme. As shown in Figure 2, this structure al‐
lows users to get or set values of particular entities using the format 
field1$field2$field3$entity (e.g., model$algorithmSett
ings$maxent$featureSet, or output$prediction$units in 
the case where only the first two fields are relevant). To enable flex‐
ibility for analysis outside of R, we provide tools to export rmm objects 
as csv files. A package overview is available in Supporting Information 
S2 and worked examples are in Supporting Information S3; these are 
maintained and updated as R package vignettes on Github and CRAN.

The rangeModelMetadata package provides a number of 
convenience features. rmmPrintFull() displays only non‐NULL 
entities while rmmPrintEmpty() displays only null entities to help 
determine missing information. These can further be parsed into ob‐
ligate and optional entities. To reduce errors and simplify informa‐
tion entry, we provide a number of rmmAutoFill…() functions that 
capture relevant information from commonly used R objects during 
modelling. For example, in the simplest case, one can provide a ras-
ter::stack of environmental input layers or model predictions to 
automatically fill in associated metadata entities. Similar functional‐
ity exists for citations, occurrence data and ENMeval (Muscarella 
et al., 2014) objects. These functions also provide useful examples 

for other package developers to write rmmAutofill…() functions 
to connect to new packages. For further refining inputs, rmmSug-
gests() has predefined options for input entities and their values.

We provide a number of automated checks to help researchers 
detect potential issues (e.g., misspellings) and ensure some level 
of standardization with a number of rmmCheck…() functions. 
Checking standards are drawn directly from terms in the meta‐
data dictionary and hence update automatically with any changes. 
Multiple checks are available, including those for standardized fields 
(rmmCheckNames), standardized entities (rmmCheckValues), 
missing fields (rmmCheckMissingNames) and empty entities (rm-
mCheckEmpty). Each check function returns information on names 
that are (a) matched exactly to standardized values, (b) names of par‐
tial matches to standardized values, and (c) unmatched names. This 
enables users to see what changes might be relevant while allowing 
them the flexibility to ignore the suggestions and include their own 
custom names or values. Checks for empty entities can be split into 
obligate, recommended and optional entities to help users deter‐
mine missing information. For a final check of all entities in an rmm 
object, we provide the rmmCheckFinalize() function that runs all 
the rmmCheck…() functions together.

The rangeModelMetadata package include a number of other 
facilities. The base R function str() can print an rmm object to dif‐
ferent field depths. rmmToCSV() exports the rmm object into a “flat” 
csv format that is readable by other software platforms and more 
human readable. Finally, users can also specify their own custom 
entities to accommodate metadata for less‐common or currently 
undeveloped tools, for example, modelFit:algorithm:algo-
rithmSettings:̀ userDefinedEntitỳ =x where ‘userDe-

finedEntity’ is a name provided by the user and x is its value.

5  | DISCUSSION

We propose a comprehensive framework for recording metadata on 
range models that enhances transparency, reproducibility and shar‐
ing. To reduce the burden on researchers to provide this information, 
we have developed an R package with a variety of convenience func‐
tions to fill, suggest and check metadata objects efficiently. We an‐
ticipate that these advances will enable better comparisons between 
studies and synthesis across disciplines, improved models based on 
the ability to readily check for best practices, and improved citability 
and sharing of knowledge products.

Our decision to make rmm objects extensible, rather than tightly 
constrained, reflects our goal of prioritizing convenience to re‐
searchers, but involves some trade‐offs. A rigidly structured object 
with strictly predefined entities and values for those entities would 
ensure standardization, prevent errors due to typos, and generally 
be more easily searchable. However, as the field of range model‐
ling is always growing, an exhaustively prescriptive metadata frame‐
work would be impractical to maintain and would likely involve such 
a lengthy manual that it would inhibit use. Hence we have elected 
to implement a more lightweight and flexible framework with fewer 
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entities that can be more readily adapted to any range modelling 
workflow. It remains the responsibility of the researchers, editors, 

and data providers to curate the text in these entities to ensure clar‐
ity and precision.

To enable an evolving metadata dictionary we will maintain it on 
Github so that contributions and suggestions are readily tracked, 
discussed and incorporated. We ultimately plan to follow Github vo‐
cabulary management processes similar to those used by the Darwin 
Core maintenance group (see https​://github.com/tdwg/dwc). We 
will serve as an initial governance board to moderate proposed 
changes but welcome others to join our team, particularly those with 
different expertise. Facilitating community‐moderated evolution of 
the metadata dictionary will be the subject of future work and will 
depend critically on the reception and responses to the currently 
proposed framework. We aim for RMMS to be a fully open source 
and community driven enterprise.

RMMS has the potential to improve the review process for man‐
uscripts using range models. Journals may choose to define their 
own families of standards for particular applications or to adopt 
those we propose. These standards [and convenience functions like 
rmmCheckFinalize()] will make it easier for authors checking 
model details before journal submission and for journal reviewers/
editors checking the compliance and completeness of submitted 
rmm objects. To allow a broader user base to easily evaluate rmm 
objects, we have developed a web‐based graphical interface (with 
the R package Shiny; Chang, Cheng, Allaire, Xie, & McPherson, 2019) 
that enables users to upload an rmm object either as a csv or RDS 
(R’s data format for a single object) file and check for missing fields 
or standardization issues (Figure 3). It can be accessed within R using 
the two commands:

library(rangeModelMetadata)

rmmCheckShiny()

Because Shiny applications are built over the top of R, this allows 
us to use the exact R code that console users would use to check 
rmm objects. The code used for checking and the results can read‐
ily be exported so that editors can share these results with authors 
without ambiguity. Finally, the application includes options to submit 
multiple rmm objects to report differences among them for compar‐
ing with previous studies.

Defining community standards can support reporting and help 
encourage best practice approaches to science. Suboptimal meth‐
odologies will become more immediately transparent and requests 
for metadata information will encourage researchers to conduct 
more comprehensive analyses and supply information that is vital 
for their peers to understand, evaluate and use their work. Araújo 
et al. (2019) recently proposed a set of best practices and reporting 
standards for the use of species distribution models in biodiversity 
models; our metadata standards and tools reflect these same ideals. 
For example, best practices can be established by defining a fam‐
ily of the entities required for biodiversity assessments (e.g., a new 
biodiversity family). By proposing standardized values associ‐
ated with acceptable practices for the biodiversity use case, best 
practices can be clearly defined [e.g., to characterize the quality of 
predictor variables proposed by Araújo et al. (2019)].

F I G U R E  2  An example rmm object template generated in R. 
Note the hierarchical list structure. This example includes only the 
entities that are considered fundamental for use with every range 
model. Top level fields are indicated with bold

https://github.com/tdwg/dwc
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Community standards mean that both smaller‐scale efforts or 
larger taxon–region‐specific projects that produce range models 
can do so in a way that supports community efforts and assures 
that catalogues across independent efforts can be developed. Any 
downstream uses will benefit from the transparency enabled by 
the standards, which should enhance the rigor and credibility of 
range models for, for example, conservation application for more 
applied outcomes. Similar to how standards such as Darwin Core 
or Humboldt Core are facilitating the combination of point and 
inventory data of often vastly different origins (Guralnick et al., 
2017; Wieczorek et al., 2012) in support of aggregators such as the 
GBIF, we hope that RMMS and their future evolution will set the 
stage for a more programmatic synthesis of range models and their 
products. For example, in MOL, which is integrating biodiversity 
information to develop a range of species distribution resources 
and both produces and consumes range models, RMMS open up 
the opportunity for a more informed visual and quantitative com‐
parison and eventually integration of range models produced by 
different groups. Thus the standards open the door for contrib‐
uted range models from taxon experts to enable their aggregation 
and integration in support of advancing the biodiversity knowl‐
edge base broadly.

As RMMS evolve and grow, we will facilitate other software 
developers to link their work easily to rangeModelMetadata 
and enable rmm objects to be largely autofilled based on the out‐
put of other R packages. For example, in complex cases involving 
more comprehensive range modelling workflows such as Wallace 
(Kass et al., 2018), an R‐based ecological modelling software, or 
those used by BIEN and MOL, filling in rmm object entities can 
be built into the workflow. In Wallace an additional top level 
field, wallace:, is added to store additional information that can 
be used to reproduce a session. Other workflows may similarly 

benefit from reading in settings from rmm objects to automatically 
select parameters, in which case rmm objects would serve as au‐
tomatic lab notebooks to reproduce analyses. This next stage of 
integration with other software tools will serve as a way to further 
refine and maintain the metadata dictionary while engaging key 
range modelling teams in the process.

The range model metadata standards that we propose provide a 
number of tools to clarify and streamline reporting, sharing, evaluat‐
ing and searching range models. We consider this the beginning of a 
community process rather than its endpoint, and the standards are 
therefore software agnostic, extensible and readily updated. If fur‐
ther engagement, adoption and advancement by others is success‐
ful, the proposed standards hold long‐term benefits for the larger 
community and the impact of their work.
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