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Abstract
Aim: The	geographic	range	and	ecological	niche	of	species	are	widely	used	concepts	
in	ecology,	evolution	and	conservation	and	many	modelling	approaches	have	been	
developed	to	quantify	each.	Niche	and	distribution	modelling	methods	require	a	lit‐
any	of	design	choices;	differences	among	subdisciplines	have	created	communication	
barriers	that	increase	isolation	of	scientific	advances.	As	a	result,	understanding	and	
reproducing	the	work	of	others	is	difficult,	if	not	impossible.	It	is	often	challenging	to	
evaluate	whether	a	model	has	been	built	appropriately	for	its	intended	application	or	
subsequent	reuse.	Here,	we	propose	a	standardized	model	metadata	framework	that	
enables	 researchers	 to	understand	and	evaluate	modelling	decisions	while	making	
models	fully	citable	and	reproducible.	Such	reproducibility	is	critical	for	both	scien‐
tific	and	policy	reports,	while	international	standardization	enables	better	compari‐
son	between	different	scenarios	and	research	groups.
Innovation: Range	 modelling	 metadata	 (RMMS)	 address	 three	 challenges:	 they	  
(a)	are	designed	for	convenience	to	encourage	use,	(b)	accommodate	a	wide	variety	
of	applications,	and	(c)	are	extensible	to	allow	the	research	community	to	steer	them	
as	needed.	RMMS	are	based	on	a	metadata	dictionary	that	specifies	a	hierarchical	
structure	to	catalogue	different	aspects	of	the	range	modelling	process.	The	diction‐
ary	balances	a	constrained,	minimalist	vocabulary	 to	 improve	standardization	with	
flexibility	for	users	to	modify	and	extend.	To	facilitate	use,	we	have	developed	an	R	
package,	rangeModelMetaData,	to	build	templates,	automatically	fill	values	from	
common	modelling	objects,	 check	 for	 inconsistencies	with	 standards,	 and	 suggest	
values.
Main conclusions: Range	 Modelling	 Metadata	 tools	 foster	 cross‐disciplinary	 ad‐
vances	in	biogeography,	conservation	and	allied	disciplines	by	improving	evaluation,	
model	sharing,	model	searching,	comparisons	and	reproducibility	among	studies.	Our	
initially	proposed	standards	here	are	designed	to	be	modified	and	extended	to	evolve	
with	research	trends	and	needs.
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1  | INTRODUC TION

Species'	geographic	ranges	and	environmental	niches	are	fundamen‐
tal	units	of	biogeography	and	among	the	most	widely	used	summaries	
in	biology	 (Guisan	&	Thuiller,	2005;	Jetz,	McPherson,	&	Guralnick,	
2012).	Correlative	range	models	(i.e.,	species	distribution	models,	en‐
vironmental	niche	models,	resource	selection	models)	describe	how	
occurrence	or	abundance	varies	in	environmental	and/or	geographic	
space	 and	 are	 applied	 to	 biodiversity	 assessments	 and	 forecasts,	
conservation	planning,	niche	evolution,	 invasion	biology	and	many	
other	fields	(Franklin,	2010;	Guisan,	Thuiller,	&	Zimmermann,	2017;	
Peterson,	Soberón,	Pearson,	&	Anderson,	2011).	Many	modelling	ap‐
proaches	have	been	developed	to	quantitatively	characterize	ranges	
and	environmental	niches	with	different	goals	in	each	field,	and	user‐
friendly	software	has	enabled	many	thousands	of	studies.	However,	
differences	in	approaches	and	methodologies	–	some	based	on	dif‐
ferent	study	foci	and	others	on	field‐specific	jargon	–	have	created	
barriers	to	communication	and	led	to	increasing	isolation	of	scientific	
advances.	For	example,	wildlife	ecology	has	a	literature	on	resource	
selection	modelling	that	is	rather	distinct	from	environmental	niche	
modelling	in	plant	ecology,	in	spite	of	very	similar	data,	concepts	and	
objectives	(Warton	&	Aarts,	2013).	Recent	calls	have	been	made	to	
standardize	range	model	metadata	to	enable	reuse	of	models	both	
generally	 (Borba	&	Correa,	2015;	Costa	et	 al.,	 2018)	 and	with	 the	
specific	goal	of	estimating	biodiversity	patterns	(Araújo	et	al.,	2019),	
but	detailed	metadata	standards	remain	lacking.	Here,	we	propose	
range	modelling	metadata	 standards	 (RMMS)	 that	 aim	 to	 improve	
communication,	reproducibility	and	reusability	of	published	models.

1.1 | Why do we need RMMS?

Range	modelling	is	a	highly	varied	field	with	little	consensus	and	calls	
for	 greater	 standardization	 and	 transparency	 (Joppa	 et	 al.,	 2013).	
Without	standardized	metadata	that	describe	range	models,	 it	can	
be	difficult	 to	evaluate	 if	a	model	has	been	built	appropriately	 for	
its	intended	use	or	if	it	is	suitable	for	reuse	in	subsequent	studies.	A	
number	of	studies	have	outlined	clear	connections	between	model‐
ling	decisions	and	resulting	inferences	(Guillera‐Arroita	et	al.,	2015;	
Guisan	et	al.,	2017;	Merow	et	al.,	2014),	and	advances	in	biological	
metadata	have	already	standardized	and	connected	primary	biodi‐
versity	data	(Guralnick,	Walls,	&	Jetz,	2017;	Wieczorek	et	al.,	2012).	
By	specifying	standards,	methodologies	will	become	more	immedi‐
ately	 transparent	 for	peers	as	 researchers	adopt	a	standard	meta‐
data	vocabulary.	Easy‐to‐use	metadata	will	considerably	simplify	the	
reviewing	process	by	automating	the	reporting	of	decisions,	which	
can	take	considerable	time	for	reviewers	and	help	them	better	un‐
derstand	the	methodological	context	of	a	study’s	insights.	Metadata	
can	also	help	relieve	manuscripts	from	laborious	methodological	de‐
scriptions,	increasing	valuable	space	to	focus	on	results.

Range	 models	 constitute	 valuable	 information	 products	 that	
have	 been	 recognized	 as	 key	 for	 developing	 an	 understanding	 of	
the	status	and	trends	in	species	distributions.	They	are	vital	to	large	
biodiversity	modelling	 projects	 such	 as	 Botanical	 Information	 and	

Ecology	Network	(BIEN;	biendata.org)	and	Map	of	Life	(MOL,	mol.
org)	and	synthetic	conservation	efforts	such	as	defining	species	dis‐
tribution	essential	biodiversity	variables	(Jetz	et	al.,	2019;	Pereira	et	
al.,	2013).	The	 large	taxonomic	scale	of	 the	range	models	 in	 these	
efforts	 leverages	 standardized	 approaches	 to	 improve	model	 reli‐
ability,	but	 such	mass	production	places	an	even	stronger	onus	 to	
report	how	models	were	produced.	The	potential	inclusion	of	range	
models	 produced	 by	 the	 research	 community	 in	 these	 databases	
necessitates	 metadata	 that	 enable	 comparisons	 and	 integration.	
Making	 range	model	 products	 easily	 citable	 via	 searchable	 meta‐
data	 increases	 accessibility	 to	 other	 subdisciplines	 of	 biology	 and	
environmental	science	and	provides	credit	for	the	researchers	who	
developed	 the	models.	 Standardization	 also	 helps	 connect	 related	
subdisciplines	 that	have	evolved	 their	own	 language	or	best	prac‐
tices	but	may	benefit	from	cross‐pollination.	Over	time,	adherence	
to	metadata	standards	would	support	a	catalogue	where	research‐
ers	could	search	for	modelling	studies	based	on	features	of	interest	
(e.g.,	data	sources,	model	method	and	settings,	reported	evaluation	
metrics)	that	would	otherwise	likely	be	inaccessible	from	metadata	
on	a	published	paper.	Meta‐analyses	leveraging	this	resource	might	
have	applications	ranging	from	community	ecology	to	biogeography	
to	methodological	development.

Taken	together,	advancing	standardized	range	model	metadata	
will	enable	more	reproducible,	standardized,	searchable	and	citable	
science.	As	these	standards	are	meant	to	grow	with	the	field,	they	
will	benefit	from	engagement	and	improvements	from	the	user	com‐
munity.	After	an	initial	phase	of	testing	and	validation,	we	hope	that	
RMMS	can	become	a	completely	community‐driven	enterprise	with‐
out	need	 for	management	by	a	given	entity	or	our	 research	 team.	
These	gains	in	scientific	precision	and	communication	are	well	posi‐
tioned	to	outweigh	the	effort	required	to	report	standardized	meta‐
data.	Furthermore,	our	efforts	will	bring	range	modelling	in	line	with	
other	successful	efforts	in	reproducible	research	systems	(Mesirov,	
2010)	 in	 other	 domains	 in	 the	 life	 sciences	 (Goecks,	 Nekrutenko,	
Taylor,	&	Team,	2010).

To	 promote	 adoption	 of	 our	 proposed	metadata	 standard,	we	
have	designed	convenient	and	flexible	tools	for	its	implementation,	
including	a	user‐friendly	interface	to	enable	researchers	to	provide	
such	descriptions	with	minimal	effort	and	errors.	We	provide	an	R	
package,	 rangeModelMetadata,	 that	 automatically	 completes	
many	required	fields	and	can	be	extended	to	automatically	fill	them	
from	common	modelling	objects	in	R.

2  | rangeModelMetadata  (rmm )  FORMAT

The	rangeModelMetadata	 (rmm)	 format	 that	we	propose	 is	 de‐
signed	to	be	human	readable	to	accommodate	more	flexible	speci‐
fication	 of	 inputs,	 as	 well	 as	 ensure	 generality	 beyond	 specific	
software	or	present‐day	use	cases.	After	sharing	a	minimum	set	of	
critical	metadata,	provision	of	additional	information	is	optional.	This	
flexibility	gives	 researchers	 three	advantages:	 (a)	 it	 is	adaptable	 to	
new	 technologies	 (e.g.,	 algorithms,	 applications),	 (b)	 it	 will	 ensure	
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relevance	to	a	broad	user	base,	and	(c)	 it	permits	customization	as	
needed.	The	standards	are	comprehensive	enough	to	provide	guid‐
ance	and	clarity,	but	not	onerous.

The	basic	unit	of	RMMS	is	a	single	study	with	a	single	model	per	taxon	
to	reduce	the	burden	on	researchers,	in	contrast	to	building	a	metadata	
object	for	each	species	or	model	(although	this	is	a	custom	option).	This	
follows	standards	from	the	biosciences	standards	community	to	focus	
on	the	study	or	experiment	(Taylor	et	al.,	2008).	The	structure	of	rmm	
objects	correspond	to	eight	top‐level	fields:	authorship,	studyObjective,	
data,	dataPrep	 (data	preparation),	modelFit,	prediction,	evaluation	and	
code	(Table	1).	Within	each	of	these	top‐level	fields	are	subfields,	which	
may	contain	further	granular	reporting.	The	named	values	assigned	to	
unique	combinations	of	fields	(e.g.,	data:environment:extent)	are	termed	
“entities”	(see	a	subset	of	the	metadata	dictionary	in	Table	1	and	a	com‐
plete	version	in	Supporting	Information	Supplement	S1).	Entities	have	
values	that	are	vectors	of	characters	or	numbers.

Our	 metadata	 dictionary	 includes	 the	 hierarchical	 structure	
of	 the	metadata	 entities,	 provides	 standardized	 and	 suggested	 in‐
puts,	and	defines	all	the	content	needed	to	produce	an	rmm object 
(Table	1;	Supporting	Information	S1).	Each	row	defines	a	single	en-
tity in a rmm	object,	classified	by	columns	specifying	the	field	hier‐
archy	described	above.	Some	entities	with	commonly	used	settings	
have	 a	 constrained	 vocabulary	 to	 standardize	values	 (noted	 in	 the	
constrainedValues	column	of	the	dictionary),	while	others	may	take	
on	any	value.	To	balance	flexibility	with	standardization,	many	enti‐
ties	are	partially	constrained	such	that	a	standardized	vocabulary	is	
available	 for	certain	common	values	while	user‐defined	values	are	
also	accepted.	To	add	further	flexibility,	many	fields	have	a	 :Notes	
entity	 (e.g.,	 data:notes,	 dataPrep:notes,	 modelFit:notes)	 to	 allow	
authors	 to	 mention	 any	 additional	 high‐level	 critical	 information.	
Formatted	examples	as	well	as	descriptions	of	guidelines	 for	user‐
defined	values	are	also	included	in	the	dictionary.	All	values	can	be	
entered	programmatically	with	our	R	package	rangeModelMeta-
data	or	manually	into	a	csv	file	(templates	provided	in	Supporting	
Information	S5	and	S6).

3  | STANDARDS

The	 standards	 below	 provide	 background	 on	 the	 predefined	 enti-
ties	and	guidance	on	how	to	extend	them	to	include	user‐specified	
options.

3.1 | A case study

As	an	example	for	constructing	an	rmm	object	 in	the	sections	that	
follow,	we	built	a	simplified	range	model	for	Bradypus variegatus,	the	
brown‐throated	sloth,	in	South	America.	Specifically,	we	use	Maxent 
(Phillips,	Anderson,	&	Schapire,	2006)	and	disMo	 (Hijmans,	Phillips,	
Leathwick,	&	Elith,	2017)	applied	to	occurrence	data	from	the	Global	
Biodiversity	 Information	 Facility	 (GBIF;	 GBIF.org,	 2019)	 and	 cli‐
mate	data	 from	Worldclim	 (Fick	&	Hijmans,	2017).	See	Supporting	
Information	S4	for	complete	workflow.	Various	modelling	decisions	

are	described	below	in	the	context	of	constructing	a	metadata	ob‐
ject.	Notably,	we	begin	with	a	study	involving	only	a	single	species	
and	describe	how	to	extend	this	below	in	“Multispecies studies”.	The	
resulting	rmm	object	is	shown	in	Figure	1.

3.2 | Authorship

The	authorship:	field	provides	information	on	citation,	contact	infor‐
mation,	related	studies	using	the	models	and	licensing/use	restrictions	
associated	with	the	models.	Each	rmm	object	is	given	a	unique	name	in	
the	format	Author_Year_Taxa_Model_fw.	We	suggest	the	convention	that	
Author	 be	 limited	 to	 surnames	 and	 that	multiple	 authors	 be	 included	
via	camel	case	(e.g.,	MerowMaitnerOwensKassEnquistJetzGuralnick).	Year 
should	 include	 a	 four‐digit	year.	Taxa	 can	be	 specified	 at	 the	 authors’	
discretion	and	 include	common	or	scientific	names	at	any	appropriate	
taxonomic	level	(e.g.,	Sloth, Bradypus, BradypusVariegatus). Model	should	
describe	 the	 algorithm	 used	 [multiple	 models	 can	 be	 specified	when	
using	 ensemble	 models	 (Araújo	 &	 New,	 2007;	 Thuiller,	 Lafourcade,	
Engler,	&	Araújo,	2009)]	–	standardized	model	names	can	be	viewed	in	
the	modelFit:algorithm	field	of	the	metadata	dictionary.	Finally,	two	
random	alphanumeric	characters	should	be	appended	to	the	rmm name to 
prevent	cases	where	ambiguity	might	arise.	A	complete	example	could	take	
the	form	(Figure	1):	MerowMaitnerOwensKassEnquistJetzGuralnick_2018_
BradypusVariegatus_Maxent_b3.

3.3 | Study objective

Entities under studyObjective, including :purpose, 

:rangeType, :invasion, :transfer,	and	so	forth,	provide	authors	
with	a	text	field	to	briefly	describe	the	intended	application	of	their	
study	to	set	 the	context	 for	modelling	decisions	specified	 in	other	
fields.	In	our	example	study,	the	model	it	was	fit	in	the	northern	part	
of	South	America,	and	transferred	to	the	southern	part	in	order	to	
determine	whether	there	is	any	potentially	suitable	habitat	in	a	re‐
gion	where	no	records	exist:

studyObjective:purpose='transfer'

studyObjective:rangeType='potential'

studyObjective:transfer='detect unoccupied 

suitable habitat'

3.4 | Data

Information	 within	 the	 data	 field	 pertains	 to	 occur‐
rence	 records	 (data:occurrence) and environ‐
mental	 data	 (data:environment)	 used	 to	 train	 or	
transfer	models.	The	:occurrence	field	may	contain	taxon	names	
(:occurrence:taxaVector),	the	type	of	occurrence	data	used	(:oc
currence:occurrenceDataType;	 e.g.,	 presence‐only,	 pres‐
ence–absence,	abundance),	the	temporal	extent	of	the	occurrence	
records	 (:occurrence:yearMin, :occurrence:yearMax),	
occurrence	 data	 sources	 (:occurrence:sources)	 and	 in‐
formation	 on	 sample	 sizes.	 The	 data:environment 
field	 may	 contain	 information	 on	 the	 environmental	
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variables	 used	 (:environment:variableName),	 the	 temporal	
extent	 of	 the	 environmental	 layers	 (:environment:yearMin, 
:environment:yearMax)	 and	 the	 source	of	 the	environmental	
data	 (:environment:sources).	 For	 example,	 occurrence	 infor‐
mation	for	our	example	includes	(additional	entities in Supporting 
Information	S4):

data:occurrence:presenceSampleSize=290

data:occurrence:backgroundSampleSize=5084

data:occurrence:yearMin=1970

data:occurrence:yearMax=2000

3.5 | Data preparation

Information	within	the	dataPrep	field	details	any	changes,	cleaning	
or	validation	done	to	the	data.	Errors	or	inherent	biases	(i.e.,	spatial)	in	
publicly	 available	occurrence	data	 are	 common	 (Serra‐Diaz,	Enquist,	
Maitner,	 Merow,	 &	 Svenning,	 2018)	 and	 may	 have	 serious	 conse‐
quences	 for	 modelling	 (Merow,	 Allen,	 Aiello‐Lammens,	 &	 Silander,	
2016;	Phillips	et	al.,	2009).	Common	reasons	for	excluding	coordinates	
include:	coordinates	not	falling	 in	the	specified	political	division,	co‐
ordinates	reflecting	non‐native	or	cultivated	occurrences,	coordinates	
representing	 centroids	 of	 a	 political	 division,	 duplicated	 coordinates	
or	 biased	 spatial	 clustering	 (Aiello‐Lammens,	 Boria,	 Radosavljevic,	
Vilela,	&	Anderson,	2015;	Maitner	et	al.,	2017;	Robertson,	Visser,	&	
Hui,	2016;	Serra‐Diaz	et	al.,	2018).	Valid	points	may	also	need	to	be	
removed	 if	 they	constitute	environmental	outliers	 that	may	strongly	
bias	a	model	(Soley‐Guardia,	Radosavljevic,	Rivera,	&	Anderson,	2014).

Within	 the	dataPrep	 field	 there	 are	 four	 subfields:	 :errors, 
:biological, :environmental and :geographic.	 The	 :errors 
field	contains	information	regarding	any	removal	of	duplicate	(:er-
rors:duplicate)	 or	 suspicious	 points	 (:errors:question-
ablePointRemoval).	The	:geographic field	contains	information	
related	 to	 geographic	 name	 standardization	 (:geographic:geo-
graphicStandardization)	 and	 occurrence	 point	 validations	
(geographic:geographicOutlierRemoval, :geograph-

ic:centroidRemoval, :geographic:pointInPolygon)	 on	
the	basis	of	geopolitical	regions	as	well	as	geographic	outlier	removal	
(:geographic:geographicOutlierRemoval).	 The	 :biological	
field	contains	 information	 related	 to	 taxonomic	name	standardiza‐
tion	 (:biological:taxonomicHarmonization)	 as	 well	 as	 the	
identification	of	records	that	are	likely	to	represent	introduced	or	cul‐
tivated	species	 (:biological:nonNativeRemoval, :biologi-
cal:cultivatedRemoval).	The	:environmental	field	contains	
data	related	to	changes	made	to	the	environmental	 layers	used,	as	
well	 as	 occurrence	 point	 exclusion	 on	 the	 basis	 of	 environmental	
data	(:environmental:environmentalOutlierRemoval).

In	our	simplified	example,	we	removed	records	duplicated	within	
cells	 (on	 the	 10‐km	 grid	 of	 the	 environmental	 layers)	 and	 thinned	
the	occurrence	data	to	reduce	the	effects	of	spatial	autocorrelation:

dataPrep:biological:duplicateRemoval:rule='one 

observation per cell'

dataPrep:geographic:spatialThin:rule="20km used 

as minimum distance between points"
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3.6 | Model fitting

The	modelfit	field	has	the	largest	variety	of	entities	owing	to	the	profu‐

sion	of	modelling	algorithms	and	decisions	applied	in	their	use.	A	subfield	

specifies	the	algorithm	name	and	can	be	user‐defined	to	accommodate	
newly	developed	algorithms.	In	cases	where	ambiguity	may	exist	about	
algorithm	 definitions,	 for	 example,	 determining	 whether	 one	 should	
define	modelFit:algorithm = ‘Poisson point process’ 

F I G U R E  1  An	example	rmm	object	
with	values,	based	on	the	example	
from	the	main	text.	Top	level	fields	are	
indicated	with	bold.	Note	that	some	
output	has	been	omitted	from	the	figure	
for	space,	indicated	by	truncated
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or ‘glm’	because	 the	 latter	can	be	 fit	with	GLM	 (generalized	 linear	
model)	 software,	we	 leave	 this	 to	 the	 authors’	 discretion	 and	provide	
the	modelFit:algorithmNotes	entity	if	needed.	It	is	worth	remem‐
bering	that	 the	 intention	of	rmm	objects	 is	 to	be	human	readable	and	
therefore	subject	to	context	and	interpretation.	…Notes	entities,	such	as	
modelFit:notes,	allow	users	to	describe	this	context	to	the	desired	
level	of	detail.	The	modelFit	field	contains	subfields	for	specifying	data	
partitioning	methods	(e.g.,	k‐fold	cross‐validation),	specification	of	how	
covariates	are	treated	(e.g.,	scaled,	z‐scores)	and	algorithm‐specific	set‐
tings.	For	Maxent	modelling,	we	have	specified	comprehensive	examples,	
while	providing	only	minimal	recommendations	for	other	algorithms.	We	
leave	 extensions	 to	 other	 algorithms	 for	 their	 expert	 users	 to	 recom‐
mend	as	part	of	our	efforts	to	engage	the	research	community	in	further	
development.	For	example,	users	can	also	specify	their	own	custom	enti-
ties	to	accommodate	less	common	metadata.	This	flexibility	ensures	that	
our	metadata	framework	is	not	so	prescriptive	that	it	excludes	less‐com‐
mon	modelling	tools	or	those	yet	to	be	developed.

In	our	 simplified	example,	we	used	Maxent	 via	 the	ENMeval	R	
package	(Muscarella	et	al.,	2014)	to	compare	different	combinations	
of	 feature	classes	and	different	 regularization	parameters.	Models	
were	compared	based	on	area	under	the	curve	(AUC)	evaluated	on	
test	data,	obtained	from	spatial	block	cross‐validation.	As	rmm ob‐
jects	are	designed	to	handle	a	single	model	per	species,	we	report	
the	optimal	model	settings	only	and	include	information	in	the	rele‐
vant	…Notes	entities	on	the	model	selection	strategy.	Had	we	used	
ensemble	 averaging	 over	 these	 candidate	models,	we	would	 have	
reported	the	attributes	of	the	ensemble	and	including	attributes	of	
the	component	models	in	the	…Notes	fields.

rmm$modelFit$partition$partitionRule='spatial 

block cross validation’

rmm$modelFit$maxent$featureSet='LQ'

rmm$modelFit$maxent$regularizationMultiplier-

Set=1

rmm$modelFit$maxent$samplingBiasRule='ignored'

rmm$modelFit$maxent$notes='ENMeval was used to 

compare models with L (linear) and LQ (linear 

and quadtratic) features, each using regular-

ization multipliers of 1,2,3. The best model 

was selected based on test AUC evaluated 

under spatial block cross-validation.'

3.7 | Prediction

The	 prediction	 field	 describes	 common	 attributes	 of	 a	 variety	 of	
possible	output	types,	including	the	prediction	in	geographic	space	(op‐
tionally	a	single	prediction	or	the	mean	of	multiple	models),	predictions	
transferred	 in	 space	 or	 time,	 and	 prediction	 uncertainty.	 For	 each	 of	
these	prediction	types,	users	specify	the	units	(e.g.,	binary	presence/ab‐
sence,	abundance,	absolute	probability	of	occurrence),	the	maximum	and	
minimum	values,	and	notes	associated	with	interpretation.	For	each	pre‐
diction	type	(except	uncertainty),	users	can	optionally	specify	a	threshold	
value	or	rule	to	convert	continuous	predictions	to	binary.	Finally,	text	can	
be	provided	 to	describe	 rules	 for	extrapolation,	building	ensembles	of	

models	and	other	optional	attributes	of	model	reporting.	In	our	example	
study,	we	make	predictions	using	Maxent’s	“raw”	(or	relative	occurrence	
rate;	Merow,	Smith,	&	Silander,	2013)	values.	Note	the	use	of	functions	
(raster::cellStats();	Hijmans,	2019)	to	fill	in	entities,	where	p	is	the	predic‐
tion	raster.	Further,	analogous	entities	related	to	transferring	predictions	
to	a	new	region,	are	shown	in	Supporting	Information	S4	for	brevity.

rmm$prediction$continuous$units="relative oc-

currence rate"

rmm$prediction$continuous$minVal=raster::cell-

Stats(p,min)

rmm$prediction$continuous$maxVal=raster::cell-

Stats(p,max)

rmm$prediction$extrapolation="clamping"

3.8 | Evaluation

The	evaluation:	 field	 stores	a	 range	of	 statistics	used	 to	quantify	
model	 training,	 testing	or	 overall	 evaluation.	This	 follows	 recommen‐
dations	 common	 in	machine	 learning	 (Hastie,	Tibshirani,	&	Friedman,	
2009)	for	splitting	data	into	three	subsets	before	model	building:	train‐
ing,	testing	and	evaluation.	Training	statistics	are	evaluated	on	the	data	
used	to	fit,	or	train,	the	model.	Testing	statistics	are	calculated	on	data	
withheld	from	training	and	describe	evaluation	on	test	data	to	assess	
generality.	Such	testing	statistics	can	be	used	for	model	selection	or	for	
weighting	 in	model	ensembles,	 and	can	help	determine	which	model	
settings	 are	 optimal	 of	 those	 tested	 (answering	 the	 question	 “of	 the	
models	run,	which	is	‘best’?”).	The	evaluation	data	are	independent	of	
both	training	and	testing	data	and	provide	a	means	to	assess	how	well	
the	 selected/average	 model	 performs	 with	 out‐of‐sample	 prediction	
(answering	the	question	“how	good	is	the	best	model?”).	While	we	rec‐
ommend	data	partitioning	as	 the	most	 robust	option,	we	 realize	 that	
many	studies	do	not	have	sufficient	data	–	 it	 is	 thus	common	to	use	
testing	data	for	evaluation.	In	this	case,	researchers	should	report	their	
statistics	as	testing, and provide an evaluation:notes	that	these	
statistics	were	also	used	for	evaluation.	For	training,	testing	and	evalua‐
tion	a	common	set	of	names	of	standardized	statistics	are	provided	(e.g.,	
AUC,	TSS	(true	skill	statistic));	users	can	also	include	their	own	statistics	
and	cite	them	in	evaluation:references. Notably,	we	have	de‐
signed	the	rmm object	structure	to	accommodate	a	single	model	per	
taxon;	this	model	can	either	be	the	output	of	a	single	algorithm,	or	the	
summary	(i.e.,	mean	or	median)	of	a	single	algorithm	fit	to	subsets	of	the	
data	 (e.g.,	k‐fold	cross‐validation),	or	multiple	models	 [e.g.,	an	ensem‐
ble,	as	from	the	bioMod2	R	package	(Thuiller,	Georges,	Engler,	&	Breiner,	
2019)].	In	studies	where	multiple	models	are	relevant	to	report	for	each	
species,	a	separate	rmm	object	should	be	used	for	each	model	type.

In	our	example	study,	only	AUC	evaluated	on	test	data	was	used	
to	select	optimal	model	settings.	 In	general,	 it	 is	better	practice	to	
examine	multiple	metrics.	Note	 that	we	 fill	 in	values	directly	 from	
those	stored	in	an	ENMeval object called e.

rm m$evaluation$trainingDataStats$AUC=e@

results[i,]$trainAUC

rmm$evaluation$testingDataStats$AUC=e@re-

sults[i,]$avg.test.AUC
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3.9 | Code

The	 code:	 field	 stores	 obligate	 information	 about	 software	 refer‐
ences	and	versions	as	well	as	optional	 links	to	scripts	hosted	online.	
As	rmm	objects	are	designed	to	be	human	readable,	information	that	
enables	 true	 reproducibility	 is	 stored	 in	 these	 scripts,	 for	 example,	
hosted	 by	 journals	 in	 supplemental	 information	 or	 on	 Github.	 We	
recommend	these	files	be	free	of	constraints	beyond	those	used	by	
journals	to	avoid	a	prohibitive	amount	of	work	by	authors,	which	dis‐
courages	 sharing	 their	 code.	As	biologists	 continue	 to	 strive	 toward	
greater	reproducibility,	we	hope	standards	do	emerge,	but	this	is	be‐
yond	the	current	scope	of	our	metadata	standards.	We	do	however	
offer	 entities	 for	 different	 types	 of	 code,	 which	 currently	 include	
code:demoCodeLink	 (for	 brief,	 reduced	 functionality	 examples),	
code:vignetteCodeLink	 (for	 commented,	 tutorial‐styled	 code)	
and code:fullCodeLink	 (for	 a	 full	 reproduction	 of	 the	 analysis).	
These	distinctions	aim	to	help	users	better	understand	what	to	expect	
from	the	code	and	for	authors	to	target	different	audiences	needing	
different	levels	of	detail.	We	recommend	that	code:codeNotes in‐
clude	information	on	which	platforms	the	code	has	been	tested.	In	our	
example	study,	we	cite	the	relevant	R	packages	with:

rmm=rmmAutofillPackageCitation(rmm=rmm,

packages=c('rgbif','sp','raster','dismo','ENMe-

val'))

3.10 | Vector‐valued entities

Some	entities	are	naturally	defined	as	vectors	so	we	adopt	JSON	format‐
ting	(JavaScript	Object	Notation;	www.json.org)	to	help	clearly	define	
named	vector‐valued	entities.	For	example,	when	specifying	the	spatial	
extent	of	the	modelling	domain,	it	is	common	to	use	the	minimum	and	
maximum	coordinates	(i.e.,	bounding	box).	To	specify	these	limits	unam‐
biguously	with	JSON,	we	use	(from	the	example	study): [{"xmin":‐
125,"xmax":‐32,"ymin":‐56,"ymax":40}].	 (In	 JSON	 syntax,	 
the	“string”	describing	the	name	of	a	quantity	is	in	double	quotations	
and	 its	 “value”	 is	 given	 following	 a	 colon.)	Vector‐valued	entities	 are	
apparent	 in	 a	 number	 of	 cases:	 data:environment:minVal and 
:maxVal	 indicate	 the	 extremes	 of	 each	 environmental	 layer	 in	 the	
analysis	(e.g.,	[{"bio1":289,"bio12":7682,"bio16":2458}]). 
Even	 if	 users	 are	 not	 familiar	 with	 JSON,	 the	 jsonlite	 package	
(Ooms,	2014)	provides	convenient	tools	to	convert	an	R	data.frame 
to	JSON	text	(see	vignettes).	A	number	of	vector‐valued	entities	already	
have	names	defined,	but	we	expect	that	use	cases	will	arise	that	require	
users	to	extend	JSON	formatting	to	other	entities.

3.11 | Multispecies studies

Thus	 far	 we	 have	 focused	 on	 studies	 that	 have	 a	 single	 species;	
however,	 RMMS	are	 readily	 extended	 to	 include	multiple	 species.	
As	many	model	properties	can	(and	arguably	should)	be	specific	to	
a	particular	species,	we	have	also	designed	the	metadata	structure	
to	 accommodate	multispecies	 studies	 through	 the	 use	 of	 a	 taxon-
Specific	 column	 in	 the	metadata	 dictionary	 (Table	 1).	 This	 column	

defines	whether	a	given	entity	applies	to	all	taxa	in	the	study	(e.g.,	
data:occurrence:dataType),	applies	to	each	species	separately	
by	 specifying	a	vector	with	a	value	 for	each	 species	 (e.g.,	data:o
ccurrence:presenceSampleSize)	 or	 is	 a	 single	 value	 or	 vec‐
tor	with	a	value	for	each	species	 (e.g.,	data:occurrence:backg
roundSampleSizeSet).	Hence	the	taxonSpecific	column	indicates	
whether	or	not	a	vector‐valued	entity	describes	different	taxa	(e.g.,	
data:environment:sources	may	contain	a	vector	of	references	
to	different	sources	and	a	value	of	taxonSpecific	=	no	indicates	that	
these	sources	apply	generally	and	not	to	different	taxa).	Note	that	
any	 entity	 with	 taxon‐specific	 values	 can	 optionally	 be	 specified	
as	 [{“species1”:value1, “species2”:value2}],	 but	 users	
can	 also	 choose	 the	 simpler	 multispecies	 vector	 formatting	 with	
value1,value2, etc.

In	multispecies	 studies,	entities	 can	 take	 single	or	multiple	val‐
ues	and	are	associated	with	a	vector	of	 taxon	names.	Thus	an	en-
tity	may	have	a	single	value	 if	 it	 is	constant	for	all	study	taxa,	or	a	
vector	of	values	associated	with	their	respective	taxa.	This	frame‐
work	can	also	be	 thought	of	as	a	 table	with	columns	 for	 taxa	and	
rows	for	entities.	For	example,	a	study	containing	two	species	would	
specify	their	names	(using	R	syntax	for	convenience)	as	data:oc-
currence:taxon=c('taxon1','taxon2'),	 and	 all	 subsequent	
entities	 can	 be	 provided	with	 values	 as	 vectors	 of	 length	 2	when	
the	value	differs	among	species	or	 length	1	when	the	value	 is	 the	
same	among	species	[e.g.,	data:occurrence:presenceSample-
Size=c(24137, 4520) and data:occurrence:yearMax=2018, 
respectively].	Models	of	each	taxon	in	a	study	are	likely	to	have	dif‐
ferent	properties,	such	as	presence	sample	size,	but	may	also	have	
different	model	 settings.	 Indeed,	model	 evaluation	 and	 ecological	
reality	of	 the	response	may	be	greatly	 improved	by	tuning	param‐
eters	 to	 individual	datasets	 (Merow	et	al.,	2014,	2013;	Muscarella	
et	al.,	2014).

For	simplicity	 in	multispecies	studies,	users	can	specify	unique	
values	of	 an	entity	 for	 each	 species	 as	 just	 described	or	 a	 charac‐
ter	string	describing	a	methodological	 rule	 for	choosing	 the	value.	
Most	model	settings	have	…Set	and	…Rule	entities	that	users	can	
choose	 from.	 For	 example,	 when	 thresholding	 continuous	 predic‐
tions	to	make	a	binary	map,	modelFit:prediction:threshold-
Set=c(.003,.002)	could	be	used	to	indicate	the	specific	threshold	
values	 or	 alternatively	 modelFit:prediction:threshol-
dRule=‘5% training presence’	could	be	used	to	identify	the	
rule	to	determine	the	thresholds	applied	to	multiple	taxa.	 In	cases	
where	multiple	modelling	 algorithms	 are	 relevant,	we	 recommend	
making	a	separate	rmm	object	for	each	algorithm	–	this	is	designed	to	
keep	rmm	objects	easily	human	readable	and	avoid	confusion	about	
entities	that	might	have	similar	inputs	but	different	names/interpre‐
tations	with	different	modelling	approaches.

3.12 | Common use cases

To	help	guide	users	through	determining	which	entities to include, 
we	define	a	 suite	of	common	 families	of	entities	 in	 the	metadata	
dictionary	 that	may	be	 relevant	 for	a	given	study.	As	a	baseline,	

http://www.json.org
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the	base family	defines	the	minimum	set	of	entities	used	to	define	
a	typical	model.	Certain	entities	are	obligate,	such	as	those	relat‐
ing	 to	 data	 sources,	 while	 others	 are	 recommended	 as	 typically	
sufficient	to	meet	research	community	standards,	and	yet	others	
are	entirely	optional.	Researchers	can	modularly	combine	the	base 
family	 with	 other	 families	 to	 represent	 different	 workflows	 that	
most	 closely	match	 their	 study	 type	 as	 a	 template	 (examples	 in	
Table	1).	Entities	can	then	be	added	or	removed	as	seen	fit	(except	
for	obligate	entities,	which	can	be	 left	empty	but	not	deleted	 so	
that	the	decision	to	omit	them	is	readily	apparent).	Some	entities 
are	 conditionally	 obligate:	 for	 example,	 if	 any	 entities	 in	 the	 op‐
tional	 field	 prediction:transfer:environment1	 (defining	
the	environmental	conditions,	perhaps	for	some	data	set	on	future	
conditions	for	model	transfer)	are	non‐NULL,	related	entities	must	
have	non‐NULL	values	(:yearMin, :yearMax, :resolution, 
:extent, :sources).	Hence	someone	modelling	the	future	ex‐
tinction	risk	of	a	species	with	Maxent	could	combine	the	families	
obligate, dataPrep, maxent	 (entities	 associated	 with	 the	 Maxent 
modelling	algorithm),	and	transferEnv1	(entities	associated	with	en‐
vironmental	conditions	where	a	model	 is	projected)	as	a	starting	
point	for	their	metadata	template.

4  | rangeModelMetadata  R PACK AGE

Although	 our	 RMMS	 framework	 is	 software	 agnostic,	 we	 simplify	
the	 process	 of	 building	 a	 metadata	 list	 by	 providing	 an	 R	 package,	
rangeModelMetadata,	 which	 provides	 a	 number	 of	 user‐friendly	
tools	 that	 define,	 print,	 autofill,	 query	 and	 check	 rmm	 S3	 objects.	
It	begins	by	defining	 the	 families	 of	entities	 relevant	 to	 the	 study	 to	
generate	an	empty	template.	These	templates	are	defined	as	 lists	of	
lists	 that	 capture	 the	 natural	 hierarchical	 structure	 of	 our	metadata	
documentation	 scheme.	 As	 shown	 in	 Figure	 2,	 this	 structure	 al‐
lows	users	to	get	or	set	values	of	particular	entities	using	the	format	
field1$field2$field3$entity	 (e.g.,	model$algorithmSett
ings$maxent$featureSet, or output$prediction$units in 
the	case	where	only	the	first	two	fields	are	relevant).	To	enable	flex‐
ibility	for	analysis	outside	of	R,	we	provide	tools	to	export	rmm	objects	
as	csv	files.	A	package	overview	is	available	in	Supporting	Information	
S2	and	worked	examples	are	in	Supporting	Information	S3;	these	are	
maintained	and	updated	as	R	package	vignettes	on	Github	and	CRAN.

The	 rangeModelMetadata package	 provides	 a	 number	 of	
convenience	 features.	 rmmPrintFull()	 displays	 only	 non‐NULL	
entities	while	rmmPrintEmpty()	displays	only	null	entities	to	help	
determine	missing	information.	These	can	further	be	parsed	into	ob‐
ligate	and	optional	entities.	To	reduce	errors	and	simplify	 informa‐
tion	entry,	we	provide	a	number	of	rmmAutoFill…()	functions	that	
capture	relevant	information	from	commonly	used	R	objects	during	
modelling.	For	example,	in	the	simplest	case,	one	can	provide	a	ras-
ter::stack	of	environmental	input	layers	or	model	predictions	to	
automatically	fill	in	associated	metadata	entities.	Similar	functional‐
ity	exists	for	citations,	occurrence	data	and ENMeval	(Muscarella	
et	al.,	2014)	objects.	These	functions	also	provide	useful	examples	

for	other	package	developers	to	write	rmmAutofill…() functions	
to	connect	to	new	packages.	For	further	refining	inputs,	rmmSug-
gests()	has	predefined	options	for	input	entities	and	their	values.

We	provide	a	number	of	automated	checks	to	help	researchers	
detect	 potential	 issues	 (e.g.,	 misspellings)	 and	 ensure	 some	 level	
of	 standardization	 with	 a	 number	 of	 rmmCheck…()	 functions.	
Checking	 standards	 are	 drawn	 directly	 from	 terms	 in	 the	 meta‐
data	dictionary	and	hence	update	automatically	with	any	changes.	
Multiple	checks	are	available,	including	those	for	standardized	fields	
(rmmCheckNames),	 standardized	 entities	 (rmmCheckValues), 
missing	fields	(rmmCheckMissingNames)	and	empty	entities	(rm-
mCheckEmpty).	Each	check	function	returns	information	on	names	
that	are	(a)	matched	exactly	to	standardized	values,	(b)	names	of	par‐
tial	matches	to	standardized	values,	and	(c)	unmatched	names.	This	
enables	users	to	see	what	changes	might	be	relevant	while	allowing	
them	the	flexibility	to	ignore	the	suggestions	and	include	their	own	
custom	names	or	values.	Checks	for	empty	entities	can	be	split	into	
obligate,	 recommended	 and	 optional	 entities	 to	 help	 users	 deter‐
mine	missing	information.	For	a	final	check	of	all	entities	in	an	rmm 
object,	we	provide	the	rmmCheckFinalize()	function	that	runs	all	
the	rmmCheck…()	functions	together.

The	rangeModelMetadata	package	include	a	number	of	other	
facilities.	The	base	R	function	str() can print an rmm	object	to	dif‐
ferent	field	depths.	rmmToCSV()	exports	the	rmm	object	into	a	“flat”	
csv	 format	 that	 is	 readable	by	other	software	platforms	and	more	
human	 readable.	 Finally,	 users	 can	 also	 specify	 their	 own	 custom	
entities	 to	 accommodate	 metadata	 for	 less‐common	 or	 currently	
undeveloped	 tools,	 for	 example,	 modelFit:algorithm:algo-
rithmSettings:̀ userDefinedEntitỳ =x	 where	 ‘userDe-

finedEntity’	is	a	name	provided	by	the	user	and	x	is	its	value.

5  | DISCUSSION

We	propose	a	comprehensive	framework	for	recording	metadata	on	
range	models	that	enhances	transparency,	reproducibility	and	shar‐
ing.	To	reduce	the	burden	on	researchers	to	provide	this	information,	
we	have	developed	an	R	package	with	a	variety	of	convenience	func‐
tions	to	fill,	suggest	and	check	metadata	objects	efficiently.	We	an‐
ticipate	that	these	advances	will	enable	better	comparisons	between	
studies	and	synthesis	across	disciplines,	improved	models	based	on	
the	ability	to	readily	check	for	best	practices,	and	improved	citability	
and	sharing	of	knowledge	products.

Our	decision	to	make	rmm	objects	extensible,	rather	than	tightly	
constrained,	 reflects	 our	 goal	 of	 prioritizing	 convenience	 to	 re‐
searchers,	but	involves	some	trade‐offs.	A	rigidly	structured	object	
with	strictly	predefined	entities	and	values	for	those	entities	would	
ensure	standardization,	prevent	errors	due	to	typos,	and	generally	
be	more	 easily	 searchable.	However,	 as	 the	 field	 of	 range	model‐
ling	is	always	growing,	an	exhaustively	prescriptive	metadata	frame‐
work	would	be	impractical	to	maintain	and	would	likely	involve	such	
a	 lengthy	manual	that	 it	would	inhibit	use.	Hence	we	have	elected	
to	implement	a	more	lightweight	and	flexible	framework	with	fewer	
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entities	 that	 can	 be	more	 readily	 adapted	 to	 any	 range	modelling	
workflow.	 It	 remains	 the	 responsibility	of	 the	 researchers,	editors,	

and	data	providers	to	curate	the	text	in	these	entities	to	ensure	clar‐
ity	and	precision.

To	enable	an	evolving	metadata	dictionary	we	will	maintain	it	on	
Github	 so	 that	 contributions	 and	 suggestions	 are	 readily	 tracked,	
discussed	and	incorporated.	We	ultimately	plan	to	follow	Github	vo‐
cabulary	management	processes	similar	to	those	used	by	the	Darwin	
Core	 maintenance	 group	 (see	 https	://github.com/tdwg/dwc).	 We	
will	 serve	 as	 an	 initial	 governance	 board	 to	 moderate	 proposed	
changes	but	welcome	others	to	join	our	team,	particularly	those	with	
different	expertise.	Facilitating	community‐moderated	evolution	of	
the	metadata	dictionary	will	be	the	subject	of	future	work	and	will	
depend	 critically	 on	 the	 reception	 and	 responses	 to	 the	 currently	
proposed	framework.	We	aim	for	RMMS	to	be	a	fully	open	source	
and	community	driven	enterprise.

RMMS	has	the	potential	to	improve	the	review	process	for	man‐
uscripts	 using	 range	models.	 Journals	may	 choose	 to	 define	 their	
own	 families	 of	 standards	 for	 particular	 applications	 or	 to	 adopt	
those	we	propose.	These	standards	[and	convenience	functions	like	
rmmCheckFinalize()]	 will	 make	 it	 easier	 for	 authors	 checking	
model	details	before	journal	submission	and	for	journal	reviewers/
editors	 checking	 the	 compliance	 and	 completeness	 of	 submitted	
rmm	 objects.	To	allow	a	broader	user	base	 to	easily	 evaluate	rmm 
objects,	we	have	developed	a	web‐based	graphical	 interface	 (with	
the	R	package	shiny;	Chang,	Cheng,	Allaire,	Xie,	&	McPherson,	2019)	
that	enables	users	to	upload	an	rmm	object	either	as	a	csv	or	RDS	
(R’s	data	format	for	a	single	object)	file	and	check	for	missing	fields	
or	standardization	issues	(Figure	3).	It	can	be	accessed	within	R	using	
the	two	commands:

library(rangeModelMetadata)

rmmCheckShiny()

Because	shiny	applications	are	built	over	the	top	of	R,	this	allows	
us	to	use	the	exact	R	code	that	console	users	would	use	to	check	
rmm	objects.	The	code	used	for	checking	and	the	results	can	read‐
ily	be	exported	so	that	editors	can	share	these	results	with	authors	
without	ambiguity.	Finally,	the	application	includes	options	to	submit	
multiple rmm	objects	to	report	differences	among	them	for	compar‐
ing	with	previous	studies.

Defining	community	standards	can	support	 reporting	and	help	
encourage	best	practice	approaches	 to	 science.	Suboptimal	meth‐
odologies	will	become	more	immediately	transparent	and	requests	
for	 metadata	 information	 will	 encourage	 researchers	 to	 conduct	
more	 comprehensive	 analyses	 and	 supply	 information	 that	 is	 vital	
for	their	peers	to	understand,	evaluate	and	use	their	work.	Araújo	
et	al.	(2019)	recently	proposed	a	set	of	best	practices	and	reporting	
standards	for	the	use	of	species	distribution	models	in	biodiversity	
models;	our	metadata	standards	and	tools	reflect	these	same	ideals.	
For	example,	best	practices	can	be	established	by	defining	a	 fam‐
ily	of	the	entities	required	for	biodiversity	assessments	(e.g.,	a	new	
biodiversity	 family).	 By	 proposing	 standardized	 values	 associ‐
ated	with	 acceptable	 practices	 for	 the	 biodiversity	 use	 case,	 best	
practices	can	be	clearly	defined	[e.g.,	to	characterize	the	quality	of	
predictor	variables	proposed	by	Araújo	et	al.	(2019)].

F I G U R E  2  An	example	rmm	object	template	generated	in	R.	
Note	the	hierarchical	list	structure.	This	example	includes	only	the	
entities	that	are	considered	fundamental	for	use	with	every	range	
model.	Top	level	fields	are	indicated	with	bold

https://github.com/tdwg/dwc
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Community	standards	mean	that	both	smaller‐scale	efforts	or	
larger	 taxon–region‐specific	projects	 that	produce	 range	models	
can	do	so	 in	a	way	that	supports	community	efforts	and	assures	
that	catalogues	across	independent	efforts	can	be	developed.	Any	
downstream	uses	will	 benefit	 from	 the	 transparency	enabled	by	
the	standards,	which	should	enhance	 the	 rigor	and	credibility	of	
range	models	for,	for	example,	conservation	application	for	more	
applied	outcomes.	Similar	to	how	standards	such	as	Darwin	Core	
or	 Humboldt	 Core	 are	 facilitating	 the	 combination	 of	 point	 and	
inventory	 data	 of	 often	 vastly	 different	 origins	 (Guralnick	 et	 al.,	
2017;	Wieczorek	et	al.,	2012)	in	support	of	aggregators	such	as	the	
GBIF,	we	hope	that	RMMS	and	their	future	evolution	will	set	the	
stage	for	a	more	programmatic	synthesis	of	range	models	and	their	
products.	For	example,	 in	MOL,	which	 is	 integrating	biodiversity	
information	 to	develop	a	 range	of	 species	distribution	 resources	
and	both	produces	and	consumes	range	models,	RMMS	open	up	
the	opportunity	for	a	more	informed	visual	and	quantitative	com‐
parison	and	eventually	 integration	of	 range	models	produced	by	
different	 groups.	Thus	 the	 standards	open	 the	door	 for	 contrib‐
uted	range	models	from	taxon	experts	to	enable	their	aggregation	
and	 integration	 in	 support	 of	 advancing	 the	 biodiversity	 knowl‐
edge	base	broadly.

As	RMMS	evolve	 and	 grow,	we	will	 facilitate	 other	 software	
developers	 to	 link	 their	 work	 easily	 to	 rangeModelMetadata 
and enable rmm	objects	to	be	largely	autofilled	based	on	the	out‐
put	of	other	R	packages.	For	example,	in	complex	cases	involving	
more	comprehensive	range	modelling	workflows	such	as	Wallace 
(Kass	 et	 al.,	 2018),	 an	R‐based	ecological	modelling	 software,	 or	
those	 used	 by	BIEN	 and	MOL,	 filling	 in	rmm	 object	 entities	 can	
be	 built	 into	 the	 workflow.	 In	 Wallace an additional top level 
field, wallace:,	is	added	to	store	additional	information	that	can	
be	 used	 to	 reproduce	 a	 session.	 Other	 workflows	may	 similarly	

benefit	from	reading	in	settings	from	rmm	objects	to	automatically	
select	parameters,	in	which	case	rmm	objects	would	serve	as	au‐
tomatic	 lab	notebooks	 to	 reproduce	analyses.	This	next	stage	of	
integration	with	other	software	tools	will	serve	as	a	way	to	further	
refine	 and	maintain	 the	metadata	 dictionary	while	 engaging	 key	
range	modelling	teams	in	the	process.

The	range	model	metadata	standards	that	we	propose	provide	a	
number	of	tools	to	clarify	and	streamline	reporting,	sharing,	evaluat‐
ing	and	searching	range	models.	We	consider	this	the	beginning	of	a	
community	process	rather	than	its	endpoint,	and	the	standards	are	
therefore	software	agnostic,	extensible	and	readily	updated.	If	fur‐
ther	engagement,	adoption	and	advancement	by	others	is	success‐
ful,	 the	proposed	 standards	hold	 long‐term	benefits	 for	 the	 larger	
community	and	the	impact	of	their	work.
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