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Unlocking ground-based imagery for
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Fine-grained environmental data across large extents are needed to resolve the
processes that impact species communities from local to global scales. Ground-
based images (GBIs) have the potential to capture habitat complexity at biologically
relevant spatial and temporal resolutions. Moving beyond existing applications of
GBIls for species identification and monitoring ecological change from repeat
photography, we describe promising approaches to habitat mapping, leveraging
multimodal data and computer vision. We illustrate empirically how GBIs can be
applied to predict distributions of species at fine scales along Street View routes,
or to automatically classify and quantify habitat features. Further, we outline future
research avenues using GBls that can bring a leap forward in analyses for ecology
and conservation with this underused resource.

An emerging approach for habitat mapping and biodiversity research

In a rapidly changing world, it is more important than ever to understand the processes driving
biodiversity dynamics. Fine-grained data on habitats and environmental factors across large
extents are a core piece of the puzzle towards a fuller understanding of the processes determining
species community changes across spatial and temporal scales [1,2]. Such data can serve to
monitor species’ responses to human-induced environmental change, test the predictive ability
of standing ecological theories, and evaluate effects of conservation actions.

Airborne remote sensing (see Glossary) from satellites, airplanes, and drones is quickly improving
and providing some of these needed data products [3,4]. However, the lack of public imagery of
<10 m pixel resolution with global coverage restricts the quantification of local and short-term
processes that affect species communities across scales [1]. Further, the orthogonal nature of
much airborne remote sensing data and the ground-truthing needed when appending biological
information introduce limitations. For example, understoreys in dense forests, regions with preva-
lent cloud cover, mountain gorges, and vertical habitats like cliffs remain largely hidden to airplane
and satellite remote sensing, especially for spectral sensors [5-7]. In situ habitat data can help
validate and complement remote sensing [8], but new field collections are costly and skewed
towards regions with more resources: temperate North America and Europe. Closing data gaps
in regions with limited resources will require novel approaches to automate data collection and
leverage existing but underused datasets to fill in missing information.

GBls are a promising complement to airborne remote sensing for mapping habitat characteristics
at the fine scales needed. The GBls that are useful for habitat mapping capture the local habitat in a
photo with spatial coordinates and a time stamp, providing a stepping-stone between large-scale
remote sensing data and individual organisms. The availability of such images has exploded in the
past decades with the expansion of Street View, social media, photo deposits such as Flickr,
camera trap databases, and digitized archives of historical landscape photos [9-11]. Google Street
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View alone provided panoramic and 360° images along 16 million kilometers in 2019, correspond-  “Correspondence:
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The recent review of existing applications of repeat GBIs and public archives [12] evidences the ~ (5- Normand).

emerging interest in boosting this underused data source. Depauw et al. [12] showcased how

temporal changes in species occurrences and landscape features can be quantified from images

alone. Here, we focus on the extraction of information from multimodal approaches, combining

multiple images and ancillary data. We provide an overview of existing usages of GBIs for habitat

mapping, and propose new multimodal and computer vision applications within ecology

research. We then outline ways forward for unlocking the full potential of these data sources for

further understanding species—environment relations.

The problem of habitat mapping

Accurate quantification and representation of wildlife habitats is key for understanding species—
environment relationships. Habitat mapping seeks to represent and predict biological patterns
based on environmental gradients [13]. Reliable maps are essential to implement conservation
efforts, yet inconsistencies in the accuracy and precision of current maps require urgent develop-
ment in this area [1,14].

Approaches to mapping focus on classification and/or quality assessment. Terrestrial landscapes
are typically classified into vegetation types based on phytosociology (i.e., the composition and
cover of plant communities), or, increasingly, into habitat types based on biotope concepts that
account for geographic, abiotic, and biotic features [15]. Such classifications are the foundation
for policies and monitoring schemes like the European Union (EU) Habitats Directive. However,
inconsistent interpretations of how to classify habitats across jurisdictions, and even across indi-
vidual experts, introduces high uncertainty when identifying endangered ecological communities
and comparing habitats across regions [16,17].

Similar issues affect the quantification of habitat quality. Ecologists have long proposed that
structurally complex habitats enhance species richness [18,19]. Hence, many indices of struc-
tural complexity (e.g., fractal dimension, rugosity, foliage height diversity) have been developed
to estimate habitat quality and diversity in the field as a surrogate for richness or for capturing
the habitat features important to specific species [20]. However, complexity measures are often
ambiguous for interpretation, hindering consistent application [21].

Thereis a need for comparable and repeatable measures to quantify, classify, and map ecological
complexity of habitats. As the focus of conservation changes towards supporting ecosystem
dynamics and processes instead of static baseline conditions, this need is only increasing
[14,22]. So could GBls be part of the solution? Could we classify the habitat and quantify its quality
for a species simply based on a photo?

Existing usages of GBls for habitat mapping

GBls have mostly been used to identify species or specific landscape features directly visible from
the image (cf. [12]), yet the idea of assessing habitat characteristics and quality from GBls is not
new. In the 1950s, Evans and Coombe [23] used analog hemispheric photographs to estimate
light conditions in woodlands. Later, Alados et al. [24] applied metrics of fractal geometry and
structural heterogeneity to study plant responses to grazing based on photos. Such uses of

350 Trends in Ecology & Evolution, April 2024, Vol. 39, No. 4



Trends in Ecology & Evolution

GBls can reduce time-consuming field measurements of structural features, and can enable
analyses of the study objects based on photographic records [25,26].

Descriptive statistics developed for image analysis are a step towards objective metrics of com-
plexity. The texture of images contains latent information on the structural and spatial arrangement
of objects captured. Applications of texture analysis of GBIs [e.g., with the mean information
gain (MIG) index] include capturing old-growth forest structure [27], correlates of functional
composition of riparian plants [28], and associations between vegetation complexity and bat
occurrences [29]. However, most recent developments of image complexity metrics stem
from marine and remote sensing research: for example, from studies of species—habitat rela-
tionships in coral reefs [30,31].

So far, quantitative analyses for habitat characterization in ecology have relied on ‘semi-manual’
approaches, only partly aided by computing tools. Two exceptions are the use of computer vision
on Street View imagery to map breeding habitats for dengue mosquitoes (Aedes sp.) [32] and to
predict indicator species richness from image classifications [33]. Fine-grained habitat mapping
and characterization across large extents will require a certain level of automation. In the following
sections, we discuss the most promising avenues of multimodal approaches to analyze GBls, and
how advances in computer vision from other research fields can be extended to habitat mapping.

Habitat characterization with multimodal approaches

The adage of ‘a picture is worth a thousand words’ reflects the fact that images contain a lot of
information which can be difficult to extract. A powerful way to translate the information to quan-
tifiable components is to combine individual or sets of GBIs with other data types (Figure 1).

One challenge arises when converting 3D landscapes into 2D images: distortion of distances and
areas. However, monoplotting and simultaneous localization and mapping (SLAM) tech-
niques can combine individual GBIs with 3D data such as high-resolution digital elevation models
(DEMSs) or light detection and ranging (LIDAR) point clouds. This involves merging spectral and
structural information, allowing the quantification of habitat area or vegetation structure on the
georectified images [34-36]. Complementing GBIs with airborne remote sensing or 360° images
can provide context to mitigate issues with concealed landscape regions, preventing misinterpre-
tations such as confusing a nearby hedgerow with a forest.

Multiple images of the same landscape scene also offer interesting possibilities. Sets of images along a
spatial gradient — such as those captured by Street View-style photography or stereo-photography —
can serve to measure objects with photogrammetry, as done for complex morphological traits
such as deer antlers [37] and canopy height from aerial stereo-images [38]. Extended to GBls,
photogrammetry could help estimate the height, biomass, and structure of individual tree crowns
or smaller plants, and provide insights into the structural variation of forest patches along environ-
mental gradients [12,39].

Similarly, images repeated along temporal gradients can help us to understand habitat change
dynamics [40]. Repeat photography of archive imagery often offers higher temporal depth and
resolution than airborne remote sensing, especially useful in places with fast vegetation dynamics
or with complex topography [12,41]. If compiled across large extents representing orthogonal
gradients of environmental change, such approaches could help attribute the importance of
drivers like land use versus climate change. A digital archive such as the Mountain Legacy
Project in the Canadian Rocky Mountains provides >120 000 historical photos and 8000
repeats, enabling the mapping and analysis of a century of tree-line changes and their drivers [42].
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Glossary

Computer vision: discipline within
artificial intelligence (Al) that focuses on
methods to automate the processing,
analysis, and interpretation of information
from digital images.

Ground-based images (GBls):
landscape scene captured in a
photograph with a spatial and temporal
reference.

Habitat: the group of physical and
chemical parameters forming spatial
gradients across a landscape.

Mean information gain (MIG) index:
information theoretic measure of
structural complexity in spatial data used
to quantify habitat complexity in images
of natural scenes. Values range from O
for images with pixels distributed
randomly to 1 for images of a single solid
color. Intermediate values are associated
with spatially heterogeneous data.
Monoplotting: a technique for relating
individual, oblique ground-based or
aerial photographs to a digital elevation
model of the corresponding landscape.
The technique allows one to georeference
the photograph with corrections for tilt
and relief.

Multimodal: refers to an approach
using data spanning multiple types and
contexts, such as GBIs, species
occurrences, text labels, remote sensing
images, climate data, etc. Multimodal
machine leaming approaches enable the
construction of more robust models for
prediction and classification by fusing
various data forms, in some ways
mimicking human intelligence.
Ontology: a set of concepts and
categories in a subject area used to
represent their properties and relations.
For habitat mapping, an ontology helps
standardize habitat descriptors, including
physical properties and environmental
processes.

Photogrammetry: the science of
collecting and measuring objects from
images, including tools like Structure
from Motion that applies triangulation to
estimate and quantify 3D structures from
overlapping 2D image sets.

Remote sensing: process of acquiring
information about areas from a distance.
In this paper, we use the expression
‘airborne remote sensing’ for data
acquired from a drone, aircraft, or satellite.
Simultaneous localization and
mapping (SLAM): the process of
simultaneously estimating camera pose
and 3D structure of a scene. Visual
SLAM uses images in the process, and
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Multimodal analyses at the scale of features or pixels on images add to existing metrics of image ~ can be indirect (relying on feature

. " i . . . . . matching from multiple images), direct
complexity. Further development of such descriptive statistics will ultimately help in the investiga- (relying directly on pixek-ievel data
tion of relationships between habitat diversity and biodiversity, with more detailed metrics of  \yithout feature extraction), or hybrid

habitat complexity that are repeatable across ecosystems. (combining the two techniques).

‘Habitat recognition’ and habitat suitability models

Alongside the development of objective metrics for habitat descriptors, computer vision offers
opportunities for automatic habitat classification and assessment of habitat quality for biodiver-
sity. Advances in GBI analysis within socioeconomic and human health research are particularly
relevant. Computer vision perception tasks have been successful in classifying neighborhoods as
‘safe’ or ‘unsafe’, predicting housing prices, and monitoring socioeconomic developments [43].
Similarly, the interest in associations between greenspace and human health in cities has spurred
research using automated segmentation and classification to quantify greenspace from Street
View products across large extents [9]. Despite the similarity of the problems, such approaches
remain largely unexplored for GBI-based habitat mapping (but see [33]).
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Figure 1. Multimodal characterization and mapping of habitats with ground-based images (GBIs) of a landscape. Upper part shows opportunities of habitat
characterization with GBls, with example outputs derived from combining GBls with other datasets applying integrative tools. Lower part shows the weaknesses of GBI
approaches, illustrating main current challenges and possible solutions with examples for inspiration in the published literature (see also Box 3). The challenges highlighted
can be relevant for more than one application. Abbreviation: DEM, digital elevation model. See also [9,12,36,50,52,53].

352  Trends in Ecology & Evolution, April 2024, Vol. 39, No. 4



Trends in Ecology & Evolution ¢? CellPress

Image recognition algorithms can automatically classify images if trained with large sets of GBls
labeled with land cover or land use information (Box 1). Existing images can be labeled manually,
as done for species on camera trap datasets or remote sensing images, and could be crowd-
sourced [44,45]. Alternatively, georeferenced GBIs can be enriched with other datasets by spatial
overlay. The Eurostat Land Use/Cover Area frame Survey (LUCAS) inventory program provides
>5.4 million labeled GBIls across the EU. The images have been used mainly for ground-
truthing maps derived from remote sensing [46], but with just a small subset, we show good
results in automatic habitat classification (Box 1).

Very-high-resolution habitat models of species can also be created by labeling georeferenced
GBls with occurrence data. With this approach, studies have linked human health to exposure
to greenspaces with Street View imagery, which reflect what humans experience on the ground
better than satellite imagery [47,48]. As we show in Box 2, this whole-image classification

Box 1. Automating habitat classifications from European land use monitoring images

As part of the EU-wide Land Use/Cover Area frame Survey (LUCAS), Eurostat has collected and labeled GBIs every 3 years since the early 2000s. The program was
developed for mapping and monitoring land use and land cover changes across the EU. Surveyors captured sets of five images (one of the point, and one for each
cardinal direction) in a ~240 000 stratified sample points within a 2-km regular grid across the EU territory. In 2020, the database included >5.4 million geolocated photos
with labels for up to 106 variables following a standardized, hierarchical nomenclature [54].

The labeled LUCAS images and metadata represent a first step towards providing a high-quality image recognition dataset for automatic classification of new ground-
based imaging and reduce manual labeling, akin to existing image recognition of, for example, species, objects, and perceived neighborhood safety [43-45]. Besides the
potential extension to GBIs from sources other than LUCAS, such automated classifications could accelerate ground-truthing for, for example, land cover maps from
airborne remote sensing. As an initial test (Figure I), we used a convolutional neural network (CNN) model to automatically classify a balanced subset of 1093 LUCAS
images from Denmark into four habitats (croplands, grassland, artificial land use, and woody vegetation), achieving an overall accuracy of 0.734 and a k value of
0.650. Automatic classification could be improved by increasing the number of training images, balancing the classes further, or exploring the use of majority voting with
the LUCAS dataset. Classification probabilities output by the model could be used as input in species distribution models as proportion data.

True Predicted P(forest) = 1.000 P(woody) = 0.293
P(cropland) = 0.294
Correct Incorrect: new tree plantation
Fros Artificial : k- < s
Artificial land
land
Cropland
Cropland
P(woody) = 0.259 P(forest) = 0.171
P(grassland) = 0.267 P(artificial) = 0.301
Incorrect: mixed land cover Incorrect: mixed land cover
Grassland ; ;
Grassland
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Figure I. Image classification success for four land-cover classes and examples of misclassifications. (A) Sankey chart of relative distribution of images with
predicted land-cover classifications consistent (blue) or inconsistent (red) with ‘true’ class as defined by surveyors on site. (B) Example images show that
misclassifications — in this case for true class forest — likely arise due to the landscape context used by surveyors in the field and the difficulty of classifying transition
vegetation and mixed land-cover habitats.
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approach is also promising for species sensitive to fine-scale habitat structures and undergo a
majority of their life cycle within a relatively small territory.

As for multimodal GBI approaches, we see several research and conservation avenues that could
benefit from the computer vision approaches outlined. Carefully tuned habitat models could be
applied to other GBI sources (public image archives, entire Street View networks) to identify
suitable locations for species of interest. Such models can also help monitor changes in habitat
quality over time with repeated imagery. Further, GBI-based model predictions could serve as
input to climate envelope models or hierarchical models to study questions on the relative impor-
tance of broad versus local-scale environments for species distributions. The ability of GBI-based
approaches to provide new insights into biodiversity—environment relationships and/or improve
local scale predictions of species distributions remains an open question, but our study cases
show promising results (Figure 1 and Boxes 1 and 2).

Challenges and the way forward

The promising opportunities have a ‘dark underbelly’ of methodological and conceptual challenges
that must be surmounted to unlock the full potential of GBIs for habitat mapping (Figure 1 and
Box 3). High predictive performance of computer vision algorithms requires large amounts of
data, which in turn sets high demands to label standardization, matching of labels and images,
and representativeness of geospatial data.

A standardized labeling system for characterizing habitats and their complexity customized for
biodiversity research has been missing (but see [14]). There is a need for an ontology for
knowledge-driven approaches to GBIs, whether for manual labeling by researchers, crowd-
sourced identification of habitat features, or automatic habitat classification. Such an ontology,
together with well-curated image datasets — just as for remote sensing [49] — will ensure repeat-
ability across observers and geographical regions, help describe images in a standardized way,
and improve the accuracy of computer vision classifications and support their ecological interpre-
tation. Such datasets have enabled the transfer of tools across disciplines, but are still missing for
habitat mapping. In the meantime, semi-supervised labeling [50] using, for example, LUCAS, or
enriching GBIs with other spatial datasets (intactness index, ecosystem functional type, or
IUCN habitat maps [14,51]), may be a next-best choice.

Ensuring spatial alignment across multimodal data is also essential. For instance, monoplotting
techniques require the identification of ground control points on the GBIs and an elevation
model. Control points must further be temporally stable for rephotography. Emerging advances
in computer vision allow for (semi-Jautomated identification of ground control points (for the sub-
set of GBIs containing features such as boulders, mountain tops, or buildings), increasing the
prospects for upscaling monoplotting to large areas (cf. [31,52]). Similarly, advances in SLAM
and computational rephotography of buildings and humans can use photogrammetry and
feature-matching to help relocate the vantage point and match the historical image during GBI re-
capture or post-processing of image sets [36,40,53].

Box 2. Tracking habitat suitability from landscape images

Using repeat Google Street View images, we can predict regional changes in roadside habitat suitability for the threatened sand
lizard (Lacerta agilis) in Denmark. We used the pre-parameterized Xception convolutional neural network model architecture in
TensorFlow [55] to estimate the probability of sand lizard presence from a landscape image. The image classification is thus
purely data driven and is most suited as a predictive model and for generating hypotheses on potential drivers of habitat suitability
and temporal changes. Ecological interpretation could be aided by the application of habitat characterization approaches (see
Figure ). Understanding the true value of species detection via ground-based imaging will require studies exploring how these
images capture complementary and overlapping information compared to existing remote sensing methods.
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Figure |. Schematic of the procedure for estimating the probability of the presence of the sand lizard (Lacerta
agilis) from ground-based images (GBIs). (A) Example GBlIs spatially overlaid with known absences and presences of
L. agilis that we used in model training. (B) Three examples of estimated probabilities, spanning from low to high probability
of lizard presence. For new images with no pre-existing information on species presence, the estimated probability reflects
how suitable a habitat is for sand lizards: in this case expressed as P(L. agilis). (C) Georeferenced landscape images (here
provided by Google Street View) can give an overview of potentially suitable habitats without any prior fieldwork or
knowledge of species distribution. (D) Based on repeated landscape images across time (from Google Street View)
changes in habitat suitability can be estimated. The panel shows changes across a 12-year period for 15 known sand
lizard populations. Trends indicate changes in suitability >0.10.

Finally, applications using GBIs from Street View imagery face the problem of geographical biases.
Google Street View products, for instance, are heavily biased towards cities and roads of westemn
countries. Such biases may lead to unintended errors in predictions of deep learning algorithms.
Models trained in western countries could fail to identify habitats for a species in countries with low
image coverage: for example, if models only recognize landscapes with specific cultural branding
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Box 3. How far are we from upscaling ground-based imaging for habitat mapping?

Using GBIs for habitat mapping in ecology presents unique technical challenges to ensure image quality and accuracy of
spatial referencing. Ethical aspects also require consideration in responsible data handling.

() Standardizing image quality from disparate sources of GBIs — with, for example, blurriness, lens distortion, and changing
light conditions — is a significant challenge. Initial applications of GBls for habitat mapping can use standardized sources like
Land Use/Cover Area frame Survey (LUCAS). When expanding to crowd-sourced datasets of more mixed quality, existing
evaluation methods such as signal-to-noise ratios and human or deep-learning assessments can score quality [56]. Typically,
standard quality is achieved simply excluding poor images (sometimes 99% of images for high quality demands [42]).
Progress in image enhancement techniques (such as super-resolution) deserves more exploration in research [57,58].

(ii) Spatial referencing is a necessary yet challenging step after standardizing quality of GBI for accurate quantification of
habitat features on the image. Spatial referencing and alignment of with additional images or other sources such as digital
elevation models (DEMs) can be done with monoplotting tools but require ground-control points and manual input, which
limits upscaling to larger sets of images [34,41,42]. Applications of semi-supervised identification of ground-control points
and image segmentation have succeeded in quantifying flooding from challenging images, although with modest accuracy
[62,59]. Similar approaches have achieved mean error in height estimation down to 0.218 m from GBls for urban features
the size of a small tree [60]. The approach is scalable, but requires visible objects of known height (a door in this example),
which limits applications in habitat quantification. Visual positioning systems (VPSd) and simultaneous localization and
mapping (SLAM) are already used in urban analytics and robotics to estimate camera position and extract features from
GBls stemming from different camera types [36,61]. Together with tools such as SegmentAnything for feature extraction
[62], such computational advances are promising for more accurate spatial referencing of natural scenes without ground
control points. Research in their applicability within habitat mapping and rephotography, and further development of tools
for propagating uncertainties in estimates of spatial features [39] will be essential to upscale the use of GBls in ecology.
Following frameworks that translate existing geographical information standards to GBIs [63] can ensure accuracy assess-
ments and management of uncertainty and support adequate method selection for ecological applications.

(iii) Ethics and privacy are important to consider when working with GBIs, regardless of data source (social media, crowd-
sourcing, or the public domain) [12,64]. Solutions to protect privacy include anonymizing GBIs prior to analysis and pub-
lication (e.g., blurring human faces as done in public Street View imagery). Responsible data-sharing should be
ensured through early adoption of best practices and recommendations from related big data fields [12,64].

as suitable. Yet, with over six bilion subscriptions worldwide', smartphones are now ‘a technology of
the many” and more accessible than, for example, drones. Together with the increased availability of
360° cameras that can be handheld or mounted on backpacks, imagery is increasingly collected
beyond western countries and off the main roads [9]. Such bottom-up approaches to Street View
imagery collection on open access platforms (e.g., Mapillary) offer the most promise to overcome
these spatial biases, and grows the importance of citizen involvement in biodiversity monitoring.

Concluding remarks: GBIs and computer vision — paradigm shift in ecological
analysis or distracting hype?

The rapid developments in air- and space-borne remote sensing products beg the question: why
should we bother to use GBIs? We do not expect GBls alone to be a golden solution to species
and habitat mapping. However, the high resolution, easy-to-replicate nature, and horizontal
landscape position — providing a complementing vantage point to other data sources — make
GBIls a powerful tool in multimodal approaches and computer vision applications. Utilizing the
full potential of GBIs will rely on progress in the data acquisition pipeline, robustness in object
detection and classification algorithms, and ecologists’ ability to use the specific strengths of
this type of data (see Outstanding questions). The potential return on investment is large: a leap
forward in understanding of species—environment relationships across spatial scales, improving
monitoring of species community trajectories, measuring the effects of conservation manage-
ment actions, and ultimately contributing to the alleviation of the biodiversity crisis.

Acknowledgments
This research was supported by the Carlsberg Foundation via grant CF16-0942 to N.M-H. L.L.I. received support from the
Natural Sciences and Engineering Research Council (grant DGECR-2022-00328). D.C. and S.N. were supported by

356 Trends in Ecology & Evolution, April 2024, Vol. 39, No. 4

Trends in Ecology & Evolution

Outstanding questions

Can GBIl-based models provide new
insights into species—environment
relationships over time and space?

How much can the integration of high-
resolution GBls increase the predict-
ability of species occurrence and rich-
ness models (from local to global
scales)? We need empirical evidence
that this approach is worth the effort
of heavy computation and complex
analytical frameworks.

Can we develop standardized methods
for quantifying and understanding
habitat change dynamics?

To what degree do GBls capture
complementary and overlapping
information from airborne remote
sensing products?

What are the most useful metrics for
characterizing habitats from images
across habitat types, and how can we
integrate them into a standardized
ontology for labeling?

Do GBls from 360° cameras offer
significant information advances over
‘standard’ GBls (e.g., from phone
cameras)?

Can we develop easy-to-use pipelines
and guides for ecologists to process
GBls and integrate them with remote
sensing, or analyze before/after GBI
images from different sources?

How much can advances in GBI-based
research contribute to the democratiza-
tion of biodiversity monitoring across the
globe in terms of species and habitat
data collection, labeling, and education
through citizen science?
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