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Review
Glossary

Biome: Robert H. Whittaker first developed the biome concept to classify the

different realms of life found on Earth. His classification scheme was based on

two abiotic factors – precipitation and temperature – that he viewed to have the

largest impact on the distribution of species and their traits and function.

Subsequent biome classification systems have considered the biomes found in

the absence of human agency and so exclude much of Earth’s terrestrial area.

One exception is the anthrome framework, which includes biomes engendered
Few biologists have studied the evolutionary processes
at work in indoor environments. Yet indoor environ-
ments comprise approximately 0.5% of ice-free land area
– an area as large as the subtropical coniferous forest
biome. Here we review the emerging subfield of ‘indoor
biome’ studies. After defining the indoor biome and
tracing its deep history, we discuss some of its evolu-
tionary dimensions. We restrict our examples to the
species found in human houses – a subset of the envir-
onments constituting the indoor biome – and offer pre-
liminary hypotheses to advance the study of indoor
evolution. Studies of the indoor biome are situated at
the intersection of evolutionary ecology, anthropology,
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architecture, and human ecology and are well suited for
citizen science projects, public outreach, and large-scale
international collaborations.
by humans [2]. However, even anthromes deal only with outdoor environments.

Indoor biome: the ecological realm comprising species that reside and can

(although do not necessarily always) reproduce in enclosed and semi-enclosed

built structures.

Indoor environment: the space enclosed by walled and roofed structures built

by organisms to shelter themselves, their symbiotic partners, or stored goods.

For the purposes of this review we focus on the indoor environments created

by humans.

Trends in Ecology & Evolution, April 2015, Vol. 30, No. 4 223

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tree.2015.02.001&domain=pdf
http://dx.doi.org/10.1016/j.tree.2015.02.001
mailto:LJM222@cornell.edu


Box 1. Built structures other than houses

In this review we have focused on houses, but many other buildings

constitute the indoor biome. These include places of worship, food

storage areas, commercial spaces, factories, offices, and restaurants

[2]. In addition, houses are not closed systems; many materials flow

into and out of them. For instance, a diverse range of microorgan-

isms is present in municipal water supply and piping biofilms that

enter homes via water lines, so mapping the inflow and outflow of

organisms into the indoor biome may be a nontrivial challenge.

Furthermore, it should be recognized that studies of indoor biomes

cannot avoid intersecting questions of politics and justice. It should

not be taken for granted that humans live in houses. An estimated

100 million people were homeless in 2005 [United Nations

Commission on Human Rights (2005) Press briefing by special

rapporteur on right to adequate housing (http://www.un.org/News/

briefings/docs/2005/kotharibrf050511.doc.htm)], while human struc-

tures are sometimes abandoned and may persist as indoor

environments without a human presence. It should also not escape

notice that structures also vary widely by place. For example,

approximately 50% of Canadians live in houses with seven or more

rooms, while only 9% of people from Burkina-Faso do so [United

Nations Department of Economic and Social Affairs (2012)

Table 21. In Compendium of Housing Statistics (http://unstats.un.

org/unsd/demographic/sconcerns/)]. It is therefore important, as

with all biological studies, to be context specific [75].
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The indoor biome
Evolution occurs everywhere, even in the most densely
settled places. Indeed, Darwin based his arguments for
natural selection on domesticated plants and animals.
Recent work in the fields of evolutionary biology, ecology,
anthropology, and building sciences turns our attention
back to species that coexist with humans. Much of this
work is conducted in outdoor spaces [1], but a growing
body of work addresses evolution in the indoor biome (see
Glossary).

The indoor biome is expansive. Estimates of the extent
of residential and commercial buildings range between
1.3% [3] and 6% [4] of global ice-free land area, an area
as extensive as other small biomes such as flooded grass-
lands and tropical coniferous forests (Figure 1). In addi-
tion, whereas the area of flooded grasslands and tropical
coniferous forests is shrinking, that of the indoor biome is
rapidly growing [5], as is our ability to study indoor species
thanks to citizen science, new approaches in genetics, and
calls to integrate humans into the ecosystem concept [6–
10] (Figure 2).

Here we review the rich but fragmented literature on
evolution in the indoor biome. For the purpose of brevity we
restrict our examples to one type of built structure –
human dwellings – although the indoor biome encom-
passes all built structures (Box 1, Table 1).

A brief history of the indoor biome
The nests of birds, termites, and ants are part of the
extended phenotype of those organisms, as are those of
our closest living relatives, the great apes, which construct
nests across a broad range of environments. Our common
ancestors would probably also have used regular sleeping
places with constructed nests [11]. Primate nests, like
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modern built environments, are places where bodies ha-
bitually rest and thus suitable places for organisms that
depend on access to bodies to reproduce. How the nest is
constructed thus influences the species to which the build-
er is exposed. Chimpanzees choose nesting sites and con-
struction methods that reduce arthropod parasites [12],
suggesting that, in the past, parasites imposed selection on
primate nesting behavior. Meanwhile, the evolutionary
history of many human ectoparasites and commensals,
including body lice, Demodex mites, and bacterial sym-
bionts, predates the origin of apes (and hence almost
5% 10% 15% 20%
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or biomes and the indoor biome.
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Figure 2. The trajectory of the indoor biome in one exemplar area, the island of Manhattan. The indoor biome in Manhattan is now nearly three times as large, in terms of

its floor space, as is the geographical area of the island itself. Historically Manhattan was an outlier, but as urban populations grow much, perhaps most, of the world’s

population will soon be living in areas with more floor space than dirt. Included on this figure are key changes in the development of the indoor biome, as manifested in

Manhattan. These changes are neither universal in the indoor biome nor necessarily unidirectional (the population, for instance, in Manhattan declined in the early 1900s),

yet, as emphasized in the text, when they occur have the potential to have large but poorly studied consequences on evolution indoors.
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certainly the first ape nest) [13,14]. Other species that
inhabit contemporary houses, including dust mites, some
beetles, and webbing clothes moths – many of which are
found in contemporary nests of mammals or birds – may
have first become associated with our ancestors subse-
quent to their construction of nests (e.g., [15]).

With time, some primates began to use caves as sleeping
sites [16]. Caves share more similarities with human
houses than do nests, as they are less variable in terms
of climate than the outdoor environment and represent
places where ectoparasites and other associates of homi-
nids could reliably find bodies and food. Bed bugs (Cimex
lectularius), for example, are speculated to have moved
from bats onto humans during a time when humans occu-
pied cave environments [17].

The first human houses emerged approximately
20 000 years ago [18]. Before the origin of agriculture,
houses were places where humans slept, mated, and ate
and where refuse accumulated. After the origin of agricul-
ture, trajectories differed among regions. In some regions,
225
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people shifted from sedentary to nomadic lifestyles or from
high- to low-density settlements [19]. Eventually, however,
in virtually all inhabited regions, urbanism arose, and with
it higher-density living.

Initially, humans designed houses to take into account
the climatic conditions of specific places [20]. Increasingly,
however, technological and political developments have
changed the relationship between house design and the
outdoor environment in affluent countries, cities, and
neighborhoods. As a result, apartments in Finland and
Singapore may now be very similar, independent of their
very different settings. These developments include: the
adoption of indoor plumbing in the late 1800s; electrifica-
tion and air conditioning of residences in the 1920s; elec-
trification of farms in the USA in the 1930s; and new
standards for ventilation and insulation following energy
crises in the 1970s (Figure 3).

Nevertheless, modern analogs of many historic indoor
biomes still exist (and in some regions predominate). As a
result, the global diversity of conditions within the indoor
biome is likely to be as great as it has ever been. For the
purposes of this review we attempt to consider the evolu-
tion of the indoor biome in light of the great modern and
historical variation in homes, but note that most studies of
indoor evolution are done in relatively new, relatively large
houses in North America and Europe.

Species of the indoor biome
Thousands of species – perhaps hundreds of thousands –
live in the indoor biome, many of them preferentially or
even obligately. A study of just nine habitats (e.g., kitchen,
bedroom) in each of 40 houses in North Carolina, USA,
documented more than 8000 bacterial and archaeal taxa
through molecular detection [21], while a study of 50 hous-
es in North Carolina, USA noted more than 750 arthropod
species, with often more than 100 species of arthropod per
house (M. Trautwein, unpublished). Similarly, a molecu-
lar-based survey of 11 houses in California, USA, found
hundreds of fungal taxa [22], and dozens of fungal species
have been cultured from showers and drains alone
[23]. Strong biogeographical patterns have been identified
for bacteria in residential kitchens [24] and inhabitants in
a new home can drastically influence the home microbiome
within a matter of days [25]. Molecular surveys have also
identified a suite of microscopic species in treated drinking
water [26].

What we know today about the natural history of the
indoor biome derives from the relatively small proportion
of indoor species that have been studied in any detail
(Box 2), a group biased toward species that humans at-
tempt to exclude from the indoor biome. It is from these
species that we begin to derive a more general story of the
evolution of the indoor biome.

Selection pressures in the indoor biome
Perhaps the only intentional actions humans take to alter
evolution in the indoor biome are attempts to extinguish
disliked species, whether through cleaning practices, the
use of biocides, or attempts to prevent species from colo-
nizing in the first place. The organisms subject to biocide
differ across regions and cultures as a function of which
226
animals are feared or disliked. What does not seem to vary
is a dislike or fear of at least a few organisms that live in the
home [27]. In many instances, the use of biocides has led to
the local extinction of susceptible genotypes and the in-
crease of less susceptible ones. Many insect species have
evolved resistance to insecticides [28], for example, and
multiple rodent species have evolved resistance to roden-
ticides [29]. Such species have evolved both the ability to
tolerate biocides and the behavior of avoiding biocide
ingestion. German cockroaches (Blattella germanica) have
evolved an adaptive behavioral aversion to glucose in
poison baits [30]. Many bacteria have evolved resistance
in response to the use of antibiotics in living facilities and
hospitals (e.g., [31]) and in the production of domestic food
animals (e.g., [32]). The antimicrobial triclosan has been
suggested to disfavor some microbial lineages in sink
drains while, like most biocides, favoring others [33].

Other selective pressures in houses remain unstudied.
These selective pressures result from choices humans
make as a result of their preference for living conditions,
design, or indoor climate. Globally, the distribution of
indoor climatic conditions and resources varies widely
because of both variation in outdoor climate and differ-
ences in the extent to which different types of home buffer
that climate. Many of the Western houses that have been
the focus of studies on indoor taxa are relatively decoupled
in terms of their climate from outdoor conditions (e.g.,
Figure 3A), such that many species of the indoor biome
are likely to have experienced recent selection favoring
lineages able to tolerate dry, warm habitats (Figure 3A,B)
relative to those that prefer moist, cool habitats [34]. While
seasonal patterns in temperature and humidity are buff-
ered by houses, the extremes at smaller scales (centimeters
and minutes rather than kilometers and days) can be as
great as those outdoors. Even within a single house, tem-
perature, humidity, salinity, pH, and other environmental
variables can span nearly the full range observed globally
outside. Bathroom showerheads, for instance, can go from
completely dry to saturated within hours (which favors
microorganisms able to take advantage of moisture-pulse
events, including pathogens) [23].

In the following sections, we outline three questions for
future research. (i) How did species come to populate the
indoor biome? (ii) Which traits does the indoor biome select
for? (iii) How will changes in human culture affect indoor
evolution?

On the origin of indoor species
Little research explores how species come to populate the
indoor biome. We hypothesize that, in many cases, pre-
adaptations allow species to colonize built structures and
then, having colonized, these species respond to local
selection pressures. The grain weevil (Sitophilus granar-
ius) appears to have evolved to feed on grains stored by
ants and rodents and thus was preadapted to make the
transition to grains stored by humans [35]. However, since
colonizing human-stored grains, S. granarius is likely to
have experienced strong selection for traits that facilitate
survival in the very different conditions of granaries. Sim-
ilarly, rodents of the genus Rattus appear to have been
predisposed to success as human commensals, with 14 of
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Figure 3. Ambient conditions in the indoor biome can differ substantially from outdoor conditions. (A) Paired outdoor (light gray) and indoor (black) values of mean relative

humidity and mean temperature recorded in 47 US states and the District of Columbia across a 4-month period. During this part of the year, most houses tend to be warmer

and less humid than adjacent outdoor environments, but some states, particularly in the southwest USA, do not follow this trend. (B) Localities within the USA differ in their

relative differences between indoor and outdoor ambient conditions. Orange bars show the difference between mean indoor and outdoor temperatures. Gray bars show

the same difference for relative humidity. (C) Three examples from across the USA demonstrate the difference in temporal variability depending on locality. Hourly point

temperature (8C) and percentage relative humidity measurements outdoors (gray) and indoors (black) across three states. Data recorded by iButton1 data loggers

(Hydrochron iButton model DS1923; Maxim/Dallas Semiconductor, Dallas, TX) between February 24, 2013 and June 24, 2013.
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Box 2. Categorizing species of the indoor biome

The species of the indoor biome can be separated into ‘intended

introductions’ and ‘unintended introductions’.

Intended introductions are species that humans intentionally

bring into indoor environments, often supporting their metabolism

and sometimes reproduction. These species include pets, house-

plants, and species used for food fermentation. Such species

possess traits that increase their probability of being indoors; these

traits and species evolve as humans select some lineages over

others, either intentionally or otherwise. While some intended

introductions may be true mutualists of humans, the fitness

advantage of living with humans for some other organisms, such

as domestic cats or flowering plants, is less clear (but see [76]).

Unintended introductions constitute the other species found in

the indoor biome – species that have long been associated with

humans but have been ignored by humans or deterred from

occupying human dwellings. These species include human com-

mensals, pathogens, and parasites as well as mammals, arthropods,

fungi, and other species that use indoor environments opportunis-

tically. Many of these species, such as rats (Rattus spp.) and the

house mouse (Mus musculus), have ancient relationships with

humans and have spread with humans and particular human

cultures.

The above framework excludes species that passively drift into

houses from surrounding environments but are not metabolically or

reproductively active inside houses. For these species, houses are

essentially restaurants, hotels, or cemeteries (ecological sinks or

traps). ‘Peridomestic’ species, for example, feed indoors and

reproduce outdoors [77].
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61 species found inside the indoor biome in at least some
region [36]. We speculate that fungal and bacterial species
in the home may also include taxa that were preadapted for
colonization, but in most cases too little is known about
indoor microbes to identify their colonization history. For
example, Abe and Hamada found that Scolecobasidium
fungus isolated from bathrooms and washing machines
formed a distinct clade most closely related to Scolecoba-
sidium humicola isolated from plant litter [37]. It is possi-
ble that fungal isolates from bathrooms represent a
recently evolved lineage adapted to indoor, soapy environ-
ments ([38] suggested as much). However, it is also possible
that the lineage from which these indoor populations
derive has simply not yet been sampled. As another exam-
ple, the bacterium Thermus aquaticus, which is often found
in water heaters, was originally hypothesized to have
evolved from ancestors from hot springs [39] but no one
has yet studied how this colonization event might have
occurred.

Phylogeographical and phylogenomic advances promise
to elucidate the stories of both indoor species and the
humans with whom they have traveled. Studies of the
black rat (Rattus rattus) reveal a complex history in which
rats colonized human built environments multiple times
independently in different regions [40]. The subsequent
history of evolution in these lineages illuminates patterns
of human migration and trade. The phylogeography of
insular populations of black rats reveals that many distinct
lineages have evolved since the human colonization of
Indian Ocean islands and these lineages reflect the indi-
vidual colonization histories of different islands
[41,42]. The spread of the Norway rat (Rattus norvegicus)
was later than that of the black rat (although also out of
Asia) and as it spread the Norway rat displaced the black
228
rat in many regions [43], setting the stage for the possibili-
ty of evolution in both species in response not only to
climatic gradients and isolation but also to each other’s
presence. Given that R. rattus has colonized most of the
world and, in doing so, now experiences great variation in
human living conditions, the species represents a potential
model organism for the indoor biome.

Most indoor taxa, despite being encountered every day,
have evolutionary histories that are poorly resolved. The
case of roaches is emblematic of the huge gaps that exist
even for species that are considered well studied. For
decades, it has been known that the center of species
diversity of the cockroach genus Blattella is Southeast
Asia, but only one of the 51 species, the German cockroach
(B. germanica), has become so specialized in the built
environment that it is not known to occur anywhere else
[44]. Although several studies have considered local popu-
lation dynamics in B. germanica, none has considered its
evolution relative to its likely sister taxa or wild popula-
tions in the region in which it is putatively native. The
situation is similar for most indoor species, be they ani-
mals, plants, fungi, bacteria, or others.

Our knowledge of the indoor biome would benefit from
phylogeographical and phylogenomic comparisons that
include both indoor taxa and outdoor congeners (e.g.,
[46]). The common bed bug (C. lectularius), for example,
occurs only in the built environment and has congeners in
nature – bat bugs – that could inform us about evolution in
the indoor biome [45]. The challenge in many cases will be
identifying potential sister lineages to include in analyses.
Exophiala, for example, is a black yeast commonly found in
sinks and dishwashers in houses and on steam-bath walls.
Its known counterparts in outdoor areas are found on the
skins of tropical fruits and, because of its occurrence
patterns, thermotolerance, acid tolerance, osmotolerance,
and melanization, its natural life cycle is thought to be tied
to that of frugivorous animals in the tropical rain forest
[47]. However, closer relatives might live in other habitats
but have not yet been studied.

Which traits does the indoor biome select for?
Many household organisms share phenotypes and beha-
viors with cave-dwelling organisms. Many indoor arthro-
pods have flattened bodies (e.g., bed bugs, cockroaches,
silverfish), presumably because this body type better fits in
crevices within houses. Some arthropods in houses, like
those that live in caves, have less acute vision but longer
antennae, which are often used to orient to edges (e.g.,
cockroaches, silverfish, crickets). Cave-dwelling microbes
are relatively unstudied but, based on the similarity of food
sources, substrates, and climates in caves and homes, some
species of house-dwelling microbes may have evolved in
caves.

In caves, animals tend either to lose their ability to
disperse (because dispersal is costly and the odds of finding
a new cave are low) or to evolve the ability to disperse
passively with animals able to travel to new caves, such as
bats. We predict a similar pattern in the indoor biome,
particularly in regions in which indoor and outdoor condi-
tions are very different. Urban populations of the weed
Crepis sancta that inhabit tree pits surrounded by concrete
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have adapted to produce non-dispersing seed types at a
higher frequency than rural populations [48] because it is
better to stay in a crowded pit than to die on the cement.
Wingless and blind invertebrates are common in barns,
where stored products are predictably transported, and are
patchily distributed at geographical scales that are large
relative to the ability of most invertebrates to actively
disperse [49]. Similarly, many indoor species appear to
have reduced dispersal ability. Camel crickets, some roach
species, bed bugs, silverfish, and booklice lack flight, al-
though flightlessness is relatively rare among insects
[50,51]. Even winged animals found indoors, such as web-
bing clothes moths, are often poor flyers [15].

Many bacteria in homes and human-dominated envir-
onments appear to be sufficiently ubiquitous in the air that
they are neither dispersal limited [52] nor able to prevent
dispersal into bad habitats. For these taxa, selection may
favor tolerance of indoor conditions (and their fluctuation)
rather than particular dispersal traits. Other taxa of bac-
teria and other microbes are able to reliably enter houses
on humans and their pets [21,25] or arthropods [53] and
some food-borne taxa arrive in houses within food.

In all organisms in homes, except those able to easily
move in and out, the fluctuating conditions experienced at
small scales in homes, such as on showerheads, should
favor tolerance of fluctuating stresses [23]. For arthropods,
this often involves reduction in metabolic activity. Indoor
ectoparasites (e.g., fleas, bed bugs) have evolved metabolic
strategies to withstand long periods without their human
or pet host (e.g., lower metabolic rate, delayed molting,
ability to engorge to several times their body mass)
[54]. Indoor silverfish (Lepisma saccharina) and firebrats
(Thermobia domestica) can survive long periods of starva-
tion and firebrats can actively absorb water from the
atmosphere [55]. Meanwhile, one of the most common
fungi in houses, Aspergillus fumigatus, can grow across
a broader range of temperature conditions than other
related taxa – an ability that may facilitate its survival
in varied indoor habitats [56]. Additionally, the bacterium
Deinococcus radiodurans, known for its extreme desicca-
tion and UV tolerance, appears to accumulate in building
dust over time indoors [57]. The adaptations that allow
microbes to survive in episodically stressful conditions,
such as those present in dishwashers, showers, and sinks,
may also favor pathogenic species and perhaps even the
evolution of pathogenecity [58] – a worrisome hypothesis,
given that we have recreated these conditions in houses
across the world.

Interestingly, the dependence of many indoor species on
passive or facilitated dispersal means that the composition
of species in a particular built structure is likely to be
stochastic (with the stochasticity being greater where the
amount of movement into the home is lower and for taxa
with poorer dispersal abilities). Both roaches and bed bugs
in apartments seem often to derive from single introduc-
tion events [59]. Until relatively recently, Norway rats
were unable to colonize Phoenix, AZ due to the relatively
inhospitable climate around the city [36]. As a consequence
of the stochasticity of colonization, parthenogenetic repro-
duction may be favored indoors. At least some species that
thrive indoors are facultatively parthenogenetic [e.g., the
American cockroach (Periplaneta americana), the Surinam
cockroach (Pycnoscelus surinamensis)] [60]. Whether the
incidence of parthenogenesis in indoor species is unusually
high has not been formally tested. A priori, animal species
that reproduce indoors may also have evolved the ability to
tolerate extensive inbreeding. Whether particular repro-
ductive strategies might also be favored in microbes in
indoor environments does not appear to have been consid-
ered.

How will changes in human culture affect indoor
evolution?
Subtle features of human culture have the potential to
have large impacts on evolution indoors. The spread of
parasites and other infectious agents often depends on
intimacy among humans and between humans and other
animals. For example, genital lice (Pthirus pubis) moved
from the ancestor of gorillas to humans in a moment of
some form of intimacy [61]. Close interaction has allowed
new microbes to enter human habitats through meat, milk,
dung, and common vectors (like flies, fleas, and ticks).
Classic epidemic viral diseases of humans have their ori-
gins in the animals that were domesticated early
[62,63]. In some cases, intimate interactions with nonhu-
man animals lead to the colonization of humans and homes
with species that spread globally; in others, they seem
likely to lead to more local populations.

A related aspect of human culture that may affect the
evolutionary trajectories of indoor species is a preoccupa-
tion with purity and pollution [64]. Many of the visible
organisms found in houses have a ‘disgust-evoking status’.
However, the organisms that elicit these responses vary
from place to place (although see [27]), as do the social
stigmas related to these organisms. Cultural conceptions of
what is clean or dirty ultimately drive how we behave
toward indoor species, especially those that we label ‘pest
species’, and consequently how we shape the indoor biome
[65]. One could argue, for example, that the widespread
presence of antibiotic resistance in the USA is due to an
industry-driven response to a cultural construct: the idea
of ‘germs’ [66]. The study of the influence of culture on
indoor evolution offers rich potential for new discoveries
and important case examples of rapid evolution.

Ecological theory suggests that the spatial arrangement
and density of indoor spaces within a region may also have
an impact on the evolution of indoor species, particularly
for those whose fitness is higher indoors than outdoors
[67]. Species–area relationships, island biogeographical
models, and even metabolic theory predict that, as the
habitat and resources available in a particular biome
increase, so too should its total (gamma) diversity. To
the extent that houses vary within and among cities, we
might predict that beta diversity is also likely to remain
high. We hypothesize that urbanization will increase the
number of species that evolve to persist indoors, with the
differences among homes, settlements, and regions being a
more complex function of the relative differences among
them in culture and connectedness.

A trend toward sustainable building practices may also
influence indoor evolution. Strategies to improve energy
efficiency and control of the indoor biome include tighter
229



Box 3. Outstanding questions

� Are houses similar enough to consider them a single biome or are

they more akin to remote islands (multiple biomes)? Would one

expect convergent or divergent evolution to appear across

habitats in the indoor biome?

� How will climate change affect both building design and the

outdoor environment and, subsequently, determine which spe-

cies thrive indoors?

� Was there an adaptive evolutionary syndrome of phenotypic or

genomic changes that accompanied the evolution of house living

in many species in many regions?

� Has evolution of indoor microbes (or colonization by preadapted

microbes) influenced our own microbiome health? Can we design

buildings to function as healthier human/microbe habitats?

� Are ecological interactions specific or unique in any way indoors

or are they analogous to outdoor interactions?

� How many and which species are found exclusively in the biome?

� Have any species moved from the indoor biome to other, outdoor

biomes? Is there speciation indoors?

� What is the role of horizontal gene transfer in the indoor biome?

How frequent is it and are there indoor hotspots where microbes

are more likely to exchange information?

� Are populations of some indoor species genetically distinct within

or among different types of structure (e.g., public kitchens versus

private kitchens, bedrooms versus movie theaters)? In other

words, what is the population structure of the inhabitants of the

indoor biome? Does scale matter? Would we be more likely to find

structured populations of, say, bacteria than mice?

� What are the primary producers in the indoor biome?

� What can the indoor biome tell us about the origins and formation

of other biomes that have existed on Earth?

Table 1. Categories of species of the indoor biome and
references that describe their evolution or ecology in indoor
environments

Category Examples Refs

Intended introduction Pets [78,79]

Microbes for fermentation [80,81]

Houseplants –

Humans [18,82]

Unintended introduction Human pathogens

and parasites

[83,84]

Arthropods [30,59,85]

Human-associated microbes [57,86,87]

Other microbes [22,88–90]

Rodents [40,67,91]

Birds –

Bats [92]

Other mammals –

Reptiles –
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sealing of building envelopes [68], which has the potential
to influence all selection pressures indoors, favoring the
subset of lineages that are best able to enter sealed envir-
onments and deal with self-contained climate systems [69]
and the novel chemistry of new building materials. Al-
though the impacts of sustainable building and new build-
ing materials remains to be fully explored, they seem likely
to have lasting influences on evolution in the indoor envi-
ronment – effects we are likely to experience long before
they are well studied.

Concluding remarks and future directions
Although many biologists have studied the evolutionary
processes at work in indoor environments, such studies
focus disproportionately on pest organisms. As a result,
most taxa of the indoor biome remain to be considered in an
evolutionary ecological framework. As a research field, the
evolutionary biology of the indoor biome is interdisciplin-
ary, situated at the intersections of evolutionary biology,
ecology, anthropology, archaeology, engineering, architec-
ture and design, human ecology, urban planning, environ-
mental history, and political ecology. There are many
avenues open for future research on the ecology and evo-
lution of the indoor biome (Box 3).

Arguably, the indoor biome is one of the realms in which
the field of evolution offers the most to humanity. The
study of the indoor biome intersects with the field of public
health and medicine. Houses with increased levels of
fungal, cockroach, and mouse allergens are associated with
higher rates of asthma in children, for example, and the
absence of beneficial species indoors has been linked to
autoimmune and allergic disorders [70]. Evolutionary biol-
230
ogists have the opportunity to engage with these basic and
applied research topics through the study of indoor biomes.

Perhaps more than any other evolutionary examples,
the stories of the species that evolve indoors are accessible
to students and other members of the public [71]. Already
conservation biologists are engaged in a parallel movement
to bring conservation stories to inhabited places
[9,72]. Study of the indoor biome could bring evolution
to our doorsteps. One framework in which this could occur
is through citizen science. Citizen science offers an ap-
proach to the study of indoor species that simultaneously
engages the public, allows scientists to sample many hous-
es, and generates stories about ecology and evolution of
which the public is intricately a part [73]. Recent studies
engaging citizens in the study of their own homes have
revealed the spread of two species of giant invasive camel
cricket among North American basements and crawl-
spaces [50], patterns of bacterial composition within and
among houses [21], and the distribution and composition of
ants in backyards [74]. Given that our understanding of the
indoor biome remains heavily weighted toward North
America and parts of Europe, it will be important to our
understanding of indoor evolution to distribute projects
more evenly across geographical regions [75].
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