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In this paper we present a concept for using presence�absence data to recover information on the population dynamics of
predator�prey systems. We use a highly complex and spatially explicit simulation model of a predator�prey mite system
to generate simple presence�absence data: the number of patches with both prey and predators, with prey only, with
predators only, and with neither species, along with the number of patches that change from one state to another in each
time step. The average number of patches in the four states, as well as the average transition probabilities from one state to
another, are then depicted in a state transition diagram, constituting the ‘‘footprints’’ of the underlying population
dynamics. We investigate to what extent changes in the population processes modeled in the complex simulation (i.e. the
predator’s functional response and the dispersal rates of both species) are reflected by different footprints.

The transition probabilities can be used to forecast the expected fate of a system given its current state. However, the
transition probabilities in the modeled system depend on the number of patches in each state. We develop a model for the
dependence of transition probabilities on state variables, and combine this information in a Markov chain transition
matrix model. Finally, we use this extended model to predict the long-term dynamics of the system and to reveal its
asymptotic steady state properties.

The simplest models of predator�prey systems, such as the
Lotka-Volterra model (cf. Lotka 1925), describe population
dynamics by means of only two variables: the mean
densities of prey and predators. Changes in the density of
one species are linked to changes in the other through the
functional response (Solomon 1949), which predicts how
many prey individuals a predator consumes per time unit at
a given mean prey density. However, if prey and predators
are not evenly distributed in space, mean densities alone are
likely to be poor predictors of predation rates, because they
provide no information about the actual degree of spatial
overlap between the species (Nachman 2006a, b).

Spatially explicit population models (Gurney et al.
1998), on the other hand, apply information about the
numbers of prey and predators occupying every spatial unit
(called patches) within a system. The changes in population
sizes within each patch due to births, deaths, immigrations
and emigrations can then be computed for each small time
step. These models are powerful strategic tools for under-
standing predator�prey dynamics, because they generate
detailed predictions of the system’s trajectory through time.
However, spatially explicit models need to be fed by high
resolution data about the current distributions of the
species, which limits their practical application for e.g.
pest management or conservation. A solution in these cases
is to develop spatially implicit models that only need low

resolution data easily obtainable from field samples, as e.g.
proportion of plants or leaves with or without prey and
predators, but still retain enough complexity to generate
realistic predictions.

In this paper, we model the dynamics of an acarine
predator�prey system consisting of the two-spotted spider
mite Tetranychus urticae and its phytoseiid predator
Phytoseiulus persimilis. The spider mite is a serious pest in
many crops, including greenhouse cucumbers. The predator
species is known as a very efficient predator of T. urticae
and therefore widely used as a biocontrol agent against it
(Helle and Sabelis 1985).

We use a spatially explicit stochastic simulation model of
the above system to produce spatio-temporal patterns of
prey and predators. The output of these simulations forms
the basis for developing a spatially implicit matrix model.
The advantage of using model-simulated data instead of
field-collected data is that we are in control of the processes
that produce the observed predator�prey dynamics. This
means that we can test the hypothesis that these underlying
processes are revealed by the parameters of the matrix
model. Specifically, we address the hypothesis that the
transition probabilities reflect the dispersal ability of both
species and the efficacy of the predators. If this hypothesis is
confirmed, transition probabilities and steady state distribu-
tions, which can be combined and depicted graphically as a
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‘‘footprint’’ diagram, may serve as a diagnostic tool under
field conditions, with application for e.g. pest control.

The spatially implicit model is based on a model by
Maynard Smith (1974), who simplified predator�prey
dynamics by dividing patches into a set of categories: empty,
inhabited by few individuals (of prey and/or predators), or
inhabited by many individuals. Gurney and Nisbet (1978)
simplified this classification further to just four groups:
patches with both prey and predators, with prey only, with
predators only, and empty patches. Over a certain time
interval patches are likely to change from one state to
another. The likelihood of such discrete events can be
expressed through transition probabilities, which are ele-
ments of a finite Markov chain model and are defined by a
transition matrix (Dharmadhikari 1963). Once the elements
of the transition matrix and the current state of the system are
known, it is straightforward to calculate the expected state of
the system after one time step, and to do this recurrently for
any desired number of time steps. Matrix transition models
(also called population projection matrices) are useful as
analytical and predictive tools in e.g. conservation (Lusseau
2003), landscape management (Yemshanov and Perera
2002) and pest control strategies (Woolhouse and Harmsen
1991).

A challenge for applying matrix models to predator�prey
systems is that the transition probabilities are likely to be
non-stationary, i.e. to depend on the number of patches in
each state; e.g. if there are many patches already containing
prey, it is more likely that an empty patch will be occupied
by prey in the next time step (Gurney and Nisbet 1978,
Woolhouse and Harmsen 1987a, b). We apply a correla-
tion-based approach to identify simple functional relation-
ships between the state variables and the transition
probabilities and use simulated data to parameterize these
relationships. The resulting projection matrix can be used to
predict the system’s asymptotic behaviour in order to
investigate emergent properties such as stability, bifurca-
tions, sensitivity etc. (Caswell 2001).

Methods

The biological system

As the biological background for modeling, we used a series
of experiments conducted in 500 m2 commercial green-
houses (Nachman 1981). Each greenhouse hosted 720
cucumber plants arranged in 8 rows. Early in the growing
season every second plant in the greenhouses were inocu-
lated with five or six adult female spider mites and two days
later two, three or four adult female predators were released
onto the same plants. The plants were sampled every week
during the following 23 weeks. At each sampling occasion
36 plants were randomly selected and three leaves were
picked from each. All mites occurring on their lower leaf
surface were counted. Details on the biology of the involved
species can be found elsewhere (Helle and Sabelis 1985).

The simulation model

The complex simulation model used to simulate the green-
house system and to parameterize the transition matrices

is described in Nachman (2001). Basically the model
applies a metapopulation concept where each plant in a
greenhouse is considered as a patch with its own local
dynamics. In contrast to the classic metapopulation
approach (Levins 1969), the model is spatially explicit
with respect to patch location. Furthermore, patches are
characterized by their size/quality and the numbers of
individuals present. Finally, dispersal from a patch is
condition-dependent and the likelihood that an individual
succeeds to move from one patch to another depends on the
distance between them. The model incorporates demo-
graphic stochasticity to cope with discrete events as births,
deaths, immigrations and emigrations; this stochasticity
plays an important role in creating patch asynchrony
(Nachman 1987a, b). Sex and age structure of the popula-
tions are modeled implicitly by using weighted parameter
values. The model is implemented in Delphi 7 (Borland).

The model described in Nachman (2001) applied
Holling’s (1959) disc equation to model the functional
response of P. persimilis. Since this model assumes that the
predators search for prey at random, it is unrealistic when
the prey is patchily distributed and the predators exert non-
random search (Nachman 2006a). The problem was partly
alleviated in Nachman (2001) by increasing the parameter
expressing the predator’s attack efficiency, but since then a
more mechanistic functional response model has been
proposed (Nachman 2006b). It incorporates the spatial
distribution of the prey among leaves within plants, the
aggregative response of the predators to the prey distribu-
tion and mutual interference among searching predators.
This new model was chosen to represent the functional
response of P. persimilis in the simulations.

The simulations

The model simulated a greenhouse system consisting of 400
fully grown plants arranged in 8 rows. The distances between
plants and the physical conditions were assumed to be the
same as those described in Nachman (2001). At day 0, every
second plant was inoculated with 60 spider mites, and two
days later the same plants were inoculated with 3 predatory
mites. The duration of a simulation was set to 3000 d.
Provided both mite species were still present in the system at
the end of a simulation, the last 2000 d were used for the
subsequent analyses. For each of the 2000 d, the following
information was recorded: average number of prey and
predators per plant, the number of plants without mites, with
both species, with prey only and with predators only, and the
number of transitions from one state to another during the
preceding day. The growing season for greenhouse cucum-
bers is normally ca 200 d, but since we were interested in the
long term dynamics of prey and predators, it was necessary to
assume that the plants do not deteriorate for reasons other
than exploitation by the spider mites, and that they are able to
recover from any level of damage; though the time to recover
completely increases with the severity of the damage. This
assumption also facilitates generalization to other multi-
patch systems, where the level of biological patch deteriora-
tion is often negligible.

The model was used to simulate six different scenarios:
Scenario 1: the prey is patchily distributed among leaves
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within plants and the predators search non-randomly. This
scenario served as the standard case against which the other
five scenarios were compared. The simulations were based
on the default parameter values in Nachman (2001,
2006b). Scenario 2: the prey is distributed as in Scenario
1, but the predators exhibit random search. Since it turned
out that a randomly searching predator performed so poorly
that it could not obtain sufficient prey for its survival, we
assumed that low predation efficiency is partly compensated
by a better ability to exploit consumed prey. This was
achieved by doubling the per capita birth rate and halving
the per capita death rate compared with the predator in
Scenario 1. Scenario 3: as Scenario 1 except that the prey is
evenly distributed among leaves within plants. Scenario 4:
as Scenario 1 except that the dispersal rate of the prey is
reduced by a factor 10. Scenario 5: as Scenario 1 except that
the dispersal rate of the predator is increased by a factor 10.
Scenario 6: as Scenario 1 except that the dispersal rate of the
prey is reduced by a factor 10 and the dispersal rate of the
predator is increased by a factor 10.

In order to compare the state transition diagrams (called
‘‘footprints’’) originating from different scenarios, it is
necessary to compare them with the variation among
replicates within the same scenario; this ensures that the
differences are not just due to the inherent stochasticity
associated with the simulations. We therefore also ran six
replicates of Scenario 1 and calculated the standard deviation
of the state variables and the transition probabilities after
subjecting the data to an arcsine square root transformation.
95% confidence limits for the variables were obtained after a
back transformation (Sokal and Rohlf 1995).

The matrix model

The full transition matrix can be described by considering
that at any given time t a patch (plant) can be in one of the
four states: occupied by neither species (State 1); occupied
by prey only (State 2), occupied by both species (State 3),
and occupied by predators only (State 4). The distribution
of the N plants in each of the four states at time t can be
expressed as a vector with four elements Q (t )�
fQ 1(t ) Q 2(t ) Q 3(t ) Q 4(t )g where Q i(t) denotes the
number of plants in state i (i�1, 2, 3, 4). Note that
a4

i�1Q i(t )�N and that a4
i�1qi(t )�1; where qi is the

proportion of plants in state i, i.e. qi �Qi=N : The
probability that a plant will be in state i at time t�1 given
it is in state j at time t (j�1, 2, 3, 4) is denoted aij. Hence,
the index j represents the donor state and index i the
recipient state (Caswell 2001).

The state vector Q at time t�1 can therefore be found as

Q (t �1)�

Q1(t �1)
Q2(t �1)
Q3(t �1)
Q4(t �1)

8>><
>>:

9>>=
>>;

�

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

8>><
>>:

9>>=
>>;

Q1(t )
Q2(t )
Q3(t )
Q4(t )

8>><
>>:

9>>=
>>;
�AQ (t )

(1)

where A is a non-negative transition matrix. The values
of aij are constrained by aij]0 and a4

i�1aij �1 for j�1, 2,
3, 4.

The transition probabilities for the time interval (t, t�1)
are estimated from sampling data as

âij (t )�
nij

Qj (t )
(2)

where nij denotes the number of transitions from state j to
state i.

Transition probabilities depend on the time intervals
between successive samplings. The shorter the intervals, the
less likely it will be that a patch changes to another state,
and in particular that a patch passes through more than a
single state. Ideally, the system should be sampled at
intervals that are so short that the likelihood that a patch
undergoes more than a single transition can be ignored.
This reduces the 16 elements of the full 4 times 4 transition
matrix to (maximally) 12 non-zero elements: the probabil-
ities for each of the four patch types to remain the same
type, change to the next type in the sequence, or revert to
the immediately preceding type. Because a patch is allowed
to revert to the preceding type, the matrix includes more
than the eight non-zero elements employed when a
unidirectional sequence is assumed. A unidirectional cyclic
sequence from state 1 through state 4 and back to state 1
was suggested by Gurney and Nisbet (1978) as sufficient to
model Huffaker (1958) and Huffaker et al.’s (1963)
experiments with acarine prey and predators in a patchy
system composed of oranges; however, as pointed out by
Woolhouse and Harmsen (1987a), at least some of the
transitions are likely to be reversible. For instance, predators
may leave a patch before all prey individuals have been
consumed or new prey individuals may move to patches
where only predators remain after having eradicated prey
individuals from the patch.

Test for stationarity

Time-homogeneity of the transition matrix was tested by
means of log-linear analyses; this method is recommended
by Caswell (2001) as an alternative to the procedure
proposed by Anderson and Goodman (1957). Matrices
that fail to be time-homogenous because one or more of its
transition probabilities vary with time are said to be non-
stationary (Anderson and Goodman 1957). Log-linear
analysis was also applied to check the similarity of matrices
obtained from replicated runs of the same model and to test
whether matrices obtained from different models differ
significantly. The log-linear analyses were carried out by
means of PROC CATMOD in SAS Enterprise guide 4.1
(SAS Inst.).

State transition diagrams

The average values of qi (t) and aij (t), recorded on a daily
basis for the last 2000 d in a simulation, were visualized
graphically as a state transition diagram, where states are
represented by circles with an area proportional to the
average value of qi, and transitions are represented by arrows
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connecting state j with state i. By discarding the first 1000 d
of a simulation we achieved convergence of the average
values of qi (t) and aij (t) to values that are insensitive to
short-term variations and thus reflect properties (or ‘‘foot-
prints’’) of the underlying processes.

Modeling transition probabilities

If tests for time-homogeneity show that transition prob-
abilities vary with time, the next step is to investigate
whether the variation can be related to the current state of
the system.

Since we had no a priori assumptions concerning the
quantitative relationships between transition probabilities
and state variables, we first formulated a fairly simple and
general model for such a relationship, namely

aij � cij Lij (q)bij (05aij 51; 05 cij 51) (3)

where Lij (q) is a linear combination of the four state
variables q1, q2, q3, and q4 (05Lij (q)51), while bij and cij

are non-negative constants. Thus, bij�0 implies that aij is
independent of the current state of the system and equal to
cij, whereas bij�0 means that aij increases with Lij (q)
provided cij�0. The relationship between Lij (q) and aij is
downward accelerating for 0BbijB1, linear for bij�1 and
upward accelerating for bij�1.

For each of the 12 non-zero matrix elements (aij) we
screened all 14 linear combinations of q1, q2, q3, and q4

(except the sum of all four) to find the linear combination
that yielded the highest positive Spearman correlation
coefficient between aij and Lij (q). This linear combination
was then chosen as candidate for estimating the parameters
of eq. 3. The Solver tool in Excel was used to maximize the
log likelihood function (Supplementary material) by means
of iteration. Once the best set of parameter values had been
identified, we used Akaike’s information criterion (AIC ) to
test whether a state-dependent model performed signifi-
cantly better than the concomitant state-independent model
derived by setting bij�0. The difference between the
models was tested by means of a x2-test, because twice
the difference in AIC between the full and the reduced
model, nested within the former, is distributed approxi-
mately as x2 with n degrees of freedom, where n is the
difference in DF between the two models (Hilborn and
Mangel 1997).

Matrix modeling

When the transition probabilities of the projection matrix
(eq. 1) have been parameterized based on eq. 3, the model
can be reiterated to reveal the system’s dynamics. In
particular we are interested in finding the long-term
(asymptotic) steady state distribution of Q or q, because
this tells us whether the system is inherently stable with
respect to coexistence of prey and predators, i.e. the system
returns to equilibrium after a small perturbation. Since the
system may possess more than a single steady state, the
stability domain was explored by varying the initial state
distribution (denoted Q(0) or q(0)).

We examined the effect of the initial state distribution
on the asymptotic behavior of the model by varying q1(0),
q2(0), q3(0), and q4(0) in steps of 0.1 under the constraint
that the four state variables should sum to unity. This gives
286 different combinations.

Results

The simulations and their footprints

Figure 1 shows the predator-prey fluctuations of the six
scenarios while Fig. 2 shows the concomitant footprints.
Table 1 summarizes the outcome of all simulations
including the replicated runs of Scenario 1.

In Scenario 1 both species exhibited violent and irregular
fluctuations. As seen from Fig. 2, on average, 95.9% of the
plants were occupied by mites. 67.1% of the plants hosted
both species, 27.1% only prey and 1.6% only predators.
Clean plants had on average 4.9% chance per day of being
colonized by prey and 4.1% chance of being colonized by
predators. Once a plant was inhabited by prey, its chance of
also being colonized by predators was 7.2% per day, which
means that the average time elapsing from being invaded by
prey to being colonized by predators can be found as

1

�ln(1 � 0:072)
�13.4 d.

In Scenarios 2 and 3, the predators were assumed to
forage less efficiently than in Scenario 1. As a consequence
they were unable to eradicate the prey from a plant, so
plants in state 4 were absent and the same applies to plants
in State 1. Occasionally predators went extinct on a plant
but the likelihood of such an event was 0.3 and 1.1% d�1

for Scenarios 2 and 3, respectively. Plants with only prey
were almost immediately colonized by predators, so that
plants on average remained unprotected for only two days.
Thus, the lower efficiency of the predators was compensated
by their ubiquitous presence. Both scenarios were signifi-
cantly different from Scenario 1 with respect to state
variables and transition probabilities (log-linear analysis:
pB0.001); accordingly, the footprints (Fig. 2b, c) look very
different.

The reduced dispersal rate of the prey in Scenario 4
caused a significant reduction in the percentage of plants
with prey only (from 27.1% in Scenario 1 to 14.8% in
Scenario 4), partly because the transition probability from
clean to prey infested plants declined from 4.9% in
Scenario 1 to 3.9% in Scenario 4, and partly because
plants with prey alone were more quickly infested with
predators in the latter scenario. The proportions of plants
with both species and with predators alone were
significantly higher in Scenario 4 than in Scenario 1
(Table 1).

The increased dispersal rate of the predators in Scenario
5 significantly increased the transition probability from
State 1 to State 4 and vice versa, and from State 2 to State 3
and vice versa in comparison with Scenario 1 (Table 1).
This shows that the highly mobile predators more quickly
colonize new plants but on the other hand also leave them
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again more rapidly. Plants colonized by prey alone are
found by predators within 7.4 d on average.

Finally, in Scenario 6 when the dispersal rate was
reduced for the prey and increased for the predator, the
chance that a clean plant was colonized by prey decreased to
3.4% and the chance that it was colonized by predators
increased to 14.9% d�1 (Table 1). The chance that a plant
with prey alone is colonized by predators increased to
18% d�1, which means that a plant on average is left
unprotected for only five days.

Overall, there are consistent differences between the
footprints of the six scenarios. This is especially clear for
Scenarios 2 and 3 versus all other scenarios, indicating a
strong effect of the predator’s functional response on the
resultant state distributions.

Dynamics of state distributions

The upper panel of Fig. 3 shows the temporal variation in
state distribution obtained from the simulation of Scenario 1
(Fig. 1), while the lower panel shows the development in
state distribution averaged over time. The latter can be
interpreted as the expected distribution of plants at time
t when the initial distribution is known. The expected
distribution gradually approaches a stable state distribution,
which after 3000 d is found to be 5.3% empty plants,
29.5% plants with prey alone, 63.5% with both prey and
predators, and 1.7% with predators only. This distribution
is close to the one shown in the footprint diagram (Fig. 2),
The latter, however, discards the transient period, which
arbitrarily was set to the first 1000 d of a simulation.
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Figure 1. Temporal dynamics of prey (blue line) and predators (red line) during the last 2000 d of a simulation. Scenario 1 (the standard
case); prey is patchily distributed within plants and the predators exhibit non-random search; Scenario 2: the prey is patchily distributed
within plants, but the predators exhibit random search; Scenario 3: the prey is evenly distributed within plants; Scenario 4: like Scenario 1
except that prey dispersal is reduced; Scenario 5: like Scenario 1 except that predator dispersal is increased; Scenario 6: like Scenario 1
except that prey dispersal is reduced and predator dispersal is increased.
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Variation among scenarios

The six replicates of Scenario 1 showed little variation
among the individual replicates. Thus, the coefficient of
variation (CV) ranged from 0.05 to 1.2% for the state
variables, and from 0.002 to 1.9% for the transition
probabilities. The variation among scenarios was consider-
ably larger than the within-scenario variation, both with
respect to state variables and transition probabilities (Table 1)
which is a prerequisite for comparing footprints obtained
from scenarios with different population dynamics. Thus,
Scenario 1 could be separated from the five other scenarios
on at least one, but in most cases several, parameters.

Test for stationarity

The log-linear analyses of the transition matrices clearly
showed for all scenarios that the transition probabilities
were non-stationary (pB0.0001). Consequently, at least
some of the transition probabilities are likely to be state-
dependent.

Modeling transition probabilities

Table 2 gives an overview of those linear combinations of qi

(i�1, 2, 3, 4) that correlated best with the transitions
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Figure 2. Transition diagrams (also called ‘‘footprints’’) of the six scenarios. The framed values show the proportion of total time plants
on average spend in the various states (also indicated by the circle’s area). The arrows connecting the states mark the transitions with the
associated transition probabilities annotated. Note that the transition probabilities from a state may not necessarily sum to unity because
rare transitions involving more than a single event are omitted. State 1 (green) is empty, State 2 (blue) is with prey alone, State 3 (purple)
is with both species and State 4 (red) is with predators alone.
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obtained from Scenario 1. All relationships are highly
significant and confirm the a priori assumption that
colonization probabilities of plants without prey (a21 and
a34) correlate with the proportion of plants already
occupied by prey (q2�q3) and that the probabilities of
plants without predators being colonized by predators (a41

and a32) correlate best with the proportion of plants already
occupied by predators (q3�q4). The probabilities that prey
goes extinct depend on whether predators are present on the
plant. In the absence of predators, the extinction probability
(a12) declines with an increase in q2, whereas a43 declines
with an increase in q3 in the presence of predators.
Similarly, the probabilities that predators go extinct depend
on whether prey is present. When prey is present, a23

decreases as q3 increases; when there is no prey a14 decreases
as q4 increases.

The remaining transitions occurred with low frequencies
and the probabilities of these transitions were all set to 0.
Hence, the eight transition probabilities listed in Table 2
require estimation of 16 parameters.

Table 3 summarizes the results of the maximum
likelihood analyses. All analyses except for a14 yielded
positive values of both bij and cij (eq. 3), though b34 was not
significantly different from 0 and was therefore replaced by 0.
In the remaining six cases, setting bij equal to 0 resulted in a
significant increase in AIC, which confirms that these
transitions are indeed state-dependent.

The model for a21 indicates that empty plants will be
colonized by prey with an increasing probability as the
proportion of plants occupied by prey increases and will
approach a maximum of ca 9% d�1. Likewise, the
probability that an empty plant becomes occupied
by predators increases with the proportion of plants
already occupied by predators up to a maximum of ca
13% d�1.

The models for a12 and a32 show that transitions
from plants inhabited by prey to empty plants occur
with decreasing probability the higher the proportion
of prey plants is, while the probability of transitions
from plants with only prey to plants with both
species increases with the proportion of plants already
occupied by predators. The former transition is a much
slower process than the latter, which has a maximum of
�16% d�1.

The models for a23 and a43 show that the transition
probabilities accelerate as the proportion of plants
occupied by both prey and predators approaches 0.
However, the maximum probabilities for both processes
are low, especially for the rate at which plants become
devoid of prey (a43), indicating that once a plant is
inhabited by both species it takes rather long time before
the predators have eradicated the prey, partly due to the
fact that both prey and predators continuously immigrate
to such plants.

Finally, the models for a34 and a14 show that these two
probabilities can be regarded as state-independent. The
parameters indicate that predators quickly disappear
from plants without prey (a14�0.19), whereas plants
occupied by only predators are rather unlikely to be
(re)colonized by prey (a34�0.0058).Ta
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Matrix modeling

The exploration of the asymptotic behavior of the matrix
model parameterized by means of data from Scenario 1
revealed that the long-term state distribution (denotedq�

i )
depends on the initial conditions. Hence, the model is non-
ergodic (Caswell 2001). Three of the asymptotic state
distributions are identical to the initial state distributions
and occur when the systems starts in a completely
synchronized state, i.e. q�

1 �q1(0) �1 (all plants are clean),
q�

2 �q2(0) �1 (all plants are occupied by prey) or q�
3 �

q3(0) �1 (all plants are occupied by both prey and
predators). The fourth synchronized state with all plants
occupied by predators alone (i.e. q�

4 �q4(0)�1) of course
quickly leads to an equilibrium where all plants are
clean (i.e. q�

1 �1): However, if the initial distribution is

asynchronous, i.e. qi(0)B1 for all i, the system will
converge toward one of three asymptotic states (Fig. 4): a)
extinction of both species, b) extinction of predators and a
very high (99.95%) frequency of prey-infested plants, and
c) coexistence of both species with 4.46% of the plants in
State 1, 21.67% in State 2, 71.26% in State 3, and 2.61%
in State 4. Outcome (a) occurred in 44% of the cases and
was associated with combinations where the initial propor-
tion of plants with prey was low relative to the proportion
of plants with predators. Outcome (b) occurred in 35% of
the cases and was associated with combinations where the
initial proportion of plants with prey was high and the
proportion with predators low. Finally, outcome (c)
occurred in 21% of the cases and was associated with
combinations where the initial proportions of plants with
prey (q2(0)�q3(0)) and with predators (q3(0)�q4(0)) were
both high. In particular, all cases where 0.645q3(0)B1
lead to outcome (c) irrespective of the three other states.
Outcome (c) agrees well with that obtained from the
simulation model (Fig. 3 lower panel), although 3000 d of
simulation is not sufficient for the system to attain a steady-
state distribution.

Discussion

Our preliminary study, based on a single specific model and
a few characteristic scenarios, has demonstrated that
complex population dynamics can be summarized by means
of simple state transition diagrams which are likely to
represent ‘‘footprints’’ of the underlying population pro-
cesses. Thus, the footprints of predator�prey dynamics are
composed by merely four state variables, each representing
presence/absence of prey and predators, as well as the
connections between these states. Connectivity is expressed
in terms of transition probabilities which provide informa-
tion about the turn-over rates of the states. This may serve
as a diagnostic tool in biological control programmes,
because the time elapsing from a plant becomes infested
with a pest organism to it is found by a natural enemy is
often crucial (Huffaker and Messenger 1964). Likewise,
turn-over rates can be used to forecast the risk of local
extinctions, a factor that may influence the persistence of
species living in fragmented habitats (Burkey 1989). In fact,
many metapopulation (Hanski 1999) and biogeographical
studies (Soberón 2010) rely on incidence data only, and in
such cases it can be valuable if a link from this type of data
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Figure 3. Upper panel: temporal variation in the distribution of
plants based on Scenario 1. Lower panel: expected state distribu-
tion at time t obtained by cumulating the distributions in the
upper panel and then averaging over time. Colours as in Fig. 2.

Table 2. List of functions yielding the highest positive Spearman correlation coefficient between state variables (qi) and transition
probabilities (aij) obtained from Scenario 1. The functions tested comprise all linear combinations of qi (i.e. q1, q2, q3, q4, q1�q2, q1�q3,
q1�q4, q2�q3, q2�q4, q3�q4, 1�q1, 1�q2, 1�q3, and 1�q4) except q1�q2�q3�q4�1.

Transition probability (aij) Function (Lij(q)) Corr. coeff. (rs) Sample size (n) p

a21 c21(q2�q3)b21 0.809 964 B0.0001

a41 c41(q3�q4)b41 0.627 824 B0.0001

a12 c12(1�q2)b12 0.716 448 B0.0001

a32 c32(q3�q4)b32 0.775 1979 B0.0001

a23 c23(1�q3)b23 0.474 1869 B0.0001

a43 c43(1�q3)b43 0.546 817 B0.0001

a34 c34(q2�q3)b34 0.475 255 B0.0001

a14 c14(1�q4)b14 0.462 1040 B0.0001
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and back to the underlying population dynamics can be
established via the footprints.

In this study we used plants as the units of measurement.
However, the footprints obtained from Scenarios 2 and 3
(Fig. 2) indicate that this spatial unit may not be optimal
because State 3 dominates at the expense of especially State
1 and 4. Thus, using a smaller spatial scale (e.g. a leaf as in
Nachman 1999) will increase the proportion of the empty
patches and patches occupied by only a single species.
Applying a smaller scale would also make sampling easier
and increase the creditability of absences (Soberón 2010).
On the other hand, if sampling units become very small,
occupied patches will become too rare. It is therefore
important to choose an appropriate spatial unit for
measuring and interpreting spatial dynamics (Wiens 1989,
Rahbek 2005).

The transition matrices were found to be non-stationary,
confirming our expectation that at least some of the
transition probabilities vary with time. As Gurney and
Nisbet (1978), we assumed that the temporal variations in
transition probabilities are due to feed-backs between state
variables and transition probabilities, although the relation-
ships linking them are not necessarily linear (as assumed by
Gurney and Nisbet 1978). By fitting a generic model to the
transition probabilities obtained from Scenario 1 we were
able to describe this non-stationarity: the results demon-
strate a strong positive feed-back between the chance that an
empty plant becomes colonized by prey and the proportion
of plants already occupied by prey. Likewise, plants without
predators will quickly become occupied by predators when
this species already inhabits the majority of plants.

Extinction probabilities, on the other hand, were not
always state-dependent. In the cases where extinction
probabilities were found to be state-dependent, the func-
tional relationships show that extinction probability in-
creases as the number of extant populations declines. This
creates positive feedbacks which tend to accelerate existing
trends and make the system sensitive to perturbations that
eventually lead to extinction. The stability analysis revealed
that the projection model based on Scenario 1 is non-
ergodic, i.e. its asymptotic state distribution depends on its
initial state (Caswell 2001). Six different equilibria were
identified: a) all plants are clean, b) all plants are inhabited
by prey, c) all plants are occupied by both prey and
predators, d) 99.95% plants are occupied by prey while the
remaining are clean, and e) 4.46% of the plants are clean,
21.67% infested with prey alone, 71.26% with both prey

Table 3. Maximum likelihood estimates of the parameters used to model the state-dependent transition probabilities in Table 2 obtained from
Scenario 1. bij is either estimated to be 0 (as for â14) or to be so close to 0 (as for â34) that it can be set to 0 (i.e. the transition probability is
state-independent). p is the probability that a state-dependent and a state-independent model are equally good to fit data. State-dependent
probabilities are only used if pB0.05.

Transition probability (aij) bij cij DAIC x2
1 p

â21 4.542 0.088 242.2 483.7 B0.0001
â41 2.378 0.134 445.2 967.4 B0.0001
â12 0.596 0.0041 18.4 36.8 B0.0001
â32 1.477 0.163 2818.3 5636.5 B0.0001
â23 0.627 0.063 1288.8 2577.6 B0.0001
â43 0.209 0.0040 19.2 38.3 B0.0001
â34 0 0.0058 0.027 0.053 0.82
â14 0 0.190 0 0 1
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Figure 4. Predictions for Scenario 1 based on the matrix model
(eq. 1) and with parameter values given in Table 3 for three
different initial state distributions. Upper panel: 40% in State 1,
10% in State 2, 30% in State 3, and 20% in State 4. Middle panel:
40% in State 1, 30% in State 2, 20% in State 3, and 10% in State
4. Lower panel: 20% in State 1, 40% in State 2, 30% in State 3,
and 10% in State 4. Colours as in Fig. 2.
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and predators and 2.61% with predators alone. Case a is
trivial, while case b and c represent unstable equilibria
because infinitely small deviations from equilibrium will
change case b to case d and case c to case e. From a
biological point of view case b and c represent artifacts,
which can be attributed, at least partly, to the fact that the
model does not explicitly incorporate plant condition,
which means that plants can host high densities of prey
without suffering permanent damage.

The advantages of using model-generated data to
parameterize a discrete state model are: 1) it is a quick
and easy way of obtaining lots of detailed data, 2) we know
exactly the processes that have produced these data, and 3)
we do not need to worry about sampling error (cf. Gaston
and McArdle 1994). Consequently, we can be quite
confident that the estimated parameters are representative
for the studied system. However, the drawback of using
artificial data is that they can never be more correct than the
model that has generated them. Complex simulation
models, irrespective of how realistic they are, or believed
to be, will always represent unrealistic simplifications that
can bias the results. Thus, by using simulated data to
parameterize a Markov chain model, we risk to exaggerate
errors already present in the simulated data. It is therefore
important to validate model predictions against real data
originating from field studies before the model is used for
practical purposes.

It is possible to parameterize discrete state transition
models directly from field data (Woolhouse and Harmsen
1989). However, field data are likely to be too coarse-
grained unless sampling takes place with very short
(e.g. daily) intervals, and to be influenced by factors that
cannot be controlled by the experimenter such as the
weather. In contrast, a simulation model can be developed
by means of data obtained from specific experiments
conducted under controlled conditions.

Clements and Harmsen (1991) used a mechanistic
simulation model to complement an empirical transition
matrix model of an acarine predator�prey system and
concluded that the transition matrix produced accurate
predictions, but could not provide information on what will
happen if the system under study was subject to manipula-
tion. In contrast, the mechanistic (or reductionist) simula-
tion approach provided information on how complex
biological interactions affect population dynamics, but
could not be used as a predictive tool.

The projection matrix employed in this paper simulates
the system deterministically, by regarding the transition
probabilities as the expected rates of state transitions.
However, if the system consists of a finite number of
patches (plants) and especially if this number is small,
stochastic phenomena may play an important role (Nisbet
and Gurney 1982). Even if the environment is constant,
endogenous stochastic processes like extinctions and colo-
nizations will perturb the system and, depending on its
current state, be able to push it from one stability domain to
another. Such sudden shifts in predator�prey dynamics have
been observed in experimental studies of spider mites and
predatory mites (van de Klashorst et al. 1992, Janssen et al.
1997, McCauley et al. 2000) and do also occur when the
system is modeled by means of a stochastic simulation
model (Nachman 1987b).

The deterministic projection model can be made stochas-
tic by using Monte Carlo methods to generate the actual
number of transitions in a system consisting of N plants
based on the multinomial distribution (Supplementary
material eq. S1). In a following paper we plan to pursue
this approach in order to develop a stochastic version of a
discrete state transition model that can be used as a tactical
tool to forecast short and long-term changes in the system.
The reliability of the predictions will be evaluated on basis of
the amount information available at day 0 (depends on
sample size) and the length of the forecasted period. Finally,
it should be noted that although the matrix model only needs
input data on a classification scale (i.e. presence/absence) and
yields predictions on the same scale, proportions of sampling
units with prey and/or predators can easily be converted to
densities using regression models based on e.g. the negative
binomial distribution (Wilson and Gerrard 1971) or the
Weibull distribution (Nachman 1984).
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