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variables (e.g. whether predictor contributions are weighted, 
and whether they allow for interactions among variables) 
(Segurado and Araújo 2004, Elith et al. 2006, Austin 2007, 
Naimi et al. 2011, Peterson et al. 2011).

The outputs of SDMs are sensitive to the specific rules 
used to parameterize them. When models are implemented 
in different platforms, rules used to fit them may not be 
comparable. For example, Domain (Carpenter et al. 1993), 
DesktopGARP (Stockwell and Peters 1999), and Maxent 
(Phillips et al. 2006) are typically implemented with differ-
ent off-the-shelf software making cross-model comparisons 
challenging. Models are also generally implemented follow-
ing different protocols for pre-processing of data and post-
processing of the results, even when they are implemented 
within the same computer platform. Given the difficulties in 
comparing the results of different models, conclusions from 
model comparison studies are difficult to generalise beyond 
the specific case studies (Segurado and Araújo 2004, Elith 
et al. 2006).

An integrated framework enabling multiple SDMs to be 
fitted and compared simultaneously is required to move the 
field of species distribution modeling forward. Three off-the-
shelf software including openModeller (de Souza Muñoz 
et  al. 2009), BIOENSEMBLES (Diniz-Filho et  al. 2009), 
and ModeEco (Guo and Liu 2010) have been independently 
developed to provide such frameworks. They enable sev-
eral modelling algorithms to be fitted simultaneously and 
they perform the most common tasks related to species 
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Species distributions models (SDMs), also known as bio-
climatic envelope models, ecological niche models and 
habitat suitability models, explore the relationship between 
geographical occurrences of species and corresponding 
environmental variables (Guisan and Zimmermann 2000, 
Peterson et al. 2011). SDMs are widely used in a range of 
fields and applications including regional biodiversity assess-
ments, spatial conservation prioritization, evolutionary 
biology, epidemiology, global change biology, and wildlife 
management (Araújo and Peterson 2012). There are sev-
eral SDM techniques available. They differ in their ability 
to summarize the relationships between response and pre-
dictor variables (Segurado and Araújo 2004, Elith et  al. 
2006), and when used for transferring the distributions of 
species into different geographical (Randin et  al. 2006) or 
temporal contexts (Thuiller et al. 2004, Araújo et al. 2005b, 
Pearson et al. 2006) projections can vary startlingly among 
techniques.

SDMs also vary with regards to the type of response 
variables used (e.g. presence and absence versus presence 
only), the types of predictor variables handled (e.g. continu-
ous versus categorical), the type of output provided (e.g. 
probabilities, continuous indices of suitability, or binary 
predictions of presence and absence), the type of species–
environment relationship assumed (e.g. simple linear to 
complex nonlinear), the approach used to estimate spe-
cies distributions (e.g. parametric versus nonparametric 
approaches), and the approach to select relevant predictor 
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distribution modelling (e.g. data evaluation, prediction). 
They also provide graphical user interface (GUI) making 
them click-and-run software and particularly friendly to 
users with less computational expertise. Simultaneously, 
they provide limited flexibility as users can only use algo-
rithms, model comparison and evaluation procedures that 
are implemented therein. Moreover, insufficient understand-
ing of what such click-and-run software is doing and how 
they were implemented makes users fret over whether they 
are doing what is expected (Joppa et al. 2013).

R (R Development Core Team) is a general-purpose high-
level programming language and a free (under the GNU 
general public license) open source environment. It is widely 
used for statistical analysis and graphical visualization and, 
recently, its suitability for mathematical computing (Soetaert 
et  al. 2010), manipulation and analysis of complex spatial 
data sets and modelling (Bivand et al. 2008) has increased. 
R can be extended through user-created packages, which 
allow developing new and specialized analytical techniques, 
graphical devices, import/export capabilities, reporting 
tools, etc. Growing collections of tools are explicitly being 
developed to bridge R and the known modelling software 
(Naimi and Voinov 2012). All of these capabilities make R 
very powerful. Despite the advantages of R, there are also 
some disadvantages. R involves a steep learning curve pre-
venting beginners and script-avert scientists from taking 
advantage of its capabilities. Moreover, different packages 
are not equivalent regarding their computational efficiency 
(García-Callejas and Araújo unpubl.) or capability for han-
dling errors. Sometimes they simply do not work under 
given circumstances and users have to struggle with errors 
and bugs. When users apply and compare alternative models, 
it becomes difficult to keep track of the syntactical nuances 
implemented in different packages (Kuhn 2008).

R provides an increasing number of packages for model-
ling (e.g. gbm, gam, maxlike, deSolve, simecol). At least two 
R platforms have been developed for fitting (e.g. BIOMOD 
and dismo; Thuiller et al. 2009, Hijmans and Elith 2013) 
and processing of species distributions modelling outputs 
(e.g. SDMTools; VanDerWal et  al. 2011). BIOMOD 
(Thuiller et al. 2009), including its recent version biomod2, 
offers several functions for ensemble modelling of species 
distributions (Araújo and New 2007). The other package, 
dismo (Hijmans and Elith 2013), can be used to fit several 
SDMs including maxent (Phillips et  al. 2006) in R, and 
facilitates using common spatial data in the procedure of 
modelling and predicting species distributions. However, it 
does not support fitting and comparison of multiple SDMs 
as in BIOMOD.

BIOMOD and dismo combine a limited number of 
packages and modelling techniques. Even if technically 
feasible to add more techniques into these platforms, the 
task is beyond reach by most users. The platforms also lack 
convenient GUI interfaces, thereby being unpalatable to 
users with very basic knowledge of R. More importantly, 
because implementation of the different techniques is not 
standardized, lessons learned from comparing outputs of 
different SDMs are impaired. Are results of a particular 
modelling technique better because the technique is superior 
to other, or because of particular default implementations  
in the software? Developing model-independent methods 

(i.e. procedures that can be applied with any SDM) for com-
mon tasks in species distribution modelling (e.g. variable 
selection, variable importance) followed with a good software 
design would override such shortcomings for comparing 
modeling outputs in existing SDM platforms.

We introduce a new R package, sdm, that solves the 
limitations of existing platforms for species distributions 
modelling. sdm an extendable framework that enables fit-
ting of individual and community-based SDM approaches, 
while supporting markedly different modelling approaches, 
including correlative, process-based (mechanistic), agent-
based, and cellular automata. It generates ensembles of mod-
els, and several options for evaluation of model results and 
and projection of species potential distributions in space and 
time. The generic design of sdm is object-oriented making 
it flexible and amenable to efficient handling of errors. The 
object-oriented design also makes it easily extended by users 
wanting to support additional models and/or procedures 
for any of the main steps in species distribution modelling. 
Finally, sdm provides a graphical user interface (GUI) making 
it easy-to-use even for users who are not familiar with R.

Design of the sdm package

The sdm package is designed to create a comprehensive 
modelling and simulation framework that: 1) provides a 
standardised and unified structure for handling species dis-
tributions data and modelling techniques (e.g. a unified 
interface is used to fit different models offered by different 
packages); 2) is able to support markedly different modelling 
approaches, including correlative, process-based (mechanis-
tic), agent-based, cellular automata, etc.; 3) enables scien-
tists to modify the existing methods, extend the framework 
by developing new methods or procedures, and share them 
to be reproduced by the other scientists; 4) handles spatial 
as well as temporal data for single or multiple species; 5) 
employs high performance computing solutions to speed up 
modelling and simulations, and finally; 6) uses flexible and 
easy-to-use GUI interface.

sdm was built following a fully object-oriented design. The 
object-oriented approach enables formulation of problems 
using interacting objects rather than sets of functions (Alfons 
et al. 2010). The properties of these objects are defined by 
general and extensible class description, suitable for species 
distributions models and their corresponding data. Their 
behavior and interactions are modeled with generic func-
tions and methods. One of the most important concepts 
of object-oriented programming is class inheritance, i.e., 
subclasses inherit properties and behavior from their super-
classes. Thus, code can be shared for related classes, which 
is the main advantage of inheritance (Alfons et  al. 2010). 
In addition, subclasses may have additional properties and 
behavior, so in this sense they extend their super-classes.

In the sdm framework, we used S4 and reference class 
systems (Chambers 2014), which provide mechanisms for 
object-oriented programming in R. The reference class 
system allows the use of encapsulated object-oriented 
programming, and their objects behave more like objects 
in the other object-oriented programming language such as 
Java and C. We defined several classes to handle species 



370

data, different methods, and settings for modelling and sim-
ulation. There are some container classes whose instances are 
collections of the methods for a specific purpose (e.g. model 
fitting, evaluation). These classes are extensible by users (i.e. 
a new method can be included to the collection by a user). 
Furthermore, the specific container classes were designed to 
handle the chain of processes (workflows). They are followed 
by some methods to facilitate their reproducibility on a new 
machine (i.e. they can be shared and reproduced by a new 
user on a new workstation). Reproducibility of an experi-
ment refers to not only its’ exact repetition (repeatability), 
but also using the general idea and settings of the experi-
ment in a new experiment. There is also a class to manage 
the metadata can be used for both methods and data in the 
framework. An object of the metadata class keeps some infor-
mation (e.g. authors, date of creation, citation, and website) 
about the corresponding data or method. A user can find, 
for example, how to cite a new data, method, or process that 
has been created and shared by another user. An example 
of a data class and a container class in the sdm framework 
is provided in Fig. 1. A class may contain several subclasses 
and itself being a subclass of a superclass. A set of methods 
is defined for each class and can be used to handle the class 
during the simulation.

How does sdm work?

The sdm framework helps constructing and execut-
ing a chain of procedures that constitute the backbone of 
species distributions modelling. These procedures can be 
grouped into three steps: pre-processing; processing; and 

post-processing. Pre-processing includes all procedures by 
which data becomes available for processing, when SDMs 
are fitted. After being processed, the model results are post-
processed given user-specified settings (Fig. 2). An extensible 
set of functions (methods) is available for each step, which 
can be included into the chain by a user.

Data management and pre-processing
A set of utility functions is available in the sdm framework 
to read and handle species and environmental data in a 
flexible and automated way. Species data are usually avail-
able as a list of coordinates, or as a spatial point dataset. 
Environmental variables are mostly available as spatial data 
in the form of spatial vectors (e.g. lines, points, polygons) 
or rasters (i.e. spatial grids). GIS (Geographic Information 
Systems) operations are typically required to convert these 
kinds of data into a structure that is suitable for species dis-
tribution modelling. Such process of data manipulation is 
usually a challenge for non-GIS experts, especially when the 
data vary in their extent or their coordinate systems. sdm 
can read species and environmental data with different com-
mon structures (spatial or non-spatial), and is not sensitive 
to these problematic issues as they are automatically handled 
and fixed through the pre-processing step. For instance, sdm 
uses several procedures to manipulate data when spatial 
datasets are introduced as the input data (e.g. species data as 
spatial points, and environmental predictors as a set of raster 
datasets) including: checking whether all the data use the  
same coordinate system, and if not, a project transformation 
is called to convert them into a unique coordinate system; 
checking whether they are spatially match and whether they 
use the same spatial extent, and if not, the extent will be 
matched and also the records outside of the main extent are 
recognized.

Data used in species distributions modeling typically 
carry a number of statistical problems (e.g. lack of absence 
data, multicollinearity among predictors, spatial autocorre-
lation in both response and predictor variables, positional 
uncertainty). Whilst solutions have been proposed to deal 
with these problems (Dormann 2011), current platforms for 
SDM tend to ignore them. The pre-processing phase includes 
all procedures through which data are controlled for prob-
lematic issues and prepared for the processing (modeling) 
phase. These procedures are implemented as functions 
according to state-of-the-art methods for the corresponding 
issues. We briefly describe some important procedures.

Pseudo-absence – some models required absences as well 
as presences to be fitted. Yet all too often presence data alone 
are available. One option to deal with this problem is to 
generate pseudo absences. Pseudo absences tend either to 
be randomly drawn from a studied region, or environmen-
tally or spatially stratified (Barbet-Massin et al. 2012). These 
procedures for pseudo-absence generation are available in 
sdm and can be used separately or within the modelling 
procedure. Furthermore, one can generate several replica-
tions of pseudo absences to explore the variability of the 
process through a simulation.

Collinearity – correlation between two or more predictor 
variables in a statistical model can cause problems of col-
linearity (also called multicollinearity). Many statistical 
models (especially regression-type models) are sensitive to 

(a)

(b)

Figure 1. Class diagrams of a species data object (a), and a method 
container (b); each class contains several data, known as attributes 
or fields, kept in different slots (@slot-name), and several methods 
defined as a list of functions to access the data objects in the class.
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collections (Graham et al. 2004) or from volunteer observa-
tion networks (Wood et  al. 2011), are becoming available 
on the Internet. One of the problems with these data is the 
uncertainty regarding the exact position of the occurrence 
records (Graham et al. 2004, Rowe 2005). Examining spatial 
autocorrelation in predictor variables is one possible strat-
egy to investigate whether positional uncertainty in species 
occurrences is problematic (Naimi et al. 2011, 2014). Spatial 
autocorrelation in predictors can give insight into how simi-
lar the nearby locations are to the uncertain species location. 
Strong spatial autocorrelation indicates that the errors in 
species locations matter less, because nearby locations have 
similar environmental characteristics to the true location. 
Spatial autocorrelation can be measured globally, over the 
entire study area (e.g. using a variogram; Naimi et al. 2011), 
or locally at each species location (e.g. using a local spatial 
autocorrelation measure; Naimi et al. 2014). The former can 
give insight into the level of positional uncertainty under 
which the models will be sensitive (by assuming that the 
spatial structure is the same over the study area), while the 
latter leads to identify the species locations that are likely to 
be problematic as a consequence of positional uncertainty. 
sdm, implements the two methods.

Feature construction – before processing the models, 
user-defined features are established that determine how 
species distributions data are related to environmental 
variables. Several features are available in sdm including 
linear, quadratic, polynomial, product, hinge, threshold, 
spline, and factor that can be extended by the user accord-
ing to the needs. sdm treats features as model-indepen-
dent, which is an important advantage over other SDM 
platforms as it makes it possible to use and compare 
unique set of feature classes across all models (subject to 
the being supported by modelling algorithm). The abil-
ity to set common features across different models helps 
overcoming one of the main drawbacks of existing model 
comparisons: not controlling for varying features across 
models. For example, while Maxent software (Phillips et al. 
2006) supports hinge and threshold features in fitting a 

collinearity for it may cause instability in parameter estima-
tion and biases in inference statistics (Dormann et al. 2013). 
Several approaches have been provided in the statistical lit-
erature to detect collinearity. Pairwise correlation coefficients 
and the variance inflation factor (VIF) (Marquardt 1970) 
are, perhaps, the most widely used approaches. The Pearson 
(r) or Spearman (r) correlation coefficients between a pair 
of variables can simply show whether two variables are cor-
related and, if so (usually when its value is greater than a 
threshold e.g. 0.7), having both variables in the modelling 
procedure may cause problems of collinearity. The VIF is a 
more precise method as it measures how strongly each pre-
dictor can be explained by the rest of predictors: if all infor-
mation regarding a predictor is provided by other predictors 
why keep the predictor? The VIF is based on the square 
of the multiple correlation coefficient (R2) resulting from 
regressing the predictor variable against all other predictor 
variables. A VIF greater than 10 (as a rule of thumb) is a 
signal that the model has a collinearity problem (Chatterjee 
and Hadi 2006). All of the above measures are implemented 
in sdm and can be used to detect collinearity. To avoid col-
linearity in the modelling, one approach is to remove the 
collinear variable prior to model fitting. We developed two 
stepwise procedures to detect and exclude collinear variables: 
one based on VIF measure; the other using both correlation 
coefficients and VIF. The former approach calculates VIF 
for all predictors and excludes the one with the greatest VIF 
(if it is greater than a threshold). The procedure is repeated 
until all strongly collinear variables are excluded. The sec-
ond approach calculates the correlation coefficients between 
variables and identifies a strongly correlated pair with the 
highest coefficient. Then the variable with a highest VIF is 
excluded from the pair, and the procedure is repeated until 
no strongly correlated pair remains.

Principle component analysis (PCA) can be used as a data 
reduction technique to reduce dimensionality in predictor 
variables (Heikkinen et al. 2006) and is available in sdm.

Positional uncertainty – increasing amounts of species 
data, especially presence-only data from museum or herbarium 
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Figure 2. A schematic representation of a chain including the main classes and pre-processing, processing, and post-processing procedures 
for species distribution modelling in sdm.
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include (and use) new methods as they become available. 
The new method, or the specific settings for using an exist-
ing one, can then be exported and published (for example on 
Internet) for other users.

Post-processing
When the models are fitted, there are several additional 
processes that can be employed, including model evalua-
tion, prediction, and variable importance assessment. sdm 
also offers specific functions to analyse geographically the 
outputs when multiple species are modelled (e.g. calcula-
tion of species richness, beta diversity, and niche similarity), 
or to assess the temporal changes when species records are 
available in multiple time periods.

Model evaluation (accuracy assessment) – a comprehen-
sive set of model evaluation procedures are implemented in 
sdm. Ideally, statistically independent data (test data) should 
be used to evaluate model predictions (Araújo et al. 2005a), 
otherwise a data-splitting method is often used as an alter-
native by which a randomly drawn sample of the data are 
used to train the models and the remaining data are used for 
model evaluation (but see for alternative approaches, Madon 
et al. 2013). A one-time data-splitting has been widely used 
for this purpose, although it may introduce a bias to the 
parameter estimation (Araújo et al. 2005a). This issue can be 
overcome by using a family of resampling methods includ-
ing random subsampling, K-fold cross-validation, Jackknife 
(leave-one-out), and bootstrapping (Hastie et  al. 2009). 
Subsampling repeats the random data splitting into train-
ing and testing proportions K times (uses sampling without 
replacement). K-fold cross-validation, first, splits the data 
into K roughly equal-sized parts, and then fits the models 
K times. Each time one part is used as test data and the 
other K – 1 parts of the data are used as training data. Leave-
one-out is equal to the K-folds cross-validation when K is 
equal to the number of observations. This means that only 
one observation is used to evaluate the model at each run. 
Bootstrapping repeats a sampling with replacement method, 
each time a sample with equal size as the original data is 
drawn and used for training data. The observations that 
are not selected are used for the evaluation at each run. In 
sdm, all these procedures are implemented and can be used 
(one or all) in the evaluation procedure. Many state-of-the-
art statistics for evaluating SDMs (Fielding and Bell 1997) 
are implemented that include threshold-dependent statistics 
(e.g. TSS, Sensitivity, Specificity), threshold-independent 
statistics (e.g. AUC, COR), and methods developed to cal-
culate p-values through Jackknife for data sets with small 
sample size (Pearson et al. 2007).

Variable importance and response curve – determining 
the role of predictor variables in explaining the species dis-
tribution is of practical relevance to researchers concerned 
with interpreting the outputs of the models. Evaluating how 
important each variable is (Murray and Conner 2009) and/
or visualizing the predicted response of species to the pre-
dictor variable (Elith et al. 2005) are two known methods 
to determine predictor variable importance. In sdm, several 
model-independent techniques were implemented to evalu-
ate the importance of variables and visualize species response 
curves. In sdm, response curves are generated according to 
the procedure proposed by Elith et  al. (2005). Additional 

maximum entropy algorithm, the other SDM software do 
not support them.

Processing (model fitting)
Model fitting is a step in modelling species distributions, 
whereby one or several model(s) is fitted to relate response 
variables (species distributions) to predictor (environmental) 
variables. A user can select any (or all) of available meth-
ods (modelling algorithms). Several instances of a model 
may be used with different settings, and/or ensembles of 
several models can also be generated for each species to gen-
erate a consensus among them. Currently, sdm supports 
15 modelling methods including generalized linear model 
(GLM; McCullagh and Nelder 1989), generalized additive 
model (GAM; Hastie and Tibshirani 1990), classification 
and regression trees (CART; Breiman et al. 1984), boosted 
regression trees (BRT; Friedman 2001), multivariate adap-
tive regression spline (MARS; Friedman 1991), mixture 
discriminant analysis (MAD; Hastie et  al. 1994), random 
forests (RF; Breiman 2001), support vector machine (SVM; 
Vapnik 1995), artificial neural networks (ANN; Rosenblatt 
1958), environmental niche factor analysis (ENFA; Hirzel 
et  al. 2002), maximum entropy (Maxent; Phillips et  al. 
2006), maxlike (Royle et al. 2012), Bioclim (Busby 1991), 
Domain (Carpenter et al. 1993), and Mahalanobis (Farber 
and Kadmon 2003). Furthermore, several community-
based models (Baselga and Araújo 2009) and consensus 
techniques (Garcia et  al. 2012), derived from fitting mul-
tiple (i.e. ensembles) of models (Araújo and New 2007), 
are implemented in sdm. Most of these modelling methods 
were available through different packages in R (e.g. GAM, 
BRT, SVM). sdm depends on and uses these packages to 
fit the models based on such methods that are selected 
by a user. Several modelling methods (Table 1) as well as 
all of the procedures in the pre- and post-processing (e.g. 
multicollinearity test, variable importance, model evalua-
tion), are implemented in the sdm package. The programme 
also provides some facilitator functions enabling the user to 

Table 1. A list of implemented modeling methods in the first release 
of the sdm package and their dependent packages.

Modelling methods Depends on

Generalized linear models (GLM) stats
Generalized additive models (GAM) mgcv; gam
Boosted regression trees (BRT) gbm
Support vector machine (SVM) kernlab
Classification and regression trees 

(CART)
tree

Multivariate adaptive regression spline 
(MARS)

earth

Mixture discriminant analysis (MAD) mda
Random forests (RF) randomForest
Artificial neural networks (ANN) nnet; neuralnet
Environmental niche factor analysis 

(ENFA)
adehabitatHS

Maximum entropy (maxent) Java software: maxent.jar
Maxlike maxlike
Bioclim NONE
Domain NONE
Mahalanobis NONE
Ensemble modelling NONE
Community-based models gdm; mda
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then it is expected that the prediction is more affected by a 
permutation and therefore the correlation is lower. Therefore, 
‘1 – correlation’ can be considered as a measure of variable 
importance (Thuiller et al. 2009).

Other capabilities
Apart from the functionalities corresponding to the main 
steps in species distribution modelling, sdm implements 
additional functions and classes for different purposes 

model-independent techniques were also implemented to 
evaluate the relative variable importance. For example, a 
method is to calculate the improvement of the model per-
formance over inclusion of each variable comparing to when 
the variable is excluded through a cross-validation procedure. 
Another method is a randomization procedure that measures 
the correlation between the predicted values and predictions 
where the variable under investigation is randomly permu-
tated. If the contribution of a variable to the model is high, 

Species data
Predictor variables(a)

(b)

GLM

Model predictions in both geographic and niche space

(c)

(d)

Figure 3. An example of using sdm package in R that demonstrating reading data, fitting species distribution models and predicting;  
(a) species dataset is provided as a spatial shapefile including presence–absence records, and two predictor variables (NDVI and precipita-
tion) are in the format of raster Ascii files; (b) shows how the data are loaded and the model is fitted in the command line interface;  
(c) shows how the predict function can be used, and its outputs are visualized in geographic and niche space; (d) shows an example of GUI 
interface (as an alternative to the command line interface).
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including controlling the data and procedures for han-
dling the errors, facilitating the extensibility and repro-
ducibility of the methods and procedures (by allowing to 
include or modify a method or procedure and distribute to 
the wider community), providing graphical user interface 
(GUI) and making the framework easy-to-use, generating 
dynamic reports, and implicitly parallelize the procedures 
to boost them through high performance computing,  
etc. Figure 3 provides a simple example on interfacing sdm 
through command line and GUI as well as some outputs. 
A tutorial contains further examples is provided with the 
package as a vignette, demostrating the main capabilities 
of sdm (as listed in ‘design of the sdm package’).

Conclusion

sdm is an object-oriented reproducible and extensible frame-
work for species distribution modelling in R that unified 
different implementations of SDMs in a single framework. 
sdm provides an easy-to-use comprehensive framework 
to perform the entire modelling process within the same 
environment using different state-of-the-art approaches. 
The software is designed such to enable users to extend it 
and share the new data, methods or procedures to reproduce 
them by other users.

To cite sdm or acknowledge its use, cite this Software 
note as follows, substituting the version of the application 
that you used for ‘version 0’:

Naimi, B. and Araújo, M. B. 2016. sdm: a reproducible and 
extensible R platform for species distribution modelling.  
– Ecography 39: 368–375 (ver. 0).
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