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There is currently an increasing need to monitor and as-
sess regional, continental and global spatial processes in 
a changing inter-connected world (Johnston et al. 2002). 
Consequently, researchers are beginning to integrate data 
on a regional or global scale with local studies in order 
to develop multi-hierarchical frameworks that address the 
complexity of environmental and social systems (Good-
child 2001, Brown et al. 2002). In addition, the inclu-
sion of the spatial vector in scientific studies, supported 
by Geographic Information Systems (GIS), is required 
by land-planners and administrators in order to generate 
supporting management tools. To go beyond non-spatial 
approaches, predictive modelling of spatial patterns on all 
scales is one of the main topics of location-related sciences 
such as biogeography, climatology, hydrology, ecology and 
landscape ecology (Haines-Young et al. 1993, Maidment 
and Djokic 2000, Austin 2002). In addition, the quality 
of predictions about the effect of global change on features 

such as biodiversity, water availability, erosion processes 
and others are also determined by the accuracy of the pre-
dictive tools (Thuiller 2003). Consequently, the evalua-
tion of predictive tools is essential for the improvement of 
results and subsequent management strategies.

There is an extensive list of spatially predictive ap-
proaches, models and techniques. According to Guisan 
and Zimmermann (2000), three large groups of predictive 
models can be recognised: 1) analytical or mathematical, 
such as the general logistic growth equation, 2) mechanis-
tic or process-oriented models based on the theoretical cor-
rectness of the predicted response, and 3) statistical models 
based on the correlations between predictors and response 
variables, although some authors maintain that this distinc-
tion is often unclear (Peters 1991). In terms of statistical 
models, many techniques have been applied to spatial data: 
regression analysis (MacNally 2000), classification and or-
dination techniques such as regression trees and various 

Comparing regression methods to predict species richness 
patterns

David Nogués-Bravo

Nogués-Bravo, D. 2009. Comparing regression methods to predict species richness 
patterns. – Web Ecol. 9: 58–67.

Multivariable regression models have been used extensively as spatial modelling tools. 
However, other regression approaches are emerging as more efficient techniques. This 
paper attempts to present a synthesis of Generalised Regression Models (Generalized 
Linear Models, GLMs, Generalized Additive Models, GAMs), and a Geographically 
Weighted Regression, GWR, implemented in a GAM, explaining their statistical for-
mulations and assessing improvements in predictive accuracy compared with linear 
regressions. The problems associated with these approaches are also discussed. A digital 
database developed with Geographic Information Systems (GIS), including environ-
mental maps and bird species richness distribution in northern Spain, is used for com-
parison of the techniques. GWR using splines has shown the highest improvement in 
accounted deviance when compared with traditional linear regression approach, fol-
lowed by GAM and GLM.

D. Nogués Bravo (dnogues@bio.ku.dk), Center for Macroecology, Evolution and Climate, 
Dept of Biology, Univ. of Copenhagen, Denmark.



59WEB ECOLOGY 9, 2009

types of correspondence analysis, namely canonical cor-
respondence analysis, CCA, and de-trended correspond-
ence analysis, DCA (ter Braak 1988, De’ath and Fabricius 
2000, White and Sifneos 2002). In addition, there are other 
promising approaches such as Artificial Neural Networks 
(ANN; Manel et al. 1999, Rigol et al. 2001), cellular au-
tomata (Carey 1996), Bayesian approaches (Stassopoulou 
et al. 1998) and genetic algorithms (Stockwell and Peters 
1998, Anderson et al. 2003), a machine-learning approach 
that is based on Artificial Intelligence (AI). One of the 
most widely used techniques for predicting spatial patterns 
in environmental sciences are regression models. Usually, 
this statistical technique is applied in its linear and Gaus-
sian form to relate response- and predictor variables. How-
ever, other regression approaches are emerging as more ef-
ficient tools. These extensions of linear regression are called 
Generalised Linear Models (GLM; McCulagh and Nelder 
1989), and Generalised Additive Models (GAM; Hastie 
and Tibshirani 1990). Both techniques support non-linear 
fittings between response and predictor variables, although 
predictor variables must be linearized when GLMs are ap-
plied. Also, other regression approaches based on local fit-
tings that allow the regression model parameters to vary 
in space as Geographically Weighted Regression (GWR; 
Brunsdom et al. 1996, Fotheringham et al. 2002), are in-
creasing their presence in environmental research. These 
emerging approaches manage adequately non-linear rela-
tionships between response and predictor variables (Os-
borne and Suarez-Seoane 2002). Generalized models and 
GWR are used in studies addressing patterns of biodiversi-
ty or biological conservation (Janet 1998, Barry and Welsh 
2002, Cawsey et al. 2002, Guisan et al. 2002, Lehmann et 
al. 2002a, Zaniewski et al. 2002, Yee and Mackenzie 2002, 
Foody 2004, Nogués and Martínez-Rica 2004, Nogués-
Bravo and Aguirre 2006, Nogués-Bravo and Araújo 2006, 
Whittaker et al. 2007, Araújo et al. 2008) and in some 
medical applications such as cancer mapping or the in-
fluence of air pollution on hospital admissions (Schwartz 
1999, Frencht and Wand 2004). However, these tools are 
largely unknown in other disciplines such as climatology, 
hydrology and soil sciences or even within some disciplines 
within ecology (Bishop and McBratney 2001, Brunsdon et 
al. 2001, Beckmann and Buishand 2002, López-Moreno 
and Nogués-Bravo 2005, López-Moreno et al. 2006).

The aim of this paper is 1) to offer a synthesis of GLM, 
GAM and GWR approaches in order to outline to the 
ecological community tools for spatial predictions, and 2) 
to assess the different predictive capacity of the three tech-
niques in order to illustrate the improvement in accuracy 
in comparison with a standard lineal regression approach. 
A database of bird species distribution in northern Spain 
was used to assess avian fauna species richness using four 
different models (topo-climatic variables, landscape struc-
ture variables, land-cover variables, and a mixture of vari-
ables that belong to the first three groups). This database is 
used as an example to illustrate the features and limitations 

of the regression approaches considered here. In this way, 
twenty models were developed (four GLMs with linear 
terms, four GLMs with polynomial terms, four GAMs 
with controlled curve complexity, four GAM’s without 
controlled curve complexity and four GWRs) in order to 
compare their predictive capacity. GLM with linear terms, 
a kind of regression very similar to the classic linear re-
gression model, allow us to compare the improvement on 
predictive accuracy when non-linear regression approaches 
are used. In addition, the effect of controlling curve com-
plexity in GAMs is discussed. 

Regression descriptions

In a multiple linear regression, a special case of the general 
linear model, linear least-squares fit is computed for a set 
of predictor variables to predict a response or dependent 
variable. It can be stated as:

 Y = α + βX + ε  (1)

where Y is the response variable, α is the constant, X = 
(X1,..., Xp) is the vector of p predictor variables, β = (β1,..., 
βp) is the vector of p regression coefficients and ε  is the 
error term. However, this kind of regression presents two 
major limitations: 1) the errors ε i must be identically and 
independently distributed and 2) they must also follow a 
normal distribution. In addition, GLMs and GAMs dif-
fer in two major features: the distribution of the response 
variable can be non-normal and does not have to be con-
tinuous, and the dependent variable values are predicted 
from a combination of predictor variables, which are 
linked to the response variable via a link function. In this 
way, GLMs and GAMs allow a choice to be made of the 
different distributions of the response variable (normal, 
gamma, Poisson and bi-nomial for dichotomous response 
variables) and the different link functions (identity, inverse, 
log, power or log-it), since normal distributions may not 
be adequate for modelling some response variables such 
as count data, or bounded responses such as proportions 
(Crawley 1993). Also, GLMs before linearization of poly-
nomial terms and GAMs support non-linear fits between 
response and predictor variables (Table 1). Thus, general-
ized models can be applied to a much wider range of data 
analysis problems. A Generalised Linear Model could be 
stated as (Guisan et al. 2002):

 g(E(Y )) = LP = α + βX + ε  (2)

where g(µ) is the link function used to relate the linear pre-
dictor (LP) with the expected value of the response variable 
µ = E(Y). The other parameters α, X and β, are the same as 
in Eq. 1. Usually, authors who use GLMs to predict spatial 
features try linear, quadratic or cubic terms of each predic-
tor variable in order to identify the best fit and to account 
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for non-linear relationships before developing multivari-
able models. This is difficult and time-consuming when 
the modellers are evaluating a wide range of predictor vari-
ables.

GAMs have been called as data-driven approaches 
(Guisan et al. 2002) since modellers do not assume a special 
type of relationship (linear, quadratic, power, logarithmic, 
etc.) before model development. In GAMs (Guisan and 
Zimmermann 2002), the vector of parametric regression 
coefficients, β, is changed by a vector of non-parametric 
smoothers or functions. In other words, each regression 
coefficient, βp, of a linear model or a Generalised Linear 

Model is changed by a non-parametric smoother, sp. A 
GAM can be stated as:

 g(E(Y )) = PL = α + sX + ε  (3)

or put another way:

 g(E(Y )) = PL = α + f
1
(X

1
) + f

2
(X

2
) + ... + ε  (4)

where each predictor variable, Xn, is fitted by means of 
a function fn( ). So, a GAM is the addition of different 
functions fitted to the independent variables in order to 
predict Y-values. Data are fitted with respect to the par-
tial residuals: the residuals after removing the effect of all 
predictor variables (Fig. 1). Hastie and Tibshirani (1990) 
discuss various general scatter-plot smoothers that can be 
applied to the X-variable values, with the target criterion 
to maximize the prediction quality of the (transformed) 
Y-variable values. One such scatter-plot smoother is the 
cubic smoothing splines smoother (Wood and Augustin 
2002), which generally produces a smooth generalization 
of the relationship between the two variables in the scatter-
plot. A detailed description of how GAMs are fit to the 
data in relation to the algorithms used, outer and inner 
loop, can be found in Hastie and Tibshirani (1990). In 
terms of the degrees of freedom, in a parametric regres-
sion one degree of freedom is lost when a single coeffi-

Table 1. Limitations and advantages of linear (LM) and general-
ized regression approaches, GLM and GAM (* = linearization 
of predictor variables is required, = GWR is implemented in a 
GAM).

Non-Gaussian 
distributions

Link 
functions

Non-linear 
fittings

LM X X √(*)

GLM √ √ √(*)

GAM √ √ √
GWR √(+) √(+) √(+)

Figure 1. Spline example plots obtained using exercise data from R-software.
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cient is estimated. Similarly, the more complex the spline, 
the greater the number of degrees of freedom that are 
lost. Degrees of freedom can be forced by the modeller 
to reduce the complexity of the adjusted spline, avoiding 
over-fitting and obtaining response curves with an easier 
interpretation. There are computationally effective ways to 
choose the amount of smoothing as General Cross Valida-
tion procedure that penalise the complexity of the model 
(see Wood and Augustin 2002 for a technical exposition). 
The GCV score is used to find the model with the highest 
accounted deviance using the simplest splines (e.g. GCV 
procedure try to maximize the trade-off between model 
fit and the overall smoothness. When splines are forced 
to a maximum of four degrees of freedom, the maximum 
smooth considered for each variable by GCV is four and 
splines are forced to present four or less complexity than 
four degress of freedom).

Scatter-plots in a GAM show the smoothed predictor 
variable values, on the X-axis, plotted against the partial 
residuals, on the Y-axis, and allows the modeller to under-
stand the nature of the relationship between the predic-
tor and the residualized dependent variable values. In this 
kind of plot, the fitted spline is shown with the confidence 
bands, 95% or 99%, and the cases appear as a rough plot 
at the bottom (Fig. 1). The title of the Y-axis is the name 
of the dependent variable with the degrees of freedom of 
the spline, which express the degree of complexity of each 
spline.

Finally, Geographically Weighted Regressions, GWR 
are a special case of regression approaches mainly featured 
by its capability to vary the regression parameters across 
the space. So, it could be considered as a local approach 
while standard regression approaches or GLMs and GAMs 
are global techniques, with a single set of model param-
eters taken to apply uniformly in space. A GWR can be 
stated as:
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where there are j = 1, n explanatory variables, ε i, is a ran-
dom error term, the location for each observation is de-
fined by the coordinates (ui, vi); β0 – βn are the parameters 
of the model with βj(ui, vi) a realization of the continuous 
function βj(u, v) at location i. Parameters are estimated 
weighting the contribution of an observational site in rela-
tion to its spatial distance to the specific location under 
consideration. The spatial weighting is achieved by means 
of a geographical kernel and it varies in relation to the size 
of the kernel: band width (see Fotheringham et al. 2002 
for a specific exposition about parameter estimations, 
weighting functions or bandwidth selection). However, we 
assess here the predictive capacity of GWR but assuming 
non-linear fittings between response and predictor vari-
ables in order to present a different insight of GWR. The 

GWR is implemented in a GAM and fitted using penal-
ized splines:
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where there are j = 1, n explanatory variables, ε i, is a ran-
dom error term, the location for each observation is de-
fined by the coordinates (ui, vi); β0 (also named ε  in Eq. 
3 and 4) is the constant parameter of the model, with fj(ui, 
vi) a realization of the continuous function fj(u,v) at loca-
tion I (in this case, f functions are based here in penalised 
splines). Mgcv package (Wood and Augustin 2002) was 
also used to develop the GWR. In mgcv the smoothing 
parameters are basically equivalent or reciprocal to the 
bandwidth in a GWR.

The functions adjusted by each regression approach 
could be applied to each pixel or other units (census grid 
cells, municipalities or others) for mapping the predic-
tions or residuals. The selection of linear or non-linear 
approaches implies differences on the predictive mapping 
(Fig. 2), not only related to the degree of accuracy but to 
the assumed type of relationship between response and 
predictor variables.

Data, model formulation and evaluation

The two main sources of data used to assess the predictive 
accuracy of the different regression approaches were envi-
ronmental (climate, topographical and land-cover compo-
sition and configuration) and an avifauna species database 
of a region of northern Spain (Navarra; 10 400 km2). Bird 
data are located in 79 UTM 100 km2 grid cells. Different 
procedures implemented in GIS were developed to obtain 
the final variables for each group: topo-climatic variables 
(TCLIM), landscape structure variables (LANDS), land-
cover area variables (LCAREA) and a mixture of variables 
(MIX) that belong to the first three groups. Climate maps 
were obtained from meteorological stations with tempera-
ture and precipitation records. We selected stations with 
long records by using a filter that maximized the record 
length of temperature and rainfall. Some stations were 
also chosen to obtain a homogeneous distribution of data 
throughout the territory. A total of 65 stations were used 
with record lengths of 20 years. The average density was 
one station per 160 km2. The standard length of climatic 
variables should be 30 years (WMO 1967), but this was 
reduced. Instead, we used as many stations as possible, 
since the goal was to develop statistical models to map 
precipitation and temperature. Climatic variables were 
combined to obtain a PET map (Heargraves 1985). A 
digital elevation model with a resolution of 25 m and a 
land-cover map (1:25 000) were developed by the Envi-
ronmental Information Dept of the Navarra Government. 
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Figure 2. Examples of t-regression approaches. Left side: scatter-plots showing different types of fits (linear approach, cubic function, 
GLM, and a spline, GAM). Right side: 3D maps of the adjusted functions (X and Y represent geographical coordinates). Different 
regression approaches imply differences in the assumption of the nature of modelled patterns.
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A terrain complexity map was obtained using a moving 
windows technique based on an ‘ArcInfo Macro Language’ 
routine over DEM map. This pitted texture index is based 
on perpendicular vectors and spherical variance and syn-
thesizes changes in altitude, slope and aspect (Felicísimo 
1994). Average values of PET and terrain complexity were 
extracted for the 79 UTM 100 km2 grid cells.

A land-cover map at 1:25 000, comprising 24 classes, 
was obtained from the Dept of Agriculture of the Regional 
Government of Navarra. The map was developed using 
orthophotos (1:25 000) and fieldwork to confirm the 
type of land-cover in each patch. Only the areas of three 
land-cover classes in each 100 km2 grid cell were selected 
to avoid an inadequate ratio between cases and variables. 
These classes are deciduous forest, heath-lands and mead-
ows, and Mediterranean croplands. They were selected due 
to their representation of the typical land-cover of the three 
biogeographical environments of the study area: Atlantic, 
alpine and Mediterranean environments. 

Landscape structure analysis was developed with ‘Geo-
graphic Resources Analysis Support System (GRASS)’, 
and ‘r.le Programs’ (Baker and Yunming 1992). Three 
indeces were calculated to measure different landscape 
features. ‘Mean Patch Size’ represents the mean patch 
size of patches (polygons) in each 100 km2 grid square. 
The ‘Degree of Landscape Division Index’ (Jaeger 2000) 
shows the probability that randomly chosen sites in each 
100 km2 grid square are not in the same undissected area. 
The ‘Shannon Diversity Index’ (Shannon and Weaver 
1949) estimates land covers diversity in each 100 km2 grid 
square. Measures were developed using the 24 classes of 
the land-cover map.

Finally, one variable of each group was selected to de-
velop MIX-PET, Shannon Diversity Index and the area 
of Mediterranean croplands were selected. Selection of 
the variables was developed to avoid co-linearity between 
variables. Thus, a previous Pearson correlation analysis us-
ing the variables of TCLIM, LCAREA and LANDS was 
calculated in order to select variables without correlation. 
So, the four groups of predictor variables were developed: 
TCLIM, LCAREA, LANDS and MIX (Table 2).

After obtaining the four data-sets, they were used to fit 
each one of them against avian species richness in each of 
the regression approaches:

1) GLM using only linear terms was regressed against 
one of the mentioned groups of predictor variables. This 

will be called GLM1 and represents a typical linear re-
gression model, although assuming a non-gaussian dis-
tribution of the response variable; 2) GLM testing linear, 
quadratic or cubic terms of each predictor variable. The 
term showing the best predictive capacity for each variable 
is selected to develop the final model. This will be called 
GLM2; 3) GAM controlling complexity of each spline to 
a maximum of four degrees of freedom. This will be called 
GAM1. Model complexity is penalised by means of GCV 
procedure (Wood and Augustin 2002); 4) GAM without 
controlled spline complexity. This will be called GAM2; 
5) GWR implemented in a GAM with splines forced to a 
maximum of four degrees of freedom. Model complexity is 
penalised by GCV procedure. This will be called GWR.

The response variable is bird species richness, a special 
type of count data, a Poisson distribution with a log-link 
function, was chosen according to Crawley (1993) in each 
regression approach. Using a log-link function, illogical 
predicted values (less than 0 species) are avoided.

To assess the accuracy of the model, cross-validation was 
used to compare estimated with observed values. Cross-
validation is an appropriate technique to evaluate models 
when two independent data-sets (for calibration and vali-
dation) cannot be built because of the reduced number of 
cases (Guisan and Zimmermann 2000). This technique 
works by leaving out one of the cases, fitting the model 
to the remainder and then applying the obtained equa-
tion to the previously removed case in order to calculate 
its predicted value. This procedure is repeated for each case 
in the data-set. The values predicted from cross-validation 
were used to calculate an error estimator (Willmott 1982) 
Willmott’s D:
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where N = number of observations, O = Observed val-
ue,  O = mean of observed values, P = predicted value, i 
= counter for individual observed and predicted values, 
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− O . Willmott’s D varies 

from 0 to 1 (1 means a perfect prediction). Willmott’s 
D was calculated for the twenty models. The average of 
the Willmott’s D values was obtained for each regression 

Table 2. The four groups of predictor variables: climate and topography (TCLIM), area of main land-covers (LCAREA), landscape 
structure variables (LANDS) and a mixture of variables belonging to the first three groups.

TCLIM LCAREA LANDS MIX

PET Area of deciduous forest Mean Patch Size PET

Terrain complexity Area of Heath-lands and meadows Degree of Landscape Division Area of Mediterranean crop-lands

Area of Mediterranean crop-lands Shannon Diversity Index Shannon Diversity Index
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technique (GLM1, GLM2, GAM1, GAM2 and GWR) 
to provide a synthesis of their predictive accuracy.

Finally, some plots are shown to comment on the spe-
cific problems of GAMs in relation to the interpretation 
of complex splines.

Data analyses were developed using the R (Ellner 2001, 
<www.r-project.org>) and mgcv packages (Wood and Au-
gustin 2002); both are non-commercial, open source soft-
ware. Also, another package exists in R to calculate GAM 
in spatial frameworks: Generalised Regression Analysis 
and Spatial Predictions (GRASP, Lehmann et al. 2002b). 
R software implements packages to connect statistical 
analysis with some GIS applications such as GRASS or 
Arc View.

Results

Model evaluation

GWR with splines show highest predictive values (Will-
mott’s D: 0.47) when the five multi-variable regression ap-
proaches are regressed against TCLIM predictor variables 
(Table 3), followed by GAM1 and GAM2. Both methods 
show a value of 0.40 for the error estimator D, since fitted 
splines have the same degree of complexity (1.23 estimated 
degrees of freedom: EDF). This is due to the existence of 
linear or quasi-linear relationships between response and 
predictor variables. Similarly, GLM1 and GLM2 show 
the same D-value, 0.35, because linear terms were the best 
predictors of response variable when linear, quadratic and 
cubic terms were tested for GLM2. GWR is the more ac-
curate approach when regressed against LANDS predic-
tor variables (0.43), followed by GAM2 (0.35), GAM1 
(0.23), GLM2 (0.14) and finally GLM1, which shows a 
D-value of 0.11. GWR is the more accurate model when 
LCAREA variables are used (0.55), followed by GAM2 
and GAM1 (0.53), GLM2 (0.45), and GLM1, which 
shows only 0.35 for the error estimator D. Again, GWR 
is the more accurate model when MIX-predictor variables 
are used, 0.68, followed by GAM2 (0.62), GAM1 (0.59). 

Under these conditions, GLM2 and GLM1 present D-
values of 0.51 and 0.47, respectively.

An average of the D-values for each regression ap-
proach was obtained to summarize the results. GWR 
showed the highest average D-value (0.53) followed by 
GAM2 (GAM without controlling spline complexity), 
GAM1, GLM2 and GLM1 (Table 3). Thus, GWR ex-
hibits a 20% higher predictive accuracy than the worst 
approach, GLM1, whilst GAM2 exhibits a 13% GAM2 
exhibits a 9% improvement over GLM1 (50% is equal to 
an improvement of 0.5 in Willmott’D). Finally, GLM2 
only shows a 1% improvement over GLM1. Also, GWR 
is the most accurate model in all the groups of variables 
(TCLIM, LANDS, LCAREA, MIX), followed by GAM2 
and GAM1 (Table 3).

Plot interpretation

Scatter-plots of the relationships between LANDS vari-
ables and bird species richness are shown to highlight the 
specific problems of GAMs in relation to spline complex-
ity. The plots obtained using GAM1 and GAM2 to model 
species richness using LANDS variables show a similar re-
lationship between species richness and predictor variables 
(Fig. 3). An increment in land-cover diversity is correlated 
with an increment in avian species richness, whilst an in-
crease in land-cover fragmentation implies a reduction of 
species richness. Finally, bigger patches imply lower species 
richness. However, visual inspection of the plots indicates 
that splines fitted without controlling their degrees of free-
dom are more complex, as stated in Table 4; the implica-
tions of this observation will be discussed below.

Discussion and conclusions
This work has attempted to present a synthesis of gen-
eralised regression models, GLM and GAM (including a 
GWR approach), and to assess the improvement of predic-
tive accuracy of these emerging tools in comparison with 
the traditional lineal regressions. As mentioned in the 
regression descriptions, generalised models allow model-
lers to choose from different distributions of the response 
variable (normal, gamma, Poisson and bi-nomial for di-
chotomous response variables) and different link func-
tions (identity, inverse, log, power or log-it). Also, GAM 
supports the fitting of non-linear relationships, improving 
the levels of explained deviance but also providing a more 
rational explanation of the nature of some relationships. 
Non-linear relationships are not infrequent in nature 
and spatial models need to take them into consideration 
(Jongman et al. 1995). Linear approaches do not fit this 
relationship adequately and the predictive maps obtained 
do not make much sense, as stated in Fig. 2. In addition, 
GAMs allow time consumption to be reduced, because 

Table 3. Willmott’s D-values for each model using the different 
regression approaches. Average of D-values was obtained for each 
type of regression.

TCLIM LCAREA LANDS MIX Average

GLM1 0.35 0.45 0.11 0.47 0.35

GLM2 0.35 0.45 0.14 0.51 0.36

GAM1 0.40 0.53 0.23 0.59 0.44

GAM2 0.40 0.53 0.35 0.62 0.48

GWR1 0.47 0.55 0.43 0.68 0.53
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non-linear curves (splines) are automatically adjusted and 
no time needs to be spent on testing linear, quadratic or 
cubic terms, as is the case in GLM. On the other hand, 
GWRs offer local fitting of regression parameters and its 
implementation in a GAM framework seems to be a pow-
erful tool for spatial predictions.

Generalised Additive Models, including a GWR ap-
proach, tested here in a GAM framework, offer the highest 
levels of predictive accuracy. The improvement in predic-
tive accuracy obtained using GAMs in relation to con-
ventional regressions, although with some variations, has 
been tested by other authors in ecological studies compar-
ing GAM with other approaches (Bishop and McBratney 
2001, Hirzel et al. 2001, Pearce and Ferrier 2002, Rob-
ertson et al. 2003, Thuiller 2003, Brotons et al. 2004). 
In hydrological research, studies using different predictive 
methods (Elder et al. 1998, Chang and Li 2000), includ-
ing regression trees, have shown predictive levels of simi-
lar or lower accuracy than GAM, mainly when validation 

techniques such as cross-validation are used in addition 
to r2 or explained deviance (López-Moreno and Nogués-
Bravo 2005). Also, methods such as regression trees and 
Artificial Neural Networks (ANN) lose environmental in-
terpretability, because they do not allow the observation of 
response curve shapes (Lehmann et al. 2002a). In a paper 
focused on soil property mapping (Bishop and McBrat-
ney 2001), GAMs represented the second best approach 
behind kriging with external drift. In a similar way, Foody 
(2003) also underlined the improvement reached in pre-
dictive accuracy using GWR in comparison with ordinary 
least (OLS) regression analysis. Naturally our results are 
contingent on the particular data-set although they are 
similar to other works cited in this paragraph.

In relation to the effect of spline complexity on predic-
tive accuracy, GAM2 offers an improvement on GAM1, 
GAM with splines complexity controlled to four degrees 
of freedom, of 7.2% in the average values of D. How-
ever, this improvement is supported by an increment in 
the degrees of freedom used: 15.1 EDF in all models of 
GAM1 against 24 EDF in all models of GAM2. This 
situation is highlighted when GAM approaches are evalu-
ated against LANDS variables, since 5.45 EDF are lost by 
GAM1, whilst GAM2 uses 14.13 EDF. This implies that 
the robustness of GAM1 is higher than that of GAM2 
and, consequently, the prediction improvement (7.2%) 
should not justify the use of splines without complexity 
penalisation. Consequently, in agreement with Wood and 
Augustin (2002), controlling splines complexity to a maxi-

Figure 3. Estimated terms describing the dependence of avian species richness on LANDS variables (landscape variables). Estimates 
(solid) and 95% confidence intervals (dashed). Splines penalised to a maximum of four degrees of freedom (GAM1) are less com-
plex.

Table 4. Estimated degrees of freedom (EDF) used by GAM1, 
GAM2 and GWR approaches.

TCLIM LCAREA LANDS MIX Sum

GAM1 2 2.98 5.462 4.7 15.14

GAM2 2 3.21 14.132 4.7 24.04

GWR1 4.7 5.7 7.2 7.8 25.4
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mum number of degrees of freedom, such as four, could be 
considered as an adequate compromise between predictive 
accuracy, statistical robustness and curve interpretation. 
Usually, the more complex the model is, the better the fit 
is. However, there is not reason to inflate the complex-
ity of models for accounting more deviance since a slight 
improvement of predictive accuracy could be based in an 
important reduction of model parsimony.

Statistical models for spatial predictions attempt to 
achieve two main objectives: to obtain a reliable estima-
tion of the object under study in unsampled areas or in 
future scenarios and to evaluate theories about the factors 
driving the spatial distribution of the object under study. 
Anyway, correlation does not imply causation and obtain-
ing inference from statistical model is a debatable ques-
tion (MacNally 2000, 2002). So, advanced statistical ap-
proaches, like those presented here, could be considered as 
efficient predictive techniques but their role as explanatory 
tools could be affected, for example, by spatial auto-corre-
lation (Legendre and Legendre 1998, Fotheringham and 
Brunsdon 2004) or co-linearity between variables.

In conclusion, the necessity of developing support deci-
sion tools implemented in spatial frameworks using GIS, 
implies the development of powerful and flexible method-
ologies. Thus, accurate predictive tools oriented towards 
modelling spatial patterns of different features should be 
used in order to maximize the accuracy of models and the 
assessment of different techniques and routines should be 
considered. The application of Generalised Additive Mod-
els, an emerging predictive tool in ecology and biomedi-
cal sciences over the last years, but scarcely used in other 
research fields, could improve the results obtained. The 
improvement on predictive accuracy obtained by GAMs 
is mainly based on non-linear fits. Finally, Geographically 
Weighted Regressions using flexible splines add a surplus 
of accuracy in predictive models related to the local varia-
tion of regression parameters.
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