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ABSTRACT

 

Aim

 

Species richness–area theory predicts that more species should be found if one
samples a larger area. To avoid biases from comparing species richness in areas of very
different sizes, area is often controlled by counting the numbers of co-occupying species
in near-equal area grid cells. The assumption is that variation in grid cell size accrued
from working in a three-dimensional world is negligible. Here we provide a first test
of this idea. We measure the surface area of 

 

c.

 

 50 

 

×

 

 50 km and 

 

c

 

. 220 

 

×

 

 220 km grid
cells across western Europe. We then ask how variation in the area of grid cells
affects: (1) the selection of climate variables entering a species richness model; and
(2) the accuracy of models in predicting species richness in unsampled grid cells.

 

Location

 

Western Europe.

 

Methods

 

Models are developed for European plant, breeding bird, mammal and
herptile species richness using seven climate variables. Generalized additive models
are used to relate species richness, climate and area.

 

Results

 

We found that variation in the grid cell area was large (50 

 

×

 

 50 km: 8–
3311 km

 

2

 

; 220 

 

×

 

 220: 193–55,100 km

 

2

 

), but this did not affect the selection of vari-
ables in the models. Similarly, the predictive accuracy was affected only marginally by
exclusion of area within models developed at the 

 

c.

 

 50 

 

×

 

 50 km grid cells, although
predictive accuracy suffered greater reductions when area was not included as a
covariate in models developed for 

 

c

 

. 220 

 

×

 

 220 km grid cells.

 

Main conclusions

 

Our results support the assumption that variation in near-equal
area cells may be of second-order importance for models explaining or predicting
species richness in relation to climate, although there is a possibility that drops in
accuracy might increase with grid cell size. The results are, however, contingent on
this particular data set, grain and extent of the analyses, and more empirical work is
required.
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INTRODUCTION

 

One of the oldest and best-documented patterns in ecology is the

species–area relationship. It follows from this relationship that

more species should be found if one samples a larger area (for

review see Rosenzweig, 1995). The generality of this pattern has

led to the formulation of the ‘geographical-area hypothesis’,

whereby the high species richness of the tropics is expected

because of the greater geographical area of tropical biome (for

discussion see Gaston & Blackburn, 2000; Hawkins & Porter,

2001; Turner, 2004). To control for ‘area effects’ in studies inves-

tigating correlates of species richness, researchers have often

superimposed grids on equal or near-equal area projections and

counted the number of species co-occupying grid cells. One of

the problems is that grids are not strictly equal in area because of

the range of altitude encompassed and because water bodies

reduce the area covered by land. For example, a 45

 

°

 

 average slope

would increase the surface area of a planimetric grid by up to
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40% (Turner, 2004). When using non-equal area projections there

is the additional problem that grid cells may follow a reduction in

area from the equator to the pole. For example, Jetz & Rahbek

(2001) reported a 20% change in grid cell size when studying

species richness using 1-degree latitude longitude cells in Africa.

Because of the species–area relationship, the combined effects of

topography, water and geographical position are likely to pro-

duce biases in the numbers of species co-occurring in grid cells

that are not strictly of equal area (e.g. Connors & McCoy, 1979).

Although some authors have acknowledged this problem (e.g.

Whittaker 

 

et al

 

., 2001), to our knowledge no study has investi-

gated systematically the effect of varying the surface area among

near-equal area grid cells on perceived species richness–climate

relationships. In this study we attempt such an investigation and

ask how variation in surface area among near-equal area grid

cells affects the explanatory and predictive power of models

relating species richness with climate.

A number of studies have discussed the implications of area in

patterns of species richness (e.g. Whittaker 

 

et al

 

., 2001; Rahbek,

2005; Whittaker 

 

et al.

 

 in preparation). Typically, two distinctions

are made: the effects associated with the ‘grain’, or the size of indi-

vidual sampling units; and the effects associated with the ‘extent’,

or the geographical space over which comparisons are made. In this

study we are concerned with small variations of grain on species

richness or, put another way, the effects of using non-standardized

measurements of area when using a fixed grain. Typically, studies

addressing this problem have explored how a large variation in

grain affects correlations between controlling factors and species

richness (e.g. Kaufman & Willig, 1998; Lyons & Willig, 1999;

Rahbek & Graves, 2000, 2001; Hurlbert & White, 2005). These

studies have highlighted the fact that grain can influence the per-

ception of species richness patterns and thus the magnitude and

significance of species richness correlates. There are at least four

reasons why grain may affect perceived species richness patterns

and the species richness relationship with climate. The first is the

controlling effect of area over the numbers of species found

within grid cells (Rosenzweig, 1995). The second is the habitat

hypothesis (Williams, 1964), whereby larger areas are postulated

to contain more species because of their increased number of

habitats and resources available for species. However, the extent

to which a positive relationship between habitat diversity and

species richness is an artefact of the species–area relationship

remains unclear (e.g. Gaston & Blackburn, 2000). The third is the

idea that variations in grain can reveal different patterns in the

distribution of individual species, with coarse grids merging to

form range maps, whereas finer grids reveal broad-scale habitat

distributions, regional ubiquity, and local population patterns

(Kunin, 1998). The extent to which biases in individual species

maps affect overall patterns of species richness is still unknown

(but see Hurlbert & White, 2005), but an analysis of modelled

data indicates that errors, or biases, may propagate exponentially

(Araújo 

 

et al

 

., 2005b). Finally, there is the ‘reddened spectrum’ of

climate heterogeneity, i.e. climate variables are heterogeneous at

different scales of analysis and this may have marked effects on

measured species richness–climate relationships (e.g. O’Brien

 

et al

 

., 2000).

In order to avoid biases from comparing species richness

among areas of very different sizes, researchers have utilized a

variety of approaches to control for area (for a review see

Table 1). These approaches include the use of rules for dealing

with grid cells near the coast; the inclusion of area, or surrogates

of area, as a covariate in statistical analyses; the fitting of species

richness–area curves (SAR) to estimate species numbers within

grid cells; the use of equal-area projections; and combinations of

different approaches (e.g. O’Brien 

 

et al

 

., 2000; Tognelli & Kelt,

2004; Field 

 

et al

 

., 2005). In spite of the many attempts to control

for area in models of species richness, to our knowledge there

have been no attempts to measure variations in the surface area

of near-equal area grids and to assess the impact of this source of

bias on perceived species richness–climate relationships. Here,

we provide the most accurate measurement of surface area within

 

c.

 

 50 

 

×

 

 50 km and 220 

 

×

 

 220 km grid cells in Europe available

to date and investigate how variations in the surface area of near-

equal grid cells affect: (1) the selection of climate variables enter-

ing a generalized additive model of species richness; and (2) the

accuracy of generalized additive models in predicting species

richness in unsampled grid cells. Analyses are carried out using

two grid cell sizes because there is a possibility that the results are

contingent on grain. Furthermore, the two grid sizes are among

the most commonly used in studies analysing species richness

patterns at the macro scale (see Table 1 and references therein).

Models are developed for European plant, breeding bird, mammal

and herptile species richness using seven climate variables.

 

MATERIALS AND METHODS

Species data

 

Species locality data comprised 187 species of mammals (Mitchell-

Jones 

 

et al

 

., 1999), 445 species of breeding birds (Hagemeijer &

Blair, 1997), 149 species of amphibians and reptiles (Gasc 

 

et al

 

.,

1996), and 2362 species of plants (Jalas & Suominen, 1972–96).

Data varied with regard to taxonomic coverage. Terrestrial verte-

brates comprise all known species, whereas plants comprise

 

c

 

. 20% of the European flora. The grid used was based on the

Common European Chorological Grid Reference System (CGRS).

The chorological data were inserted into a 

 

c

 

. 50 

 

×

 

 50 km grid

map (2500 km

 

2

 

), based on the Universal Transverse Mercator

(UTM) projection and the Military Grid Reference System

(MGRS). In this study the mapped area included western, northern

and southern Europe, but excluded most of the eastern European

countries (except for the Baltic States), where recording effort

was both less uniform and less intensive (for more details on data

conversion see Williams 

 

et al

 

., 2000).

 

Climate data

 

Climate data included seven variables developed for Europe in

the context of the EC-funded ATEAM project (http://www.pik-

postdam.de/ateam). Data were averaged for the period 1961–90

and included mean annual temperature (

 

°

 

C), mean temperature

of the coldest month per year (

 

°

 

C), mean annual precipitation

http://www.pik-postdam.de/ateam
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sum (mm), mean annual winter precipitation sum (mm), mean

annual summer precipitation sum (mm), mean annual growing

degree days (> 5

 

°

 

), and the mean ratio of annual actual eva-

potranspiration over annual potential evapotranspiration. These

climate variables are postulated to act as controlling factors of the

physiological processes limiting the spatial distribution of spe-

cies, especially among plants (e.g. Prentice 

 

et al

 

., 1992).

 

Measurement of area

 

Surface area is defined as the sum of the area of all of the faces or

surfaces of an object. Here, surface area of every grid cell was

measured as a function of three main factors: (1) the area related

to the position of each cell in the UTM reticule; (2) the area

covered by the sea within every grid cell; and (3) the area added

by variation in topographic ranges. These three factors were taken

into account and measured for each grid cell (2431 grid cells)

using surface areas and ratios from elevation grid version 1.2,

 



 

 (Jenness, 2004); methodological details of how surface

area is measured are provided in http://www.jennessent.com/

arcview/surface_areas.htm. A digital elevation model (

 



 

) of

Europe with 1 km pixel resolution (GTOPO30, freely available

at http://edcdaac.usgs.gov/gtopo30/gtopo30.asp), was used to

calculate a three-dimensional surface area for each grid cell. The

 



 

 program converts the raster information of the 

 



 

 into a

triangulated irregular network structure to calculate the surface

area of the grid. To assess the effect of topography contributing to

area of grid cells, a surface ratio index (surface area/planimetric

area) was used. We also measured the planimetric area of the cells

and the planimetric area minus the area occupied by the sea in

every grid cell. Finally, to summarize the percentage change in

grid cell sizes we ranked cells as having: (1) deviation larger than

50% in relation to the planimetric area; (2) deviation from 50%

to 25%; and (3) deviation from 25% to 5%.

Ideally, a finer resolution 

 



 

 should have been used to calcu-

late surface area, as these measurements are bound to be sensitive

to the resolution of input data. However, the processing power

required for such analysis is beyond our current capacity. Logi-

cally, we would expect that the greater the resolution of the 

 



 

,

the greater the estimated surface area for any given grid cell.

However, the shape of the response curve between surface area

and the resolution of the 

 



 

 is unknown. In order to investigate

this question we used a 100-m resolution 

 



 

 available for a

10 

 

×

 

 10 km square located in the Pyrenees (Instituto Geográfico

Nacional, www.ign.es). The 

 



 

 was then resampled to resolu-

tions of 250, 500 and 1000 m and surface area calculated for

each one. In this particular case the estimated surface area

increased exponentially with increasing pixel resolution (Fig. 1).

The results of this meta-analysis may not be representative of all

grid cells in Europe, as they are more likely to reflect patterns

observed in mountains. Nevertheless, they invite the interpreta-

tion that the results of this study, using a 1-km 

 



 

 resolution,

Table 1 Approaches to deal with biases introduced when using sampling units of varying sizes in studies of species richness: (1) combination 
of coastal grid cells with neighbour terrestrial grid cells and removal of grid cells under certain thresholds of land area; (2) inclusion of area in 
statistical analyses of species richness; (3) fitting of species richness–area curves (SAR) to estimate an expected value of species richness for every 
grid cell; and (4) use of equal-area projections. We utilized the ‘web of science’ to undertake this survey and restricted the analyses to studies at 
continental or global scales. Because of the large sample size involved we selected one representative study per lead author
 

 

Approach Authors Spatial units Size Extent

1 Araújo (2003) Grid cells 50 km Europe

Badgley & Fox (2000) Grid cells 150 miles North America

Bini et al. (2004) Grid cells 220 km South America

Diniz-Filho et al. (2004) Grid cells 220 km South America

H-Acevedo & Currie (2003) Grid cells 2° North and Central America

Hawkins & Porter (2003) Grid cells 220 km Palaearctic

Pearson & Carroll (1999) Grid cells 275–325 km North America, India, Australia

Kaufman & Willig (1998) Grid cells, latitudinal bands 2.5°; 5° New World

Jetz & Rahbek (2001) Grid cells 1° Africa

Taplin & Lovett (2003) Grid cells 1° Africa

2 Bárcena et al. (2004) Hydrological basins Europe

Lyons & Willig (1999) Nested grid cells 1000–25,000 km2 New World

Patten (2004) Administrative units North American states USA

McKinney (2002) Administrative units North American states USA

Kerr (1999) Grid cells 2.5° North America

Currie (1991) Grid cells 2.5° North America

Ribera et al. (2003) Administrative units European countries Europe

3 Meliadou & Troumbis (1997) Grid cells 2.5° Europe

4 Aava (2001) Grid cells 200 km Australia

Tognelli & Kelt (2004) Grid cells 100 km South America

Rangel & Diniz-Filho (2003) Grid cells 350 km World

http://www.jennessent.com/
http://edcdaac.usgs.gov/gtopo30/gtopo30.asp
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might be conservative in relation to the real effect of variation in

surface area of grid cells due to changes in topography.

 

Statistical analyses

 

Generalized additive models (GAMs) (Hastie & Tibshirani,

1990) were used to assess the effect of area of grid cells on vari-

able selection and the model’s predictive accuracy. GAMs are

non-parametric extensions of generalized linear models that

apply nonparametric smoothers to each predictor and calculate

additively the component response. Being non-parametric and

data-driven they circumvent the problem of making a priori

assumptions on the species richness–area relationship. A GAM is

expressed by:

(1)

where 

 

g

 

 is the link function that relates the linear predictor with

the expected value of the response variable 

 

Y

 

, 

 

X

 

pi

 

 is a predictor

variable and 

 

s

 

p

 

 a smoothing function. A Poisson distribution was

selected and log as link function. This is recommended, as spe-

cies richness is often considered as a form of count data (Crawley,

1993). Explained deviance and chi-square tests were calculated to

summarize the ability of selected variables to explain the spatial

pattern of species richness and to provide statistical significance

estimates of these relationships. The splines used to relate each

climate variable to species richness were simplified to a maxi-

mum of 4 degrees of freedom (Wood & Augustin, 2002). The

objective was to reduce complexity, to prevent possible over-

estimations and to avoid hardly interpretable splines. The selection

of predictive variables was based on a forward–backward selection

method. The aim of this approach is to select a number of variables

that maximize the explained deviance while reducing the GCV

value (general cross-validation; see Wood & Augustin, 2002).

Four GAMs were fitted for each taxa. First, species richness of

every group was regressed against the surface area of the grid

cells. Secondly, species richness was regressed against climate

variables using a stepwise variable selection procedure. Thirdly,

species richness was regressed against area of the cells and climate

variables using a stepwise variable selection procedure. Fourthly,

the residuals of the first model (using area as a covariate) were

regressed against climate variables; residuals were then regressed

against climate variables using the calibration set and predicted

values compared with original residual scores in the validation

set. These analyses allowed us to investigate the effect of grid cell

size on variable selection and model accuracy. We used 

 

P

 

 > 0.005

as a threshold to eliminate variables in the stepwise selection.

Models were calibrated on 70% random sample of the original

data and evaluated against the remaining 30%. Willmott’s 

 

D

 

(Willmott, 1982) was selected as a measure of model accuracy.

Alternative measures would include the mean absolute error or

root mean square error. However, these measures give estimates

of the average error, but fall short in providing information

about the relative magnitude of the average difference. To over-

come this problem Willmott proposed an ‘index of agreement’ of

the form:

(2)

where 

 

N

 

 = number of observations, 

 

O

 

 = observed value,

 

O

 

 = mean of observed values, 

 

P

 

 = predicted value, 

 

I

 

 = counter

for individual observed and predicted values,   and

. Willmott’s 

 

D

 

 varies from 0 to 1 (1 means a perfect

prediction). Willmott’s 

 

D

 

 was obtained to assess changes in model

accuracy before and after controlling for the effects of area in the

models.

Figure 1 Relationship between pixel 
resolution and surface area in a 10 × 10 km2 
plot in the Spanish Pyrenees. A 100-m pixel 
resolution  was resampled to 250 m, 
500 m, and 1000 m and surface area measured 
for each resolution. Two hill-shade surfaces 
derived from the  of the area are also 
shown (top: 100 m; bottom: 1000 m).
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RESULTS

Variation in grid cell size

 

The smallest grid cell in this study had a land area of 8 km

 

2

 

 and

was located in the south-west coast of England; the largest cell

was 3311 km

 

2

 

 and was located between the 32 and 33 UTM zone

in the Italian Alps. The range of variation in 50 

 

×

 

 50 km grid cell

size was 3303 km

 

2

 

. Approximately 43% of the grid cells did not

have the expected area of 2500 

 

±

 

 125 km

 

2

 

. As expected, variation

in grid cell size was spatially structured. Larger grid cells were

located in the intersection of UTM zones and in the mountains;

smaller grids were found near the coasts (Fig. 2). The most

important source of variation in grid cell size was the presence

of the sea in coastal grids, followed by the geographical position

of grid cells in the coordinate system used (Table 2). The effect of

topography was small and affected only a small proportion of

cells; an increase of up to 9% of grid cell area was recorded in

some mountain regions. Variation in 220 

 

×

 

 220 km grid cell size

was 54,900 km

 

2

 

 and 82.5% of the cells did not have the expected

area. The presence of the sea on coastal grids is the most impor-

tant factor, followed by the geographical position of grid cells and

the effect of topography (see Table 2 for a summary of results).

 

The effect of area on the selection of climate variables

 

For 50 

 

×

 

 50 km grid cells, the highest correlation between area

and a climate variable was recorded with mean temperature of

the coldest month (

 

r =

 

 0.30). This correlation did not affect

variable selection with GAM: selected climate variables were

identical for models with and without including area as a covariate

(see Appendix S1 in Supplementary Material). This pattern was

consistent for all groups. The 

 

P

 

-values of climate variables did

not exceed the selected threshold (

 

P

 

 > 0.005) when area was

included in the stepwise process. The same patterns were recorded

when the 220 

 

×

 

 200 km grid cells were considered, i.e. no changes

in variable selection were recorded across all groups (see Appen-

dix S2 in Supplementary Material).

 

The effect of area on model accuracy

 

Models including area as a covariate had small to moderate

increases in predictive accuracy (Willmott’s 

 

D

 

-values) in the

validation set in comparison with models that did not include

area as a covariate: plants 0.78–0.81 (

 

∆

 

 = 0.03); birds 0.68–0.74

(

 

∆

 

 = 0.06); mammals 0.70–0.79 (

 

∆

 

 = 0.09); and herptiles 0.82–

0.83 (∆ = 0.01). Similarly, models that controlled for area by

regressing residuals of a species–area model had a decrease in

Figure 2 Surface area (km2) of the 
c. 50 × 50 km (2500 km2) grid cells used 
commonly in macroecological studies in 
western Europe. Scores are divided into 33 
equal interval colour-scales, with maximum 
area scores shown in red (larger grid cells) 
and minimum area scores shown in blue 
(smaller grid cells). 57% of grid cells are 
included in the 2500 ± 125 km2 range. 
 software (Williams, 1999) was 
used to produce this map.

Table 2 Proportion of grid cells (%) deviating from the expected 
size (2500 ± 125 km2 for 50 × 50 km grids; 48,400 ± 2420 km2 for 
220 × 220 km grids)
 

 

Sea

UTM 

position Topography

All 

effects

(a) 50 × 50 km grid

> 50% area deviation 13.5 0.0 0.0 13.3

50–25% area deviation 4.0 10.3 0.0 12.4

25–5% area deviation 4.6 12.5 2.5 17.9

Sum 22.1 22.8 2.5 43.6

(b) 220 × 220 km grid

> 50% area deviation 22.2 0.0 0.0 32.7

50–25% area deviation 15.3 8.2 0.0 17.8

25–5% area deviation 31.3 9.0 6.0 31.9

Sum 68.8 17.2 6.0 82.5
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predictive accuracy on the validation set compared to models

that only included climate variables. The highest reduction in

model accuracy was recorded for plants (0.78–0.75; ∆ = 0.03)

and birds (0.68–0.65; ∆ = 0.03), followed by mammals (0.70–

0.68; ∆ = 0.02). These reductions are a consequence of eliminat-

ing the predictive power of area over species richness. Predictions

for herptile species richness did not record reductions in accu-

racy on the validation set (0.82 before and after discounting the

effect of area).

Reductions in model accuracy from not including area as a

covariate in the regression model were slightly more important

when the 220 × 220 km grid cells were considered: plants 0.84–

0.93 (∆ = 0.09); mammals 0.84–0.91 (∆ = 0.07); birds 0.75–

0.90 (∆ = 0.15); and herptiles 0.82–0.92 (∆ = 0.10). Models that

controlled for area by regressing residuals of the species–area

model had a decrease in predictive accuracy on the validation set

compared to models that only included climate variables: birds

(0.84–0.76; ∆ = 0.08), plants (0.84–0.78; ∆ = 0.06), followed by

mammals (0.75–0.70; ∆ = 0.05) and herptiles (0.75–0.73;

∆ = 0.02).

We also assessed the ability of surface area to predict species

richness. Unsurprisingly, the ability to which models calibrated

with area alone predicted species richness in the validation set

was low when using the 50 × 50 km grid cells (Willmott’s D-values

for birds = 0.46, herptiles = 0.11, mammals = 0.41, plants = 0.10;

and 0.11, 0.03, 0.10 and 0.07, respectively, in terms of r2), but was

greater when using 220 × 220 km grid cells (Willmott’s D-value

for birds = 0.82, herptiles = 0.62, mammals = 0.78, plants = 0.73,

and 0.57, 0.25, 0.39 and 0.46, respectively, in terms of r 2).

DISCUSSION

Studies investigating correlates of species richness often use near-

equal area cells to control for the species–area relationship. It is

implicit that the variation in surface area among grid cells is not

sufficiently important to compromise the robustness of the ana-

lyses. Here we provide a first test of this idea using species richness

scores for different groups of terrestrial vertebrates and plants

superimposed onto European c. 50 × 50 km and c. 220 × 220 km

grid systems that are often used to investigate species–distribution

patterns in Europe (e.g. Huntley et al., 1995; Lathi & Lampinen,

1999; Araújo & Williams, 2000; Williams et al., 2000; Araújo

et al., 2001, 2004;  Araújo, 2003; Araújo & Pearson, 2005; Thuiller

et al., 2005). We found that 43% of the 50 × 50 km cells and

82.5% of the 220 × 220 km cells in this study did not have the

expected 2500 ± 125 km2 and 48,400 ± 2420 km2, respectively.

The influence of coastal areas extended over 22.1% of the

c. 50 × 50 km European grid, 13.5% of which had a reduction

in area greater than 50%; when larger grid cells were considered

(i.e. 220 × 220 km), coastal cells also exerted a greater influence

(68.8%), 22.2% of which had a reduction of area greater than

50%. The geographical position of grid cells along the UTM grid

was responsible for changes in area by 22.8% for the 50 × 50 km

grid cells and 17.2% for the 220 × 220 km grid cells, although

these changes in area were less pronounced than for coastal areas.

Finally, variations in altitudinal range affected only 2.5% of the

50 × 50 km grid cells and 6.0% of the 220 × 220 km grid cells. In

both cases, the reduction in surface area of the grid cells was less

than 25% of the expected area (Table 2). Despite considerable

variation in the surface area of grid cells, the selection of climate

variables entering models of species richness was not affected

by area in both the 50 × 50 km and the 220 × 220 km grid cell

resolution (see Appendices S1 and S2 in Supplementary

Material). We also found that the accuracy of models on the

validation set was affected only moderately by variation in the size

of the grid cells although the effects were slightly greater in the

case of 220 × 200 km grid cells. There was some cross-taxa varia-

tion, with models of herptile species richness not being affected

by variations in surface area and models for mammal species

richness being relatively more affected by area. Despite cross-taxa

variation, our results provide provisional support for the

assumption that no major biases in species richness are incurred

from using near-equal area instead of truly equal-area grids.

However, there is a possibility that this reduced effect of varia-

tion in grid cell size might be magnified when (1) larger grids are

considered, or (2) when finer-resolution s are used to calcu-

late surface area. The possibility that controlling for area might

be more important with larger grids was illustrated by our

results, where models fitted at the larger 220 × 220 km resolution

had consistent albeit small reductions in accuracy when area was

not explicitly accounted for within models. These results provide

moderate support for studies using known relationships between

climate and species richness for predictive purposes, although

there is evidence that increasing the grid cell size might result in

a loss of model’s predictive ability unless surface area is explicitly

controlled for (see also Rahbek & Graves, 2001). The possibility

that varying the resolution of  might affect the perceived

relationships between species richness and climate variables also

needs further investigation. As shown in Fig. 1, surface area

increases with  resolution exponentially. This is an analo-

gous result to that obtained for the Mandelbrot coast, where the

length of UK coast increased with spatial resolution. Therefore,

we anticipate that the effect of topography on the area of the grid

cells may be more important when using finer-resolution ;

and expectedly, this effect should be greater in mountainous

areas. In the particular case of our analyses, we have shown that

changes in surface area of grid cells were due mainly to the area-

reducing effect of coastal areas, while, contrary to our initial

expectations, the area-increasing effect of topography was more

limited. For example, for the 48,400 km2 grid cells (220 × 220 km),

the presence of coastal areas reduced grid cell area by more than

99% (the smallest coastal 220 × 220 km cell was 193 km2), whereas

topography was responsible only for increases in area of 9% in

some mountainous zones when using 1-km pixel resolution

. Although larger increases in estimated surface area as a

function of topographic variation can be expected with increas-

ing resolution of s, as we show here in Fig. 1 (and see Turner,

2004), it is unlikely that the impact of topography on model

accuracy will be as great as the reduction in area through overlap

of coastal cells with the sea.

The recorded stability of variable selection is encouraging for

studies investigating species richness correlates. Most studies
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using similar grid cell systems do not measure variation in the

surface area of near-equal area grids, and when this is attempted

studies fail to account for variations in area associated with

changes in topography (for an exception see O’Brien et al., 2000),

a shortcoming that is shown here to be possibly negligible in

most circumstances. Naturally, our results are contingent on the

particular data set, extent and grain used. Using grid cells with

grains of different sizes, or study areas with different extent,

could cause the results of this study to change to a considerable,

albeit unknown, extent (see Kaufman & Willig, 1998; Rahbek &

Graves, 2001). Although the range of variation in the surface area

of near-equal area grid cells was greater for cells with larger

grain size, i.e. 55,000 km2 for the 220 × 220 km grid compared

with 3303 km2 for the 50 × 50 km grid (for more details see

Table 2b), no changes in variable selection were reported at either

resolution.

In any case, it is important to bear in mind that our results

provide a necessarily overly optimistic assessment of the predictive

ability of the models as a function of the nature of the validation

set. We use a random subset of the calibration set for validation

and the extent to which this provides an independent, i.e. not

autocorrelated, set for validation is debatable (e.g. Araújo et al.,

2005a). Previous studies assessing accuracy of species richness

models did not attempt to split calibration and validation sets

(e.g. Lobo et al., 2002; Hortal et al., 2004), hence results from

these studies are not comparable to ours. Nevertheless, there are

good reasons to consider that most studies of species richness

correlates have an explanatory value rather than a predictive one.

Correlation does not imply causation and the debate over mech-

anisms driving global patterns of variation in species richness is

still a matter of contentious debate (e.g. Hawkins et al., 2003;

Colwell et al., 2004; Currie & Francis, 2004; Qian & Ricklefs,

2004; Field et al., 2005). Using regression-type approaches to

make predictions of species richness on non-independent valida-

tion sets will not bring much light to this debate.
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