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Abstract
1.	 Ecological niche modelling (ENM), species distribution modelling and related spa-

tial analytical methods were first developed in two-dimensional (2-D) terrestrial 
systems; many common ENM workflows organize and analyse geographically 
structured occurrence and environmental data based on 2-D latitude and longi-
tude coordinates. This may be suitable for most terrestrial organisms, but pelagic 
marine species are distributed not only horizontally but also vertically. Extracting 
environmental data for marine species based only on latitude and longitude co-
ordinates may result in poorly trained ENMs and inaccurate prediction of species' 
geographical distributions, as water conditions may vary strikingly with depth.

2.	 We developed the voluModel R package to efficiently extract three-dimensional 
(3-D) environmental data for training ENMs (i.e. presences and absences/pseu-
doabsences/background). voluModel also provides tools for 3-D ENM projection 
visualization and estimation of model extrapolation risk.

3.	 We present the main features of the voluModel R package and provide a simple 
modelling workflow for Luminous Hake, Steindachneria argentea, as an example. 
We also compare results from 2-D and 3-D spatial models to demonstrate differ-
ences in how the modelling methods perform.

4.	 The use of 3-D environmental data generates more precise estimates of envi-
ronmental conditions for training ENMs. This method also improves inference of 
species' suitable abiotic ecological niches and potential geographic ranges. 3-D 
niche modelling is important step forward for marine macroecology and bioge-
ography, as it will yield more accurate estimates of ocean species richness and 
potential past and future changes in the horizontal and vertical dimensions of 
species' geographic ranges. The latter is particularly relevant considering ongoing 
climate change that may cause redistribution of species in environmental space 
(both in latitude and depth) over time.

K E Y W O R D S
3-D, ecological niche model, geographic range, marine, pelagic, R package, species distribution 
model, visualization
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1  |  INTRODUC TION

Ecological niche modelling and species distribution modelling tech-
niques (ENM and SDM respectively) were first developed to infer 
putative suitable environmental conditions for species in terrestrial 
systems. While there are distinctions to be made between ENM and 
SDM, hereafter we primarily use the term ‘ENM’, as SDMs can be con-
sidered ENMs that have subsequently been projected into geographic 
space (Warren, 2012). ENM workflows and stand-alone programmes 
generally accept a set of points, expressed as latitudinal and longitu-
dinal coordinates, representing where a species of interest has been 
observed (i.e. presences or occurrences). Depending on the algorithm, 
coordinate datasets may also include points representing species' ab-
sences, pseudoabsences or background data representing the full 
range of environments accessible to the species (Barve et al., 2011; 
Elith et al., 2011). In some workflows, observed environmental con-
ditions accompany these data; in others, data on environmental con-
ditions (e.g. temperature, precipitation, salinity, etc.) are extracted at 
occurrence points from a set of 2-D data layers representing environ-
mental conditions. Once an ENM is calibrated, it can then be used to 
model the potential geographical distribution of a species by project-
ing modelled suitable environmental conditions using raster layers of 
environmental conditions within the area of interest.

Critically for marine species, two-dimensionally summarized en-
vironmental data extracted at occurrence coordinates may provide 
an inaccurate estimate of abiotic ecological conditions where a spe-
cies has been observed, as environmental conditions may change 
strikingly with depth (Figure 1; Duffy & Chown, 2017). One early ap-
proach to explicitly incorporating depth-structured data for pelagic 
marine modelling combined all vertical layers in an environmental 
dataset side by side into a continuous 2-D grid for model projection 
(Bentlage et al., 2013); another approach trained the model based 
on environmental data directly extracted from occurrence and pseu-
doabsence points and then projected the results onto each vertical 
layer (Duffy & Chown, 2017). However, neither of these methods 
have been widely adopted by marine niche modellers. This may be 
partly due to a lack of accessible tools—both studies supply bespoke 
scripts to repeat the analyses they present, but do not provide easily 
generalizable or scalable workflows that would facilitate more wide-
spread methodological adoption. There remains a need for tools to 
explicitly and efficiently model ecological niches and species distri-
butions in three dimensions (Melo-Merino et al.,  2020). Here, we 
present voluModel, an R (R Core Team, 2021) package to facilitate 
simple, repeatable 3-D marine ecological niche modelling workflows.

2  |  THE R  PACK AGE VOLUMODEL

We designed voluModel to aid in processing of ENM modelling inputs 
and outputs (Table  1), while allowing the user maximum flexibility 
in study design and algorithm choice. The process starts with down-
sampling occurrence point data to the voxel (3-D pixel equivalent) 
resolution of environmental data represented in a RasterBrick (i.e. 

a multilayer) object. voluModel also provides tools to interpolate and 
smooth unevenly sampled environmental raster data in cases where 
these data are expected to be spatially autocorrelated. If appropriate 
to the user's algorithm of choice, the user next delimits a training region 
and draws 3-D background, absence or pseudoabsence points from 
that training region. Next, voluModel facilitates environmental data ex-
traction using 2-D (e.g. latitude and longitude) and vertical (e.g. depth) 
coordinates for occurrence, and optionally, background, pseudoab-
sence or true absence points. The user can then generate niche models 
using established algorithms that accept points-with-data workflows 
and perform 3-D geographic projections programmatically using simple 
scripted loops. Finally, voluModel allows the user to visualize projec-
tion results and assess model extrapolation risk in 3-D. In section 4, we 
provide a simple example of a generalized linear model ENM workflow; 
an example of a niche envelope model workflow can be found in the 
‘Introduction to voluModel’ vignette (https://cran.r-proje​ct.org/web/
packa​ges/voluM​odel/vigne​ttes/a_Intro​ducti​on.html).

3  |  PACK AGE FE ATURES

3.1  |  Environmental data sampling (vignette: 
https://cran.r-proje​ct.org/web/packa​ges/voluM​odel/
vigne​ttes/c_DataS​ampli​ng.html)

A key area where voluModel tools facilitate 3-D ENM is the in-
terface between horizontal and vertical coordinates and 3-D en-
vironmental data. xyzSample() extracts environmental data from 

F I G U R E  1  Environmental conditions at Luminous Hake 
observation localities. Environmental conditions extracted to 
observation coordinates (n = 113) from sea surface (X, Y, Surface), 
deepest available measurement (X, Y, Bottom) and at depth of 
occurrence (X, Y, Z). Dots indicate statistical outliers (1.5 times 
interquartile range outside upper and lower quartiles). Further 
details in ‘Introduction to voluModel’ vignette (https://cran.r-proje​
ct.org/web/packa​ges/voluM​odel/vigne​ttes/a_Intro​ducti​on.html) 
and Supporting Information.
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a RasterBrick at a set of 3-D coordinates (e.g. species presences, 
species absences or background or pseudoabsence points). To re-
duce the risk of biasing ENM inference due to pseudoreplicated 
presence data (Aiello-Lammens et al., 2015), downsample() reduces 
coordinate sampling to the resolution of the environmental data-
set; in a 3-D context, the user loops downsample() across layers of 
a template RasterBrick to reduce a dataset to the template's voxel 
resolution. That is, if more than one occurrence falls within a given 
voxel, the coordinates are aggregated and replaced with a single co-
ordinate at the centre of that voxel. The results of downsample() can 
be compared to the original dataset using pointCompMap(), a plot-
ting function wrapper around ggplot() (ggplot2; Wickham,  2016) 
comparing 2-D positions of two coordinate datasets. For a single 
coordinate dataset, pointMap(), also a ggplot() wrapper, generates a 
formatted map of 2-D positions.

To generate a sample of pseudoabsences and/or background 
points, it is important to consider the geographic region acces-
sible to the species of interest (Barve et al.,  2011) which is re-
ferred to ENM literature as the sampling background or M, among 
others. Generally, users should carefully curate sampling back-
grounds to reflect the biological and geographical realities of 
the species they are modelling and the regions being sampled. 
However, absent specific information on species' dispersal capa-
bilities, algorithmically generating a repeatable sampling back-
ground from a clear set of rules may be suitable. We designed 

marineBackground() as a wrapper around getDynamicAlphaHull() 
from rangeBuilder (Rabosky et al.,  2016); getDynamicAlphaHull() 
generates background sampling regions by fitting an alpha hull 
polygon around an occurrence point dataset. marineBackground() 
extends getDynamicAlphaHull() functionality to address issues 
of generating background polygons for marine modelling in 
two ways: by allowing a user to clip the polygon to only include 
oceans, deleting unoccupied polygons after clipping (Figure 2a), 
and by wrapping polygons around the antemeridian (i.e. 180°E 
or W) instead of truncating them. Once generated, background 
polygons can be saved as shapefiles and edited by hand in a GIS 
program of choice, if desired.

Once the user has downsampled coordinates and defined a 
sampling background, voluModel provides tools to extract envi-
ronmental data to input into the user's ENM algorithm of choice. 
mSampling3D() generates a data.frame of all 3-D coordinates using 
an input template RasterBrick overlapping with an input polygon (i.e. 
a background region generated using marineBackground()). Either all 
RasterBrick depths can be sampled or the user can limit sampling 
to maximum and minimum depths of an input coordinate dataset, 
or manually specify maximum and minimum depths for sampling. 
mSampling2D() performs analogous actions but is limited to sampling 
from a single raster layer.

3.2  |  Raster processing (vignette: https://cran.​
r-proje​ct.org/web/packa​ges/voluM​odel/vigne​ttes/​
b_Raste​rProc​essing.html)

We have designed several tools for issues encountered by com-
monly used environmental variables (e.g. temperature, salinity, 
dissolved oxygen) represented by point shapefiles, such as World 
Ocean Atlas data (Garcia et al., 2018). First, a variable shapefile is 
read into R as a SpatialPointsDataFrame object; each data.frame row 
is a set of 2-D coordinates, and each column is a vertical position in 
the water column. In some cases (e.g. WOA dissolved oxygen, Garcia 
et al.,  2019), measurements are not uniformly distributed across 
geographic space; missing measurements can be inferred using a 
thin plate spline model (Boer et al., 2001) with the interpolateRaster() 
function. smoothRaster() also uses a thin plate spline, but adjusts 
noisy measurements based on an assumption of spatial correlation 
(Hutchinson, 1995). Both interpolateRaster() and smoothRaster()use 
the TPS() function from fields (Nychka et al., 2015) and can accom-
modate large datasets using the fastTPS() thin plate spline approxi-
mation, also from fields.

To assist in comparing 3-D models to previously implemented 
modelling techniques, bottomRaster() generates a 2-D raster of the 
deepest measurement in each cell from a SpatialPointsDataFrame. 
For benthic species, ENMs based on bottom rasters may be more 
appropriate than those based on 3-D environmental data, but the 
user should treat these data with care. The deepest measurement in 
the water column at a particular coordinate is not always a measure-
ment at the true ocean bottom (Sayre et al., 2017).

TA B L E  1  Summary of voluModel functions.

Process environmental data

bottomRaster() Estimate bottom conditions from 
SpatialPointsDataFrame

interpolateRaster() Fill empty cells based on nearby values

smoothRaster() Smooth values based on nearby values

Sample data for training model

downsample() Thin coordinates to template raster 
resolution

marineBackground() Create training region from occurrence 
coordinates

mSampling2D() Generate 2-D coordinates from training 
region

mSampling3D() Generate 3-D coordinates from training 
region

xyzSample() Extract data from RasterBrick at 3-D 
coordinates

Assess model uncertainty

MESS3D() Estimates model projection extrapolation

Visualize

pointMap() Map single set of points

pointCompMap() Compare two sets of points

oneRasterPlot() Map single continuous raster

rasterComp() Map binary 3-D RasterBrick using 
transparency
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3.3  |  Raster visualization (vignette: https://cran.​
r-proje​ct.org/web/packa​ges/voluM​odel/vigne​ttes/​
d_Visua​lizat​ion.html)

voluModel provides several tools that use spplot() from sp (Pebesma 
& Bivand,  2005) to generate formatted maps with optional plot-
ting of land shapefiles for geographic context. rasterComp() plots 
two semitransparent binary (i.e. presence/absence) layers to show 
overlaps, as one may wish to do to compare results of two niche 
model projections (Figure  2b). plotLayers() takes a RasterBrick of 
depth-structured presence/absence projections and plots each 
brick layer as a semitransparent overlay, colour-coded relatively by 
depth (Figure 2c). In the resulting plot, pinker hues show shallower 
potential presences, bluer hues show deeper potential presences 
and more saturated colours indicate potential presences at a wider 
range of depths. The oneRasterPlot() function generates a map of a 
single, continuous raster in high-contrast, colour-blind-friendly pal-
ettes using viridis (Garnier et al., 2021).

3.4  |  3-D analysis of model extrapolation

When projecting an ENM into geographic space, extrapolation 
into novel environmental conditions may be necessary (Elith 
et al.,  2010). While extrapolation is not necessarily unwarranted 
and a model may make realistic predictions, this is not always the 
case (Owens et al.,  2013). Several metrics have been proposed 
to estimate model extrapolation, but by far the most common is 
the Multivariate Environmental Similarity Surface (MESS; Elith 
et al., 2010). MESS compares environmental values at given point 
to a reference set of points (typically those used to train a model), 
returning negative values if a point is dissimilar to the reference 
set. voluModel provides a 3-D implementation of mess() from 
dismo (Hijmans et al.,  2021), called MESS3D(). MESS3D() takes 
point-associated environmental data used to train an ENM and a 
named list of RasterBrick objects containing 3-D environmental 
data and produces a single RasterBrick of MESS scores. Areas at 
highest risk for model extrapolation can be visualized by reclassify-
ing negative 3-D MESS values to 1, and positive values to 0, then 
mapping using plotlayers(). Areas of high estimated extrapolation 
potential can be removed from a species' 3-D distribution using 

F I G U R E  2  Mapping outputs from voluModel GLM workflow. 
(a) Background sampling region (grey) algorithmically generated 
from occurrence points (red) using marineBackground() function. 
Note the absence of training region spillover into Pacific. (b) 
Comparison of 2-D GLM models of suitable habitat for Luminous 
Hake, Steindachneria argentea, mapped using rasterComp(). (c) 3-D 
GLM model plotted using plotLayers(). Hues closer to pink indicate 
suitability at shallower depth layers, hues closer to blue indicate 
suitability at deeper depth layers. More saturated colours indicate 
a broader range of suitable depths. Analysis and plotting code used 
to generate figures supplied in Supporting Information.
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raster math (see example in ‘3-D Niche Modelling with the GLM 
Algorithm’ vignette: https://cran.r-proje​ct.org/web/packa​ges/
voluM​odel/vigne​ttes/e_GLMWo​rkflow.html).

4  |  E X AMPLE:  POTENTIAL DISTRIBUTION 
OF LUMINOUS HAKE

To illustrate a potential workflow using voluModel tools, we pre-
sent an example modelling the distribution of potentially suit-
able habitat for the Luminous Hake, Steindachneria argentea. 
Luminous Hake is a gadiform codfish found in the Gulf of Mexico 
and Caribbean Sea (Cohen et al.,  1990) and is a diurnal verti-
cal migrant. Daytime surveys have recorded Luminous Hakes 
at depths from ~200 to ~1300 m (Benavides-Morera & Campos-
Calderón,  2018); nighttime surveys have recorded Luminous 
Hakes at depths from ~30 to ~190 m (Love et al.,  2004). We 
downloaded occurrence data via R OBIS (obis.org, 24 September 
2020 via robis, Provoost & Bosch, 2019) and GBIF (gbif.org, 24 
September 2020 via rGBIF, Chamberlain et al.,  2021) via occ-
Cite (Owens et al., 2021). Full citations for all the natural history 
collections contributing occurrence data for this example can 
be found in the ‘3-D Niche Modelling with the GLM Algorithm’ 
vignette (https://cran.r-proje​ct.org/web/packa​ges/voluM​odel/
vigne​ttes/e_GLMWo​rkflow.html). We use two environmental 
variables from the World Ocean Atlas (Garcia et al., 2018): mean 
annual temperature (Locarnini et al., 2018) and mean annual ap-
parent oxygen utilization (AOU; Garcia et al.,  2019). We chose 
these variables for their biological relevance but limited the se-
lection to two variables for simplicity in this example. For real-
world analyses, we recommend exploring additional explanatory 
variables available from the World Ocean Atlas and other similar 
sources. The occurrence and environmental data used in this ex-
ample are packaged with voluModel.

The ‘3-D Niche Modelling with the GLM Algorithm’ vignette 
demonstrates a voluModel workflow with sample code to generate 
2-D and 3-D estimates of suitable habitat for the Luminous Hake. 
The workflow also includes removal of 3-D areas of extrapolation 
and mapping results; 2-D model results based on surface condi-
tions and bottom conditions (Figure 2b) are compared to 3-D results 
(Figure 2c). Overall, the surface-based model identified a far more 
extensive distribution of suitable Luminous Hake habitat than the 
bottom-based model. The 3-D GLM identified suitable habitat that 
is shallower at latitudinal extremes and deeper in the open ocean 
compared to the Gulf of Mexico and Caribbean Sea.

5  |  CONCLUSIONS

ENM methods have been applied to investigate questions regard-
ing marine species' abiotic ecological niches and distributions in over 
300 studies (Melo-Merino et al.,  2020). However, only a handful 
have attempted to model distributions of pelagic organisms in three 

dimensions. Tools in voluModel provide an enhanced workflow for 
three-dimensional marine correlative modelling by:

1.	 Efficiently extracting environmental data from 3-D occurrences 
and pseudoabsence/background points

2.	 Automatically and repeatably producing more oceanographically 
appropriate model training regions from which pseudoabsence or 
background points can be extracted.

3.	 Generating 3-D estimates of potential model extrapolation
4.	 Visualizing 3-D geographical ENM projections

voluModel development is ongoing; dependent functions, 
object classes and methods from raster (Hijmans,  2022a) and 
rgeos (Bivand & Rundel, 2021), which will soon be retired or re-
placed with more performance-optimized packages, are being 
updated with equivalent elements from sf (Pebesma, 2018), terra 
(Hijmans,  2022b) and stars (Pebesma,  2022). Future versions 
may also include functions for modelling using additional algo-
rithms (e.g. Maxent; Phillips et al.,  2017), tools for estimating 
additional extrapolation measures (e.g. Most Dissimilar Variable, 
Elith et al., 2010; Extrapolation Detection, Mesgaran et al., 2014; 
Movement-Oriented Parity, Owens et al.,  2013) and other fea-
tures requested by users.

The innovations voluModel provides allow marine researchers to 
generate fine-grained, 3-D ENMs to infer potential distributions of 
species more efficiently and accurately, addressing a long-standing 
need of pelagic marine studies. Our method may also allow for 3-D 
terrestrial modelling for forest canopy- or soil-dwelling organisms, 
if appropriate environmental data are obtainable. From a modern 
biodiversity perspective, stacking 3-D distributions inferred with 
our methods will yield more precise estimates of open-ocean spe-
cies richness and provide insights into how biodiversity varies with 
depth. Projecting 3-D distributions through time will provide more 
accurate estimates of how suitable conditions for how marine spe-
cies shifted both with latitude and depth in the past, as well as pre-
dicting how suitable habitat may shift in the future. Both improved 
biodiversity estimates and habitat suitability predictions have the 
potential to contribute substantially towards data-driven conserva-
tion efforts, including sustainable biodiversity management plans 
and robust marine protected area design.
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