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Abstract Hedonic models in environmental valuation studies have grown in terms of
number of transactions and number of explanatory variables. We focus on the practical
challenge of model reduction, when aiming for reliable parsimonious models, sensi-
tive to omitted variable bias and multicollinearity. We evaluate two common model
reduction approaches in an empirical case. The first relies on a principal component
analysis (PCA) used to construct new orthogonal variables, which are applied in the
hedonic model. The second relies on a stepwise model reduction based on the variance
inflation index and Akaike’s information criteria. Our empirical application focuses on
estimating the implicit price of forest proximity in a Danish case area, with a dataset
containing 86 relevant variables. We demonstrate that the estimated implicit price for
forest proximity, while positive in all models, is clearly sensitive to the choice of
approach, as the PCA reduced model produces a parameter estimate double the size
of the alternative models. While PCA is an attractive variable reduction approach,
it may result in an important loss of information relative to the stepwise reduction
information based approach.
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1 Introduction

The models in applied hedonic valuation studies of environmental externalities have
grown in terms of included transactions and number of explanatory variables. Up to
recently, studies have been based on only few a thousand transactions and a limited
set of explanatory variables (Dubin and Goodman 1982; Garrod and Willis 1992;
Morancho 2003; Anthon et al. 2005), while some more recent publications use several
thousand observations and include a considerable amount of explanatory variables
(Cavailhès et al. 2009; Mukherjee and Caplan 2011; Kuethe 2012). An extreme case
of this trend can be found in the work of Gibbons et al. (2011) with more than one
million transactions and 33 explanatory spatial variables. While the present study is
no exception from this trend, we limit the analysis to 5,659 transactions, but apply as
many as 86 available variables which are relevant to the hedonic model. As typical in
environmental valuation hedonic studies, we focus on the implicit price of a specific
variable, in this case forest proximity and the purpose of the other 85 variables is to
ensure a reliable estimate.

Along with the growth in relevant and available variables comes, the challenge of
achieving parsimonious models with reliable estimates while dealing adequately with
the issues of omitted variable bias and multicollinearity inherent to spatial hedonic
models (LeSage and Pace 2009).

Because of the often strong correlation between different spatial variables describ-
ing urban qualities, omitted variable bias is a major concern in hedonic models, when
data sets appear incomplete. However, as the set of explanatory variables grow more
complete, multicollinearity becomes a challenge to the practical application and reli-
able estimation of parsimonious hedonic models for environmental valuation. These
problems, if not handled adequately, may reduce at least the efficiency with which we
can estimate and draw inference on parameters of interest, but may potentially also
imply biased estimates (LeSage and Pace 2009).

In this paper, we use an empirical application to demonstrate that model reduction
under these circumstances is not trivial, and we evaluate two common approaches in
an empirical case. The first approach applies principal component analysis (PCA),
which is used to construct a set of new orthogonal variables capturing a large part of
the variation in the available 86 explanatory variables. The second approach is based
on stepwise regression model reduction, where we automated variable selection using
Variance Inflation Indexes (VIF) and Akaike Information Criteria (AIC), thus reduc-
ing the number of variables by removing first those that are highly collinear and then
those that have little additional explanatory power. We evaluate the effects of these
two approaches on the estimated implicit price, comparing parameter estimates and
variances across the resulting hedonic models with the corresponding estimates from
a full model containing all available variables.

While PCA is only occasionally used for model reduction in the environmental
valuation literature (e.g. Lake et al. 1998), it is more common in the real estate literature
e.g. (Thériault et al. 2003; Bitter et al. 2007), just like stepwise regression approaches
have been applied on several occasions (Dunse and Jones 1998; Kong et al. 2007; Yoo et
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al. 2012). Our purpose is to highlight the possible differences between the approaches
in terms of their effect on e.g. the implicit prices of environmental variables, which is
of interest in applied environmental valuation.

We have chosen to exemplify the effect of the applied variable reduction techniques
by focusing on forest proximity. The value of forest proximity, being close to forest
lands, has been assessed in numerous hedonic studies (Tyrväinen and Miettinen 2000;
Anthon et al. 2005; Cho et al. 2008; Poudyal et al. 2009), and like these we find a
positive effect on house prices. However, we demonstrate that this estimate is sensitive
to the choice of model reduction approaches.

2 Empirical and econometric methods

2.1 Principle Component Analysis

The PCA is a standard dimensional reduction technique (e.g. Rencher 2002; Jolliffe
2002 and Anderson 2003) that attempts to capture as much as possible of the variance
of a dataset, while still reducing the number of dimensions in the dataset (Hastie et
al. 2009). The components are orthogonal axes projected onto the dataset, so that the
projections are positioned near the largest number of observations. The components’
scores describe these orthogonal axes and can be interpreted as new variables.

Following standard notations, the PCA finds the direction of the greatest variance
of the vector z based on the K × K variance–covariance matrix V [z] = � where K
is the number of variables of the vector z, cf. (1) below. The variables of vector z are
standardized to have a mean of zero and a standard deviation of one. The PCA finds
a set of principal components weights a1, …, ak where the linear function a′z refers
to the principal component scores.

a1 = arg max
a=‖a‖=1

ν
[
a′z

]

ak = arg max
a = ‖a‖ = 1
a⊥a1, ..., ak−1

ν
[
a′z

]
(1)

The component that captures the most amount of variance in the data is the first
principal component. The second principal component captures the greatest amount
of variance in the subspace orthogonal to the first, etc.

2.2 Stepwise reduction

The stepwise reduction technique automatizes variable selection by reducing the num-
ber of available explanatory variables based on an initial set of criteria. In this analysis
we apply a stepwise technique using both a backward and a forward stepwise algo-
rithm. In the first stepwise application the potential explanatory variable is subject to
a backward selection algorithm removing the variable with the highest VIF value in
each step until no variable has a VIF value above 5. The VIF value of variable i is
obtained using the R2

i value of a regression of all the other explanatory variables on
variable i .
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V I Fi = 1

1 − R2
i

(2)

The VIF value will change for all the explanatory variables with each step, as the
variable with the highest collinearity is removed.

In the second step the remaining variables are subjected to a forward selection
algorithm based on the minimization of AIC. In each step the available explanatory
variables are evaluated against the AIC measure. The variable, which provides the
largest improvement in AIC is included in the model. The algorithm stops when is not
possible to reduce the AIC measure further with the remaining variables. The AIC is
calculated as follows:

AI C = −2 log L + 2(ed f ) (3)

where L is the likelihood and the edf is the effective degrees of freedom. Essentially,
AIC provides a relative measure of goodness of fit, which penalizes the effective
degrees of freedom in the model.

2.3 The hedonic model

The hedonic method is well documented in numerous paper and text books, e.g.
Palmquist (2005) and Bockstael and McConnell (2007). The hedonic price function
is an equilibrium function created by sellers and buyers of properties seeking to max-
imize their own utility. In equilibrium, the sales price of any house is a function of
its characteristics. The model is based on the assumption of weak separability, which
means that the marginal rate of substitution between any two characteristics is inde-
pendent of the level of all other characteristics. Thus, the hedonic model can provide
an estimate of the implicit price of the marginal change of a house characteristic
(Palmquist 1991, 1992).

The hedonic price function is estimated using a semi-log transformation and Spatial
Error Models (SEM) (Anselin 1988), as initial analyses revealed spatial autocorrela-
tion. Spatial lag models were also estimated but provided similar results as the SEM.
The SEM can be written as follows:

y = X1β1 + f2β2 + ε

ε = λWε + u (4)

where y is an N× 1 vector of logged sales prices, X1 is a matrix of explanatory
variables. The forest proximity variable is f2. The observation error is the vector ε

and β1 and β2 are parameters to be estimated. In the SEM, ε is assumed to consist
of two terms. The first term capture spatial autocorrelation using the autoregressive
parameter, λ, and W which is an N × N spatial weight matrix. The second term is a
vector of noise u which follows the standard assumptions i.i.d.

The spatial weight matrix W defines the extent of the spatial neighborhood effect at
each location. The spatial autoregressive error term in the SEM can be understood as

123



Evaluating two model reduction approaches for large scale hedonic models 89

a correction term for unobserved omitted variables shared by the local neighborhood,
but there is no strict definition of a neighborhood in the literature (Anselin 2006). We
defined neighbors by triangulated irregular network polygons around each property,
and based our choice of weight matrix, W, on a spatial correlogram analysis based on
global Moran’s I analyses performed on contiguous neighbors going from the 1st to
8th order neighbors. We found a fairly sharp decline in spatial correlation and based
W on 1st order neighbors only.

3 Data sources, research area and variable definitions

3.1 Housing market

For our analysis we chose a market region in the northwestern part of Zealand, in which
the development of average house prices across municipalities shared a similar—fairly
modest—price trend over the period 1992-2001, when compared with the housing
markets in surrounding regions (Fig. 1).

The region covers 1,227 km2 and has a forest cover of 120 km2 (9.7 %), which is a bit
below the national average of 12–13 %. Forests are a mixture of deciduous, coniferous
and mixed species forest stands. The largest city in the survey area is Kalundborg.
Households living in the region have a mean distance of 85 km to Copenhagen, which,
by Danish standards, is quite far to commute considering that there is no highway and
no express trains going in or out of the area.

3.2 Data sources

In Denmark, nationwide data on structural house characteristics are collected and
registered in the “Bygnings - og Boligregisteret” (BBR), and sales prices are collected
and registered in “Ejendomsstamregisteret” (ESR). “Krydsreferenceregisteret” (KRR)
is able to supply ESR and BBR with a common key, which enables these data to
be combined. KRR furthermore contains geographic coordinates for every house in
Denmark (Hansen 2000).

We constructed location-based variables using ArcGIS 9.2, using data provided by
The Danish Geodata Agency (2011) in the kort10 geo-database, by Miljøundersøgelser
(2000) in the “Area Information System” (AIS) and by Naturgas Midt-Nord (2000)
in the Danish Address and Road Database (DAV). The location-based variables are
calculated using Euclidian distance or road network distance. Several different vari-
ables representing forest proximity were constructed and evaluated. All performed
quite similarly, but for the purpose of this study, we define forest proximity variable
simply as the Euclidian distance in steps of 100 m to the nearest forest. The scale of
proximity is calculated by X prox = ccutof f − Xdist where Xdist is Euclidian distance.
Furthermore, for homes beyond the cut-off distance the measure of proximity is set to
zero, X prox |X prox < 0 = 0. The proximity variable is easy to interpret as amenities
are associated with positive coefficients. The cutoff value reflects that the service is
declining with distance, and beyond some point effectively zero. The cutoff value was
initially chosen by mapping out the relationship between the sales price and buffer
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Fig. 1 Land-use map of survey area

distance variables of forest accessibility. We found that the effect of forest proximity
was negligible after 600 m.

Data on sales prices for single family houses from 1992 to 2004 are used. To
subtract time variation, dummy variables are constructed for each sales year—2004
being the reference year. The data contain 86 explanatory variables that describe
structural, neighborhood and environmental variables. After removing 274 incomplete
or erroneous observations (missing or implausible technical entries), the remaining
5659 observations formed the basis of our analyses. A thorough description of each
variable and descriptive statistics can be found in Supplementary Material (SM).

123



Evaluating two model reduction approaches for large scale hedonic models 91

4 Results

4.1 Model reductions

The correlation matrix of the 86 available variables provided evidence of multi-
collinearity. We undertook a PCA and a stepwise reduction in order to reduce the
problem of multicollinearity while at the same time keeping omitted variable bias to
a minimum. Note that 21 of the 86 explanatory variables feed directly into the hedo-
nic models, thus bypassing the model reduction applications. This group of variables
covered transaction year dummies and a set of spatial environmental variables. The
time dummies are kept in order to ensure the same de-trending across models and the
environmental variables are the main focal point of the analysis.

The PCA is calculated using a varimax rotation on the data to create latent variables
that describe the underlying structure of the data. The PCA reduced 63 correlated struc-
tural and spatial variables to 14 components. Initially, the PCA indicated the presence
of 22 components with an eigenvalue above 1, accounting for 70.4 % of the variance
in the data. The screeplot of the relationship between the principal components and
the eigenvalues is examined in an adjustment step to determine the number of compo-
nents to extract, based on their combined interpretability. To promote the interpretation
of the components, a varimax rotation ensured that the explanatory variables loaded
highly on one component and near zero on other components (Hastie et al. 2009). This
resulted in the extraction of 14 components accounting for 58.8 % of the total variance
of the variables included in the PCA. This is a substantial loss of information, and
should be borne in mind in the remaining analysis.

The 14 components (cf. Table 1) represent aspects that are in general intuitively
linked. Some examples: Proximity to services and businesses is associated with village
and city centers. Institutions like schools, recreational facilities, day care for children
are often situated close to each other in Danish urban planning, e.g. to reduce chil-
dren’s need to travel in traffic. District heating, natural gas and similar underground
infrastructures are buried under main roads. Solitary farm houses rarely have public
sewage but instead forms of mechanical treatment. The older the house, the larger the
likelihood that walls are half-timbered and roofs are thatch.

As explained earlier, the stepwise model reduction is conducted in two steps. In
the first step the full set of explanatory variables is subjected to a backward selection
using a VIF value larger than 5 as a threshold. In total 14 variables are removed in this
step. In the second step the remaining variables are subjected to a forward selection,
based on the AIC criteria. An additional 19 variables are removed from the model.

4.2 The hedonic house price model

In Table 2 we present the estimates of the forest proximity parameter and model diag-
nostics for the three versions of the hedonic model. Parameter estimates of the other
explanatory variables in the three models can be found in Appendix. The hedonic
models include a model using the full set of available explanatory variables, a model
which applies the 14 components of the PCA as explanatory variables and a model
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Table 1 Selected principal components and their loadings

Components Variables Eigenvalues Explained %
variance

Loadings
>0–45

1 Accessibility/ Retail 7.6687 11.6192 0.9799

substitutability– Supply of retail 0.9765

infrastructure/retail Copenhagen city center 0.9248

Highway exit 0.8860

Harbor −0.8630

Supply of services 0.7543

Supply of cinemas and
theatres

0.6524

Hospital −0.5794

Station 0.5600

2 Substitutability— Supply of sports facilities 4.0438 6.1270 0.9654

Public institution Supply of cultural
institutions

0.9422

Supply of healthcare
centers

0.7627

Public cultural institutions 0.6701

3 Accessibility—Service Day nursery 3.9082 5.9216 0.7866

Institutions healthcare center 0.7781

School 0.7435

Sport facility 0.6966

Cinemas and theaters 0.6614

Service store 0.5825

4 The size of the house Living space 2.7685 4.1947 0.8467

Toilets 0.7404

Bathrooms

Rooms 0.7354

Bathrooms 0.6700

5 Farm houses Public sewage 2.7515 4.1689 −0.8293

Mechanical treatment 0.7818

Property size 0.4919

6 Heating with Electric heating 2.7144 4.1128 0.9245

electricity Electric stove 0.9198

Central heating −0.6427

Heated by oil −0.5793

7 Private water supply Private water supply 2.1566 3.2676 0.8537

Public water supply −0.8535

8 Energy & road District heating 2.1205 3.2129 −0.6682

access Major road 0.6644

Natural gas 0.4885

9 Tile roof Asbestos roof 2.0696 3.1357 −0.8629

Tile roof 0.7973
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Table 1 continued

Components Variables Eigenvalues Explained %
variance

Loadings
>0–45

10 Small buildings Small buildings 1.9386 2.9372 0.8315

Size of small buildings 0.8090

11 Brick construction Brick 1.8970 2.8742 −0.8616

Concrete 0.7108

Timber 0.5060

12 Age of the house Half-timbered 1.7362 2.6307 0.7549

Thatched roof 0.6801

Age 0.5037

13 Heating—stove and Heated by coal 1.7044 2.5825 0.8141

coal Stove 0.7946

14 Carport and basement Car port 1.3694 2.0749 0.5919

Basement 0.4993

Outhouse −0.4532

Total variance explained 58.8 %

See text for intuitive explanation of the grouping
Variables unaccounted for (less than 0.45 loading): covered terrace, garage, patio, top story, waste water tank,
electric stove complimentary, buildings, floors, wood—complimentary heating, low basement corrugated
iron roof, felt roof, flat roof, private sewage, concrete roof

Table 2 Comparing the hedonic model estimates of the forest proximity parameter

GLM full model PCA model reduction Stepwise model
reduction

Forest proximity variable 0.00609 (0.00287)* 0.01164 (0.00277)*** 0.00571 (0.00260)*

Lambda 0.08492 (0.02173)*** 0.05273 (0.02171)*

R-squared 0.56237 0.50510 0.56083

AIC 3926.564 4583.81 3916.64

Correct signs % 0.72 0.81 0.80

Likelihood Ratio 1875.28 −2253.90 −1902.32

Moran’s I 0.01899* −0.00024 −0.00009

df 5572 5622 5604

N = 5659: () standard error
* significant at 5 %, ** significant at 1%, *** significant at 0.1%

which use the selected variables from the stepwise reduction as explanatory variables.
Note that all three models contain transaction year dummies and have a set of selected
environmental variables in common. Furthermore, standard errors and significance
levels for all hedonic models are based on heteroscedasticity and autocorrelation con-
sistent covariance matrices. The model containing the full set of available variables is
estimated by a Generalized Linear Model (GLM). SEM is sensitive to multicollinearity
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due to issues of singularity. It was therefore not possible to estimate the hedonic model
with the full set of available variables using a SEM.

The full GLM model explains 56 % of the variance according to the R2 using 86
variables, which is only marginally higher than the R2 of the model based on the
stepwise reduction which uses 54 variables. The model with principal components
variables has an R2 around 50 %, but uses only 36 variables. The model based on
stepwise reduction had the lowest AIC value, while the PCA based model notably
has a much higher AIC value. The two models based on PCA and stepwise reduction
have a relatively high number of significant parameter estimates with the expected
sign compared with the full model. Note, that the global Moran’s I index indicates that
spatial autocorrelation is low for all three models. This is likely a result of a having
a lot of spatial variables in the models, suggesting that little is left out of the full
model.The global Moran’s Index is significantly different from zero in the full model,
while it is insignificant in both SEM applications.

The stepwise and the PCA based model reduction approaches effectively reduce the
multicollinearity problems in the models. However, we find that while the standard
error of the forest parameter is 2.87 × 10−3 in the full model, it is only improved
marginally to 2.6 × 10−3 in the reduced models, as in this case the correlation between
this variable and others is modest. While efficiency gains seem modest, we find a clear
difference in the mean estimates of the forest proximity parameter between the PCA-
based and the stepwise reduced models. The parameter estimate of forest proximity
variables in the PCA models are almost double the size of the corresponding estimate
in the full and the stepwise reduced models. This indicates that some of the information
lost using the PCA approach may correlate with the forest variable perhaps implying
that an omitted variable bias has been introduced. This observation stresses the caution
needed when pursuing the estimation of parsimonious models from large data sets.

5 Concluding discussion

In hedonic valuation studies, there is usually a focus on one or a few environmental
variables of interest, whereas the rest of the hedonic price function must be designed to
obtain the most efficient and unbiased estimates as available information allows. Earlier
hedonic studies have often worked on fairly small house price dataset with relatively
small spatial extent and a limited number of relevant spatially distributed covariates.
However, data availability has grown in recent years and large-scale hedonic models
now present both a challenge to and an opportunity for applied environmental valu-
ation. It remains a challenge to achieve parsimonious reliable models and estimates,
while dealing adequately with the issues of omitted variable bias and multicollinearity
inherent to spatial hedonic models (LeSage and Pace 2009).

In this paper we, evaluate two common model reduction techniques in an empirical
application using a very large set of relevant variables, and demonstrate that model
reduction under these circumstances is not trivial, and may easily affect the estimate
of the environmental valuation parameters of interest, here a forest proximity variable.
The first approach applied PCA, to construct a set of new orthogonal variables captur-
ing a large part of the variation in the available 86 explanatory variables. The second
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approach is based on stepwise regression model reduction, where we automated vari-
able selection using VIF and AIC. Comparing the results of the reduced models with a
full model, we find that neither of the model reduction approaches reduce the standard
error of the forest proximity estimate much, compared with the inefficient full model.
However, the estimate of the forest proximity variable is almost double the size in the
PCA-based reduced model compared with the full model and the stepwise reduced
model, which are very similar. The finding is likely to be case specific, but it stresses
the need for caution when building hedonic models from large scale data sets.

We have focused here on two applied approaches to model reduction in hedonic
models used for applied environmental valuation research. The performance of the
model reduction techniques could be improved. One option for improving the perfor-
mance of a PCA-type of approach could be to undertake a simultaneous estimation of
the hedonic models and the PCA components, latent house or neighborhood qualities
or similar. Such an estimation procedure should at least improve efficiency, but may
also reduce the loss of information and hence the risk of omitted variable bias, as this
affect the overall likelihood of the model. Another approach could be further develop-
ment of structural models, which may also handle issues like measurement error due
to some variables being poorly observed or proxies (Suparman et al. 2013).

However, while the two-stage PCA approach may not be optimal from an efficiency
point of view, it is important to stress that it is used in that way. Similar reservations
about e.g. path dependent outcomes exist for the stepwise reduction approach. The
point of our paper is exactly to illustrate possible caveats for applied environmental
valuation studies in the non-trivial choice between these two currently applied model
reduction techniques.

Acknowledgments The authors acknowledge funding from the Municipality of Aarhus, Grontmij and
the Danish National Science Foundation.

Appendix

Here we present a table, which provides the parameter estimates of all variables
included in the three hedonic house price models, as well as the relevant model diag-
nostics. The first model is the ‘Full model’ including all available control variables,
the second is the model based on a PCA reduction of the variables and the third model
is based on the stepwise reduction approach. The first model is based on a simple
GLM estimate while the two later models are based on the spatial error model which
correct for spatial autocorrelation in the error term. The estimates of the three models
are presented together with relevant model performance tests.

123



96 T. E. Panduro, B. J. Thorsen

V
ar

ia
bl

es
G

L
M

fu
ll

m
od

el
PC

A
m

od
el

re
du

ct
io

n
St

ep
w

is
e

m
od

el
re

du
ct

io
n

E
st

im
at

es
t-

va
lu

e
E

st
im

at
es

z-
va

lu
e

E
st

im
at

es
z-

va
lu

e

(I
nt

er
ce

pt
)

(+
)

13
.1

93
9

(0
.4

21
9)

**
*

31
.2

69
72

13
.6

49
1

(0
.0

24
4)

**
*

55
9.

62
99

13
.3

82
4

(0
.0

70
5)

**
*

18
9.

72
23

C
om

po
ne

nt
1

in
fr

as
tr

uc
tu

re
re

ta
il

(+
)

−0
.0

44
6

(0
.0

07
5)

**
*

−5
.9

49
9

C
om

po
ne

nt
2

pu
bl

ic
in

st
itu

tio
n

(+
)

−0
.0

29
9

(0
.0

05
5)

**
*

−5
.3

96

C
om

po
ne

nt
3

se
rv

ic
es

(+
)

−0
.0

78
4

(0
.0

05
4)

**
*

−1
4.

57
5

C
om

po
ne

nt
4

si
ze

(+
)

0.
19

35
(0

.0
05

6)
**

*
34

.2
38

6

C
om

po
ne

nt
5

fa
rm

ho
us

e
(+

)
−0

.0
50

5
(0

.0
06

1)
**

*
−8

.2
26

5

C
om

po
ne

nt
6

el
ec

tr
ic

he
at

in
g

(−
)

0.
00

96
(0

.0
04

9)
*

1.
96

75

C
om

po
ne

nt
7

pr
iv

at
e

w
at

er
su

pp
ly

(−
)

−0
.0

08
9

(0
.0

05
6)

−1
.5

86
5

C
om

po
ne

nt
8

en
er

gy
an

d
ro

ad
(−

)
−0

.0
13

1
(0

.0
04

8)
**

−2
.7

53
2

C
om

po
ne

nt
9

til
e

ro
of

(+
)

−0
.0

47
2

(0
.0

04
3)

**
*

−1
0.

95
45

C
om

po
ne

nt
10

sm
al

l
bu

ild
in

gs
(+

)
0.

01
27

(0
.0

05
3)

*
2.

38
56

C
om

po
ne

nt
11

br
ic

k
(−

)
−0

.0
38

6
(0

.0
05

5)
**

*
−7

.0
55

3

C
om

po
ne

nt
12

ag
e

(−
)

−0
.0

45
5

(0
.0

06
1)

**
*

−7
.4

45
9

C
om

po
ne

nt
13

co
al

an
d

st
ov

e
(+

)
−0

.0
50

5
(0

.0
05

4)
**

*
−9

.3
33

2

C
om

po
ne

nt
14

ca
rp

or
t

an
d

ba
se

m
en

t(
+

)
−0

.0
42

1
(0

.0
07

6)
**

*
−5

.5
39

4

L
iv

in
g

sp
ac

e(
+

)
0.

00
39

(2
e−

04
)*

**
17

.6
47

99
0.

00
39

(2
e−

04
)*

**
22

.0
94

4

A
ge

−0
.0

03
1

(2
e−

04
)*

**
−1

3.
98

64
−0

.0
03

1
(2

e−
04

)*
**

−1
4.

82
14

St
at

io
n

(−
)

0.
00

00
(0

)*
**

− 5
.0

24
12

−0
.0

00
02

(0
)*

**
−9

.6
35

7

123



Evaluating two model reduction approaches for large scale hedonic models 97

V
ar

ia
bl

es
G

L
M

fu
ll

m
od

el
PC

A
m

od
el

re
du

ct
io

n
St

ep
w

is
e

m
od

el
re

du
ct

io
n

E
st

im
at

es
t-

va
lu

e
E

st
im

at
es

z-
va

lu
e

E
st

im
at

es
z-

va
lu

e

B
as

em
en

t(
+

)
0.

00
16

(1
e−

04
)*

**
11

.0
94

94
0.

00
16

(1
e−

04
)*

**
12

.0
72

Si
ze

of
sm

al
lb

ui
ld

in
gs

(+
)

0.
00

10
(2

e−
04

)*
**

4.
39

32
4

0.
00

10
(2

e−
04

)*
**

4.
28

07

T
ha

tc
he

d
ro

of
(−

)
0.

21
94

(0
.0

61
9)

**
*

3.
54

64
9

0.
16

83
(0

.0
39

1)
**

*
4.

30
49

T
im

be
r

(−
)

−0
.1

11
2

(0
.0

54
8)

*
−2

.0
30

45
−0

.1
95

6
(0

.0
41

1)
**

*
−4

.7
58

6

To
ile

ts
(+

)
0.

05
96

(0
.0

10
7)

**
*

5.
57

69
4

0.
05

77
(0

.0
10

7)
**

*
5.

40
57

St
ov

e
(+

)
0.

00
79

(0
.1

05
)

0.
07

53
−0

.1
18

4
(0

.0
28

9)
**

*
−4

.1
02

6

Pr
op

er
ty

si
ze

(+
)

0.
00

00
3

(0
)*

**
6.

00
72

8
0.

00
00

2
(0

)*
**

5.
99

66

H
ea

lth
ca

re
ce

nt
er

(−
)

−0
.0

00
01

(0
)*

**
−3

.6
07

77
−0

.0
00

02
(0

)*
**

−4
.9

60
3

C
ar

po
rt

(+
)

−0
.1

95
7

(0
.0

86
1)

−2
.2

71
9

−0
.2

07
9

(0
.0

83
5)

*
−2

.4
90

3

C
on

cr
et

e
(−

)
−0

.0
37

4
(0

.0
38

9)
−0

.9
60

18
−0

.1
14

1
(0

.0
15

2)
**

*
−7

.5
31

1

C
on

cr
et

e
ro

of
(−

)
−0

.0
60

8
(0

.0
53

2)
−1

.1
43

47
−0

.1
09

4
(0

.0
25

2)
**

*
−4

.3
42

9

T
ile

ro
of

(+
)

−0
.0

02
8

(0
.0

48
2)

−0
.0

58
86

−0
.0

46
2

(0
.0

12
4)

**
*

−3
.7

33
1

Pa
tio

(+
)

0.
07

16
(0

.0
15

)*
**

4.
78

58
2

0.
07

20
(0

.0
14

7)
**

*
4.

89
74

H
ea

te
d

by
oi

l(
−)

−0
.1

10
7

(0
.0

9)
−1

.2
29

79
−0

.0
48

7
(0

.0
11

)*
**

−4
.4

36
4

To
p

st
or

y
(−

)
−0

.0
00

6
(2

e−
04

)*
*

−2
.5

97
38

−0
.0

00
6

(2
e−

04
)*

*
−2

.7
50

3

R
oo

f
fe

lt
(−

)
−0

.0
42

4
(0

.0
59

8)
−0

.7
09

09
−0

.0
86

6
(0

.0
36

6)
*

−2
.3

66
4

M
ec

ha
ni

ca
lt

re
at

m
en

t(
−)

0.
04

12
(0

.0
77

8)
0.

53
03

5
−0

.0
35

3
(0

.0
16

7)
*

−2
.1

11
3

L
ow

ba
se

m
en

t(
−)

−0
.0

45
2

(0
.0

19
9)

*
−2

.2
72

66
−0

.0
49

6
(0

.0
18

9)
**

−2
.6

23
3

C
or

ru
ga

te
d

ir
on

ro
of

(−
)

−0
.0

42
5

(0
.0

62
8)

−0
.6

77
53

−0
.0

82
8

(0
.0

40
7)

*
−2

.0
32

6

C
ov

er
ed

te
rr

ac
e

(+
)

0.
02

75
(0

.0
15

6)
1.

76
08

4
0.

03
30

(0
.0

15
2)

*
2.

16
4

H
ar

bo
r

(−
)

0.
00

00
(0

)
−0

.2
50

12
0.

00
00

(0
)*

*
2.

84
33

Se
rv

ic
e

st
or

e
(−

)
−0

.0
00

1
(0

)*
*

−2
.9

00
66

−0
.0

00
1

(0
)

−1
.5

78
6

Sm
al

lb
ui

ld
in

gs
(+

)
0.

01
80

(0
.0

08
8)

*
2.

04
40

7
0.

02
10

(0
.0

08
6)

*
2.

46
03

123



98 T. E. Panduro, B. J. Thorsen

V
ar

ia
bl

es
G

L
M

fu
ll

m
od

el
PC

A
m

od
el

re
du

ct
io

n
St

ep
w

is
e

m
od

el
re

du
ct

io
n

E
st

im
at

es
t-

va
lu

e
E

st
im

at
es

z-
va

lu
e

E
st

im
at

es
z-

va
lu

e

Fl
oo

rs
(−

)
−0

.0
78

8
(0

.0
62

6)
−1

.2
57

98
−0

.0
77

9
(0

.0
6)

−1
.2

97
7

H
ea

te
d

by
co

al
(+

)
−0

.1
28

7
(0

.0
96

)
−1

.3
40

04
−0

.0
63

2
(0

.0
35

4)
−1

.7
83

6

H
ea

te
d

by
na

tu
ra

lg
as

(+
)

−0
.0

94
0

(0
.0

90
4)

−1
.0

40
52

−0
.0

25
6

(0
.0

15
3)

−1
.6

71
6

C
in

em
a

an
d

th
ea

tr
e

(+
)

0.
00

00
01

(0
)

1.
04

74
6

0.
00

00
1

(0
)

1.
37

62

G
ar

ag
e

(+
)

0.
04

06
(0

.0
29

3)
1.

38
90

7
0.

03
97

(0
.0

28
6)

1.
39

01

O
ut

ho
us

e
(+

)
−0

.0
37

3
(0

.0
28

8)
−1

.2
94

52
−0

.0
34

4
(0

.0
27

8)
−1

.2
38

8

19
92

(−
)

−0
.7

86
8

(0
.0

26
2)

**
*

−3
0.

08
32

−0
.7

74
2

(0
.0

26
8)

**
*

−2
8.

90
09

−0
.7

86
4

(0
.0

25
6)

**
*

−3
0.

66
8

19
93

(−
)

−0
.8

07
6

(0
.0

26
2)

**
*

−3
0.

81
32

−0
.7

94
7

(0
.0

26
9)

**
*

−2
9.

50
9

−0
.8

05
4

(0
.0

25
7)

**
*

−3
1.

31
42

19
94

(−
)

−0
.7

50
1

(0
.0

25
8)

**
*

−2
9.

07
48

−0
.7

36
3

(0
.0

26
3)

**
*

−2
8.

00
54

−0
.7

50
9

(0
.0

25
4)

**
*

−2
9.

62
11

19
95

(−
)

−0
.7

22
5

(0
.0

25
)*

**
−2

8.
87

49
−0

.7
05

9
(0

.0
25

7)
**

*
−2

7.
49

75
−0

.7
21

7
(0

.0
24

6)
**

*
−2

9.
27

56

19
96

( −
)

−0
.6

31
7

(0
.0

27
4)

**
*

−2
3.

02
24

−0
.6

16
5

(0
.0

28
1)

**
*

−2
1.

92
82

−0
.6

33
0

(0
.0

26
9)

**
*

−2
3.

55
76

19
97

−0
.5

05
6

(0
.0

27
6)

**
*

−1
8.

33
83

−0
.4

99
8

(0
.0

28
1)

**
*

−1
7.

77
57

−0
.5

06
0

(0
.0

27
)*

**
−1

8.
72

31

19
98

(−
)

−0
.4

36
9

(0
.0

27
8)

**
*

−1
5.

69
4

−0
.4

18
9

(0
.0

28
3)

**
*

−1
4.

79
94

−0
.4

37
8

(0
.0

27
4)

**
*

−1
5.

96
65

19
99

(−
)

−0
.3

39
6

(0
.0

27
8)

**
*

−1
2.

22
35

−0
.3

37
2

(0
.0

28
4)

**
*

−1
1.

86
03

−0
.3

38
9

(0
.0

27
3)

**
*

−1
2.

41
97

20
00

(−
)

−0
.2

62
8

(0
.0

28
9)

**
*

−9
.0

81
81

−0
.2

69
0

(0
.0

29
2)

**
*

−9
.2

11
8

−0
.2

59
9

(0
.0

28
3)

**
*

−9
.1

89
6

20
01

(−
)

−0
.1

72
1

(0
.0

28
4)

**
*

−6
.0

51
46

−0
.1

64
1

(0
.0

29
2)

**
*

−5
.6

14
1

−0
.1

70
0

(0
.0

28
1)

**
*

−6
.0

53
2

20
02

(−
)

−0
.1

47
3

(0
.0

32
3)

**
*

−4
.5

66
21

−0
.1

61
1

(0
.0

32
7)

**
*

−4
.9

23
4

−0
.1

52
2

(0
.0

31
8)

**
*

− 4
.7

84
9

20
03

(−
)

−0
.1

01
1

(0
.0

33
4)

**
−3

.0
26

56
−0

.0
98

9
(0

.0
34

4)
**

−2
.8

75
2

−0
.1

02
2

(0
.0

33
1)

**
−3

.0
89

R
en

ov
at

ed
in

19
70

s
(+

)
0.

07
49

(0
.0

13
8)

**
*

5.
42

15
9

0.
06

34
(0

.0
14

4)
**

*
4.

40
18

0.
07

80
(0

.0
13

4)
**

*
5.

80
8

R
en

ov
at

ed
in

19
80

s
(+

)
0.

11
53

(0
.0

15
)*

**
7.

65
97

3
0.

11
09

(0
.0

15
9)

**
*

6.
98

12
0.

11
20

(0
.0

14
8)

**
*

7.
57

43

R
en

ov
at

ed
in

19
90

s
(+

)
0.

12
81

(0
.0

23
6)

**
*

5.
43

98
7

0.
13

02
(0

.0
24

2)
**

*
5.

38
11

0.
12

80
(0

.0
23

1)
**

*
5.

54
23

R
ai

lw
ay

tr
ac

ks
(−

)
−0

.0
17

3
(0

.0
04

8)
**

*
−3

.6
27

61
−0

.0
18

5
(0

.0
04

8)
**

*
−3

.8
58

2
−0

.0
16

3
(0

.0
04

5)
**

*
−3

.6
12

L
ar

ge
ro

ad
(−

)
−0

.0
37

4
(0

.0
26

6)
−1

.4
09

81
−0

.0
58

2
(0

.0
27

6)
*

−2
.1

10
6

−0
.0

35
6

(0
.0

25
6)

−1
.3

88
5

123



Evaluating two model reduction approaches for large scale hedonic models 99

V
ar

ia
bl

es
G

L
M

fu
ll

m
od

el
PC

A
m

od
el

re
du

ct
io

n
St

ep
w

is
e

m
od

el
re

du
ct

io
n

E
st

im
at

es
t-

va
lu

e
E

st
im

at
es

z-
va

lu
e

E
st

im
at

es
z-

va
lu

e

V
ol

ta
ge

lin
e

(−
)

0.
00

00
(0

)
−1

.2
83

92
0.

00
00

(0
)

−1
.6

65
5

0.
00

00
(0

)*
−2

.0
35

3

C
oa

st
(+

)
−0

.0
07

8
(0

.0
03

2)
*

−2
.4

40
1

−0
.0

02
9

(0
.0

03
)

−0
.9

9
−0

.0
07

3
(0

.0
02

8)
**

−2
.6

42
7

C
oa

st
∧ 2

(+
)

0.
00

05
(1

e−
04

)*
**

4.
66

60
7

0.
00

04
(1

e−
04

)*
**

4.
14

63
0.

00
06

(1
e−

04
)*

**
5.

28
1

Fo
re

st
(+

)
0.

00
61

(0
.0

02
9)

*
2.

11
93

7
0.

01
16

(0
.0

02
8)

**
*

4.
20

1
0.

00
57

(0
.0

02
6)

*
2.

19
69

B
ri

ck
(+

)
0.

07
97

(0
.0

36
6)

*
2.

17
97

2

H
al

f
tim

be
re

d
(−

)
0.

10
42

(0
.0

59
6)

1.
74

77
1

A
sb

es
to

s
ro

of
(+

)
0.

04
87

(0
.0

47
4)

1.
02

82
4

Fl
at

ro
of

(−
)

0.
00

72
(0

.0
57

6)
0.

12
43

9

D
is

tr
ic

th
ea

tin
g

(+
)

0.
06

34
(0

.1
33

3)
0.

47
54

5

C
en

tr
al

he
at

in
g

(+
)

0.
12

33
(0

.0
99

8)
1.

23
56

1

E
le

ct
ri

c
st

ov
e

(−
)

0.
14

88
(0

.0
75

)*
1.

98
23

5

E
le

ct
ri

c
he

at
in

g
(−

)
−0

.0
94

2
(0

.1
25

)
−0

.7
54

C
om

pl
im

en
ta

ry
he

at
in

g
by

w
oo

d
(+

)
0.

01
55

(0
.0

11
)

1.
41

03
5

C
om

pl
im

en
ta

ry
he

at
in

g
by

el
ec

tr
ic

st
ov

e
(−

)

0.
07

52
(0

.0
67

9)
1.

10
82

4

Pu
bl

ic
w

at
er

su
pp

ly
(+

)
0.

11
54

(0
.0

8)
1.

44
13

3

Pr
iv

at
e

w
at

er
su

pp
ly

(−
)

0.
12

32
(0

.0
77

2)
1.

59
57

9

Pu
bl

ic
se

w
ag

e
(+

)
0.

07
37

(0
.0

76
9)

0.
95

83
4

Pr
iv

at
e

se
w

ag
e

(−
)

−0
.0

06
9

(0
.0

90
1)

−0
.0

76
63

W
as

te
w

at
er

ta
nk

(−
)

0.
04

96
(0

.0
94

5)
0.

52
54

6

B
ui

ld
in

gs
(+

)
0.

03
12

(0
.1

00
2)

0.
31

1

R
oo

m
s

(+
)

−0
.0

00
01

(0
.0

05
2)

−0
.0

01
07

B
at

hr
oo

m
s

(+
)

−0
.0

13
9

(0
.0

15
)

−0
.9

28
89

123



100 T. E. Panduro, B. J. Thorsen

V
ar

ia
bl

es
G

L
M

fu
ll

m
od

el
PC

A
m

od
el

re
du

ct
io

n
St

ep
w

is
e

m
od

el
re

du
ct

io
n

E
st

im
at

es
t-

va
lu

e
E

st
im

at
es

z-
va

lu
e

E
st

im
at

es
z-

va
lu

e

D
ay

nu
rs

er
y

(−
)

0.
00

00
(0

)
0.

37
37

3

Sc
ho

ol
(−

)
0.

00
00

(0
)

0.
37

82
4

Sp
or

tf
ac

ili
ty

(−
)

0.
00

00
(0

)
0.

04
33

9

Su
pp

ly
of

sp
or

ts
fa

ci
lit

ie
s

(−
)

0.
00

00
(0

)
1.

31
42

3

Su
pp

ly
of

he
al

th
ca

re
ce

nt
er

(−
)

0.
00

00
(0

)
1.

70
15

5

Pu
bl

ic
cu

ltu
ra

li
ns

tit
ut

io
ns

(−
)

0.
00

00
(0

)
−0

.7
77

29

Su
pp

ly
of

cu
ltu

ra
li

ns
tit

ut
io

ns
(−

)
0.

00
00

(0
)

−1
.6

07
71

Su
pp

ly
of

ci
ne

m
a

an
d

th
ea

tr
e

(−
)

0.
00

00
(0

)
−1

.1
69

05

Su
pp

ly
of

se
rv

ic
es

(−
)

0.
00

00
(0

)
0.

22
63

R
et

ai
l(

−)
0.

00
00

(0
)

−0
.3

61
01

Su
pp

ly
of

re
ta

il
(−

)
0.

00
00

(0
)

−0
.2

28
07

H
ig

hw
ay

ex
it

(−
)

0.
00

00
(0

)
−0

.0
57

58

M
aj

or
ro

ad
(−

)
0.

00
00

(0
)

0.
38

75
5

C
op

en
ha

ge
n

ci
ty

ce
nt

er
(−

)
0.

00
00

(0
)

−0
.6

22
88

H
os

pi
ta

l(
−)

0.
00

00
(0

)
1.

36
45

L
am

bd
a

0.
08

49
2

(0
.0

21
7)

**
*

0.
05

27
3

(0
.0

21
7)

*

R
-s

qu
ar

e
0.

56
90

5
0.

50
84

0.
56

51
5

A
dj

us
te

d
R

-s
qu

ar
e

0.
56

23
7

0.
50

51
0.

56
08

3

N
um

be
r

of
va

ri
ab

le
s

87
36

54

R
el

at
iv

e
nu

m
be

r
of

co
rr

ec
ts

ig
ns

0.
72

0.
81

0.
80

A
ka

ik
e

in
fo

cr
ite

ri
on

(A
IC

)
39

26
.5

6
45

83
.8

17
6

39
16

.6
39

4

L
ik

el
ih

oo
d

ra
tio

−1
87

5.
28

−2
25

3.
90

8
−1

90
2.

31
9

G
lo

ba
lM

or
an

’s
I

0.
01

89
9*

−0
.0

00
24

−0
.0

00
09

N
=

56
59

:(
+

)/
(−

)
ex

pe
ct

ed
si

gn
,(

)
st

an
da

rd
er

ro
r,

*
si

gn
ifi

ca
nt

at
5

%
,*

*
si

gn
ifi

ca
nt

at
1%

,*
**

si
gn

ifi
ca

nt
at

0,
1%

123



Evaluating two model reduction approaches for large scale hedonic models 101

References

Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 3rd edn. Wiley, New York (2003)
Anselin, L.: Spatial Econometrics: Methods and Models. Kluwer, Dordrecht (1988)
Anselin, L.: Spatial Econometrics. In: Mills, Patterson, A. (eds.) Palgrave Handbook of economics, Econo-

metric theory. vol. 1, pp. 901–969. Palgrave Macmillian, Basingstoke (2006)
Anthon, S., Thorsen, B.J., Helles, F.: Urban-fringe afforestation projects and taxable hedonic values. Urban

For Urban Green 3(2), 79–91 (2005)
Bitter, C., Mulligan, G.F., Dall’erba, S.: Incorporating spatial variation in housing attribute prices: a com-

parison of geographically weighted regression and the spatial expansion method. J. Geogr. Syst. 9(1),
7–27 (2007)

Bockstael, N.E., McConnell, K.E.: Environmental and Ressource Valuation with Revealed Preference—A
theoretical Guide to Empirical Models. Springer, Berlin (2007)

Cavailhès, J., Brossard, T., Foltête, J.-C., Hilal, M., Joly, D., Tourneux, F.-P., Tritz, C., Wavresky, P.: GIS-
based hedonic pricing of landscape. Environ. Resour. Econ. 44(4), 571–590 (2009)

Cho, S.-H., Poudyal, N.C., Roberts, R.K.: Spatial analysis of the amenity value of green open space. Ecol.
Econ. 66(2–3), 403–416 (2008)

Dubin, R.A., Goodman, A.C.: Valuation of education and crime neighborhood characteristics through
hedonic housing prices. Popul. Environ. 5(3), 166–181 (1982)

Dunse, N., Jones, C.: A hedonic price model of office rents. J. Property Valuat. Invest. 16(3), 297–312
(1998)

Garrod, G., Willis, K.: The environmental economic impact of woodland: a two stage hedonicprice model
of the amenity value of forestry in Britain. Appl. Econ. 24(7), 715–728 (1992)

Gibbons, S., Mourato, S., Resende, G.: The amenity value of English nature: a hedonic price approach.
SERC Discussion Papers, Spatial Economics Research Centre (SERC) (2011)

Hansen, H.S.: Digitale kort og administrative registre. Faglig rapport fra DMU. nr. 330 (2000)
Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning–data mining, inference, and

prediction. Springer, Berlin (2009)
Jolliffe, I.T.: Principal Component Ananlysis, 2nd edn. Springer, Heidelberg (2002)
Kong, F., Yin, H., Nakagoshi, N.: Using GIS and landscape metrics in the hedonic price modeling of the

amenity value of urban green space: a case study in Jinan City. China. Landsc. Urban Plann. 79(3–4),
240–252 (2007)

Kuethe, T.H.: Spatial fragmentation and the value of residential housing. Land Econ 88(1), 16–27 (2012)
Lake, I.R., Lovett, A.A., Bateman, I.J., Langford, I.H.: Modelling environmental influences on property

prices in an urban environment. Comput. Environ. Urban Syst. 22, 121–136 (1998)
LeSage, J., Pace, K.R.: Introduction to Spatial Econometrics. Taylor & Francis Group LLC., Stockholm

(2009)
Miljøundersøgelser, D. (ed.): Areal, Information Systemet–AIS (2000)
Morancho, A.B.: A hedonic valuation of urban green areas. Landsc. Urban Plann. 66(1), 35–41 (2003)
Mukherjee, S., Caplan, A.: GIS-based estimation of housing amenities: the case of high grounds and stagnant

streams. Lett. Spat. Resour. Sci. 4(1), 49–61 (2011)
Midt-Nord, N. (ed.): Danish Address and Road, Database (2000)
Palmquist, R.: Hedonic methods. In: Braden, J.E., Kolstad, C.D. (eds.) Measuring the Demand for Envi-

ronmental Quality, pp. 77–120. Elsevier, Amsterdam (1991)
Palmquist, R.B.: Valuing Localized Externalities. J. Urban Econ. 31, 59–68 (1992)
Palmquist, R.B.: Property Value Models, Chapter 16. In: Karl-Gran, M., Jeffrey, R.V. (eds.) Handbook of

Environmental Economics, vol. 2, pp. 763–819. Elsevier, Amsterdam (2005)
Poudyal, N.C., Hodges, D.G., Tonn, B., Cho, S.H.: Valuing diversity and spatial pattern of open space plots

in urban neighborhoods. Forest Policy Econ. 11(3), 194–201 (2009)
Rencher, A.C.: Methods of Multivariate Analysis. Wiley, New York (2002)
Suparman, Y., Folmer, H., Oud, J.H.L.: Hedonic price models with omitted variables and measurement

errors: a constrained autoregression-structural equation modeling approach with application to urban
Indonesia. J. Geogr. Syst. (2013)

The Danish Geodata Agency: kort10 (2011)
Thériault, M., Des Rosiers, F., Villeneuve, P., Kestens, Y.: Modelling interactions of location with specific

value of housing attributes. Property. Manage. 21(1), 25–62 (2003)

123



102 T. E. Panduro, B. J. Thorsen

Tyrväinen, L., Miettinen, A.: Property Prices and Urban Forest Amenities. J. Environ. Econ. Manage. 39(2),
205–223 (2000)

Yoo, S., Im, J., Wagner, J.E.: Variable selection for hedonic model using machine learning approaches: a
case study in Onondaga County. NY. Landsc. Urban Plan. 107(3), 293–306 (2012)

123


	Evaluating two model reduction approaches for large scale hedonic models sensitive to omitted variables   and multicollinearity
	Abstract
	1 Introduction
	2 Empirical and econometric methods
	2.1 Principle Component Analysis
	2.2 Stepwise reduction
	2.3 The hedonic model

	3 Data sources, research area and variable definitions
	3.1 Housing market
	3.2 Data sources

	4 Results
	4.1 Model reductions
	4.2 The hedonic house price model

	5 Concluding discussion
	Acknowledgments
	Appendix
	Appendix
	References


