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Abstract

We introduce a novel fine-grained dataset and bench-
mark, the Danish Fungi 2020 (DF20). The dataset, con-
structed from observations submitted to the Atlas of Dan-
ish Fungi, is unique in its taxonomy-accurate class labels,
small number of errors, highly unbalanced long-tailed class
distribution, rich observation metadata, and well-defined
class hierarchy. DF20 has zero overlap with ImageNet, al-
lowing unbiased comparison of models fine-tuned from pub-
licly available ImageNet checkpoints. The proposed evalu-
ation protocol enables testing the ability to improve clas-
sification using metadata – e.g. precise geographic loca-
tion, habitat, and substrate, facilitates classifier calibra-
tion testing, and finally allows to study the impact of the
device settings on the classification performance. Experi-
ments using Convolutional Neural Networks (CNN) and the
recent Vision Transformers (ViT) show that DF20 presents
a challenging task. Interestingly, ViT achieves results su-
perior to CNN baselines with 80.45% accuracy and 0.743
macro F1 score, reducing the CNN error by 9% and 12% re-
spectively. A simple procedure for including metadata into
the decision process improves the classification accuracy
by more than 2.95 percentage points, reducing the error
rate by 15%. The source code for all methods and exper-
iments is available at https://sites.google.com/
view/danish-fungi-dataset.

1. Introduction
Publicly available datasets and benchmarks accelerate

machine learning research and allow for quantitative com-

parison of novel methods. In the area of deep learning and

computer vision, the rapid progress over the past decade

was, to a great extent, facilitated by the publication of large-

scale image datasets. In the case of image recognition, the

formation of the ImageNet [7] database and its usage in the

Figure 1. Selected images from the DF20 dataset from different

Habitats (Rows) that grow on a variety of Substrates (Columns).

ILSVRC1 challenge [42], together with PASCAL VOC [10]

among others, helped start the CNN revolution. The same

holds for the problem of fine-grained visual categoriza-

tion (FGVC), where datasets and challenges like Plant-

CLEF [13, 14, 24], iNaturalist [53], CUB [55], and Oxford

Flowers [37], have helped to develop and evaluate novel

approaches to fine-grained domain adaptation [12], domain

specific transfer learning [18], image retrieval [39, 44, 60],

unsupervised visual representation [30, 34], few-shot learn-

ing [56], transfer learning [18] and prior-shift [45].

While the datasets have been extremely useful for the im-

age recognition community, there are issues that limit their

1 The ImageNet Large Scale Visual Recognition Challenge.
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relevance to real-world applications. We mention several

such problems. Uniform class distribution, common in re-

search datasets, are rare in practice. Often, class prior dis-

tributions are the same in the training and test splits. This

is a standard machine learning assumption that, neverthe-

less, is not valid if the collection of training data differs

from the deployment of the trained system, which is not

rare. A non-negligible percentage of noisy labels restricts

quality assessment [3], and, despite CNN’s surprising ro-

bustness to label noise [26], may influence the perceived

relative merit of learning algorithms. Some commonly used

datasets [7, 27, 37] are saturated in accuracy or close to the

point, leaving limited space for improvement in future re-

search [3]. Extremely large dataset sizes might discourage

researchers that do not have access to massive computa-

tional resources as experiments have become time-intensive

and hardware demanding.

With these observations in mind, we introduce the DF20
dataset with a number of unique characteristics. Its class

labels are exceptionally accurate, annotated by domain ex-

perts – Mycologists with specialization on specific Fami-

lies/Genera. The minimal error levels allow highly accurate

performance evaluation. With its zero overlap with Ima-

geNet, it allows an unbiased comparison of models fine-

tuned from publicly available ImageNet checkpoints.

The class frequencies in DF20 follow a long-tailed distri-

bution, which is common in nature. The frequencies change

significantly within the calendar year, making the data suit-

able for testing the response of the classifier to differing

long tailed distributions and changing class priors. The con-

tinuous data flow of collection over a long period provides

# Classes # Training # Test

FGVC-Aircafts [36] 102 6,732 3,468

Standford Cars [27] 196 8,144 8,041

VMMRdb [48] 9,170 291,752 ×
Oxford Flowers [37] 102 1,020 7,169

Stanford Dogs [33] 120 12,000 8,580

DogSnap [33] 133 4,776 3,575

LeafSnap [29] 185 30,866 ×
CUB 200-2011 [55] 200 5,994 5,784

VegFru [22] 292 29,200 116,931

Birdsnap [2] 500 47,386 2,443

NABirds [52] 555 48,562 ×
SnakeCLEF 2021 [41] 772 386,006 23,673

PlantCLEF 2015 [24] 1,000 91,758 21,446

iNaturalist 2017 [53] 5,089 579,184 95,986

PlantCLEF 2017† [14] 10,000 230,658 25,629

DF20 - Mini 182 32,753 3,640

DF20 1,604 266,344 29,594

Table 1. Overview of publicly available FGVC datasets, nature-

related (middle section) and other (top), and the number of images

and categories. † Images with “clean” (accurate) labels only.

ground for modelling and exploiting the temporal phenom-

ena on different scales, e.g., month, season, year.

The visual data is accompanied with metadata for more

than 99% of the image observations. The rich metadata in-

cludes information related to the environment, place, time

and full taxonomy labels and enables testing the ability

to improve classification accuracy using different meta-

data types – time, precise location, habitat, and substrate

type, to perform hierarchical classification, evaluate fine-

grained classification on different levels of granularity (tax-

onomic ranks), to test classifier calibration, and to model

intra-metadata and metadata-visual appearance relation-

ships. Moreover, EXIF metadata is available for most ob-

servations, which is useful, e.g., for studying the impact of

the device settings on classification performance.

The DF20 Benchmark. To allow evaluation at any

time, we have prepared a web-based benchmark 2 for dif-

ferent scenarios, including visual-based, metadata focused

or classifier-calibration related research. Besides the full

benchmark, we introduce DF20 - Mini, a small subset with

roughly 1/10 of the data and species, for fast, low-energy

friendly prototyping. DF20 - Mini includes six well-known

genera of fungi forming fruit-bodies of the toadstool type,

and offers, surprisingly, an even more challenging problem

then the full benchmark, while having a compact size.

We prepared a baseline performance evaluation, includ-

ing the quantitative and qualitative analysis of the results

for a number of well-known CNN and recent ViT archi-

tectures [8]. The recent ViT achieves excellent results in

fine-grained classification outperforming the state-of-the-

art CNN classifiers. We show that ViT performs better on

the FGVC domain, where attention to detail is needed, than

in a common object recognition. We show that both the

DF20 and DF20 - Mini benchmarks are far from saturated

as the best performing model - ViT-Large/16-384 - achieved

80.45% and 75.85% accuracy on DF20 and DF20 - Mini,

respectively. We propose a simple method for processing

the habitat, substrate and time (month) metadata, showing

that – even with the simple approach – utilizing the meta-

data increases the classification performance significantly.

To support and accelerate future research on the DF20 we

open source the code2.

2. Related Work
This section overviews existing fine-grained image

datasets, which, unlike datasets with visually distinct ob-

ject classes [10, 28], are characterized by small inter-class

differences and huge intra-class similarity. Currently, there

exists a number of FGVC dataset with a focus on plants [14,

22, 24, 29, 37], animals [2, 25, 52, 55], cars [27, 48] or air-

planes [36]. The dataset statistics are compared in Table 1.

2www.sites.google.com/view/danish-fungi-dataset
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Russula Russula Russula Hortiboletus Suillellus Neoboletus Amanita Amanita Amanita
emetica paludosa rosea rubellus queletii luridiformis muscaria rubescens pantherina

Figure 2. Examples of intra- and inter-class similarities and differences for selected species of three taxonomically distinct fungi families.

The similarity holds on the species and the family level. Left: Russulaceae, center: Boletaceae, right: Amanitaceae.

Many datasets are artificially constructed to have a flat class

distribution. Some datasets [14, 15, 22, 27, 41, 48] use web

scraped data that may contain out-of-domain images, wrong

labels and image duplicates.

Fungi species have been covered by image classification

datasets. In the FGVCx 2018 Fungi classification chal-

lenge 3, a dataset sampled from the same source as DF20

was used. The challenge dataset was smaller, scrambled

the species names, did not include taxonomic labels and did

not contain any metadata. The latest edition4 of iNatural-

ist dataset covers 3 kingdoms. From the Fungi kingdom,

it includes 90,048 images of 341 species from 210 genera.

DF20 is more fine-grained in the Fungi kingdom, and it is

thus more challenging, with more than 1,500 fungi species.

Many of these visually similar but from different genera or

families (Figure 2).

Labels. As species-level labels are essential for usage

in real-world applications, the tedious labelling procedure

often relies on domain experts. With just a small num-

ber of experts and their limited time, the labelling process

is frequently delegated to crowd-sourced annotation plat-

forms such as the Amazon Mechanical Turk [7, 25, 55]. The

main drawback of this approach is related to poor domain

knowledge of the annotators that results in a high number

of noisy labels [52] – 4.4% in CUB 200-2011 and approxi-

mately 4.0% for fine-grained classes in ImageNet. To ad-

dress this issue, more recent datasets use citizen-science

platforms and their users – citizen scientists5 – to label data

with high-quality annotations [41, 52, 53].

ImageNet Overlap. Strict separation of training and test

data is a core machine learning principle and it is standard in

3https://github.com/visipedia/fgvcx_fungi_comp
4https://www.kaggle.com/c/inaturalist-2021
5 Domain specific nonprofessional enthusiasts - experts.

the field of image recognition. Nevertheless, some datasets

containt ImageNet images in their test set, and thus fine-

tuning from ImageNet weights contradicts the separation

principle. This is commonly overlooked and may lead to bi-

ased (inflated) test set accuracies. For instance, a number of

publications [4, 31, 32, 39, 58, 59, 61, 62, 63] with high im-

pact used ImageNet weights and performed the fine-tuning

and testing with the CUB 200-2011 [55] dataset that over-

laps with the ImageNet in 43 out of 5,794 images (0.75%).

Metadata. Besides images and class labels, image clas-

sification datasets often provide additional metadata, such

as higher taxon labels [24, 41, 53], label hierarchy [7, 22,

36], object parts and attribute annotations [24, 52, 55],

masks [55], location [24, 41], and time of observation [24].

The existence of such metadata enables the usage of these

datasets in machine learning research beyond image clas-

sification. For example [1, 9, 35] use location context, and

[16] use taxonomy labels.

3. Atlas of Danish Fungi
The Atlas of Danish Fungi (Svampeatlas) [6, 11, 20] is

supported by more than 3,300 volunteers who have con-

tributed more than 950,000 content-checked observations

of fungi, many with expert-validated class labels, submit-

ted mostly since 2009.

The project has resulted in a vastly improved knowledge

of fungi in Denmark [20]. More than 180 species belong-

ing to Basidiomycota 6 have been added to the list of known

Danish species [20], and several species that were consid-

ered extinct have been re-discovered [21]. Simultaneously,

several search and assistance functions have been developed

6 a group of fungi that produces their sexual spores (basidiospores) on

a club-shaped spore-producing structure (basidium).
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Fungi Protozoa Fungi Chromista

Figure 3. Visually similar image pairs from the Fungi and Proto-
zoa, and from the Fungi and Chromista kingdoms, respectively.

that present features relating to the individual species [21],

making it much easier to include an understanding of endan-

gered species in nature management and decision-making.

Expert-validated Svampeatlas records are published

in the Global Biodiversity Information Facility (GBIF),

weekly, since 2017. As of end of July 2021, GBIF included

438,872 such images [38].

3.1. Annotation Process

The Atlas of Danish Fungi uses an interactive labelling

procedure for all submitted observations. When a user sub-

mits a fungal sighting (record) at species level, a ”reliability

score” (1–100) is calculated based on following factors:

• Species rarity, i.e. its relative frequency in the Atlas.

• The geographical distribution of the species.

• Phenology of the species, its seasonality.

• User’s historical species-level proposal precision.

• As above, within the proposal’s higher taxon rank.

Subsequently, other users may agree with the proposed

species identity, increasing the identification score follow-

ing the same principles, or proposing alternative identifica-

tion for non-committal suggestions. Once the submission

reaches a score of 80, the label (identification) is internally

approved. Simultaneously, a small group of taxonomic ex-

perts (validators) monitor most of the observation on their

own. These have the power to approve or reject species

identifications regardless of the score in the interactive val-

idation. Since 2019, the Atlas of Danish Fungi observa-

tion identification has been streamlined thanks to an image

recognition system [46].

4. Dataset Description
The Danish Fungi 2020 (DF20) dataset contains image

observations from the Atlas of Danish Fungi belonging to

species with more than 30 images. The data are observa-

tions collected before the end of 2020 7, originating from 30

countries, and including samples from all seasons. It con-

sists of 295,938 images belonging to 1,604 species mainly

from the Fungi kingdom with a few visually similar species

7Including 3 preserved specimens collected in 1874, 1882, and 1887,

recently photographed.

Images Species Genera Families

Svampeatlas (GBIF) 438,872 6,347 1,519 398

DF20 295,938 1,604 566 190

DF20 - Mini 36,393 182 6 6

Table 2. Numbers of images, species, genera and families in the

Atlas of Danish Fungi and their subsets DF20 and DF20 - Mini.

(See Figure 3) from Protozoa (1.7% classes / 1.1% images)

and Chromista kingdoms (0.06% classes / 0.03% images)

kingdoms, covering 566 genera and 190 families. The most

frequent species – Trametes versicolor – is represented by

1,913 images and the least present with 31.

Additionally, we hand-picked 6 genera with a similar

visual appearance, containing 36,393 images belonging to

182 species. This compact dataset, DF20 - Mini, introduces

a challenging fine-grained recognition task, while allowing

to decrease the necessary training times and hardware re-

quirements. As species in the same genus are most likely

to be confused, we chose all species from six commonly

known genera of fungi forming fruit-bodies of the toad-

stool type with a large number of species: (Russula, Bole-
tus, Amanita, Clitocybe, Agaricus and Mycena) for the con-

struction of the DF20 - Mini. The most frequent species in

the DF20 - Mini dataset – Mycena galericulata – has 1,221

images, the rarest have 31 samples. For a quantitative sum-

mary of the data selection, see Table 2.

The DF20 and DF20 - Mini datasets were randomly split

– with respect to the class distribution – into the provided

training and (public) test sets, where the training set con-

tains �90%� of images of each species.

4.1. Metadata

Unlike most computer vision datasets, DF20 and DF20 -

Mini include rich metadata acquired by citizen-scientists in

the field while recording the observations. We see a promis-

ing research direction in combining visual data with meta-

data like timestamp, location at multiple scales, substrate,

habitat, full taxonomy labels and camera device settings.

For a detailed list see Table 4.

Substrate. Substrates on which fungi live and fruit are

an important source of information that helps differentiate

similarly looking species. Each species or genus has its

preferable substrate, and it is uncommon to find it on other

substrates. For example, Trametes occurs only on wood and

Russula on soil. As such metadata is crucial for the final cat-

egorization capability. We provide 32 substrate types, e.g.,

wood of living trees, dead wood, soil, bark, stone, fruits,

mosses and others.

Habitat. While substrate denotes the spots, the habitat

indicates the more overall environment where fungi grow

and hence is vital for fungal recognition. It is well known

that some species occur in deciduous forests rather than in
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Figure 4. Monthly distribution of observations in the DF20 dataset for genera Mycena, Boletus, and Exidia. The differences imply that the

class prior distribution varies significantly over time.

conifer forests or plantations, while others grow in farm-

land. For a deeper understanding of such relation, we in-

clude the information about the 32 different habitats.

Time-Stamp. Time of observation is essential for fungi

classification in the wild as fruitbodies’ presence depends

on seasonality or even (but rarely) the time in a day. Con-

sidering the existence of such dependency, integrating in-

formation about time into the classification should also im-

prove fungal recognition. In Figure 4 we show the proba-

bility of three genera (Mycena, Boletus and Exidia) being

observed in different months of the calendar year and ex-

tracted from the DF20 dataset. Brief inspection shows that

there is almost zero probability to spot a Boletus in January

but still a small chance to find a Mycena. In contrast to

Boletus, Exidia occurs mostly during the cold months.

EXIF data. Camera device and its settings affect

the resulting image, the image classification models may

be biased towards certain (e.g. more common) device

attributes. To allow a deeper study of such phenomena, we

include the EXIF data for approximately 84% of images,

where the EXIF information was available in the Atlas

of Danish Fungi. The included attributes, the number of

unique values in the dataset and the proportion of images

with the attributes present are summarized in Table 3.

Attribute Coverage [%] # Values
Compressed Bits Per Pixel 37.75 88

Aperture Value 46.63 297

Shutter Speed Value 46.78 7,079

Metering Mode 78.23 10

White Balance 79.99 2

Exposure Time 80.12 4,594

Focal Length 80.13 1,580

Device 80.31 688

SceneCaptureType 81.04 13

Color Space 84.38 3

Table 3. Device settings extracted from the original image EXIFs

in the Atlas of Danish Fungi, with the proportion of images where

the attributes are present (Coverage), and the number of unique

values of the attribute in the dataset.

Location. Fungi are highly location dependent with dif-

ferent species distributions across continents, states, regions

or even districts. To support studies on better understanding

where Fungi lives, we include multi-level location informa-

tion. Starting from latitude and longitude and their uncer-

tainty, we further extracted information about the country,

region, district, and geographic localities. We cover data

from 30 countries and 9,003 geographic localities.

Attribute Description
EventDate Date of observation.

EXIF Camera device attributes extracted from the image,

e.g., metering mode, color space, device type, expo-

sure time, and shutter speed.

Habitat The environment where the specimen was observed.

Selected from 32 values such as Mixed woodland, De-

ciduous woodland etc.

Substrate The natural substance on which the specimen lives.

A total of 32 values such as Bark, Soil, Stone, etc.

Scientific Lowest taxonomic rank including specific Epithets.

1,604 unique values present.

Species 1th taxon rank. 1,578 unique values present.

Genus 2nd taxon rank. 566 unique values present.

Family 3rd taxon rank. 190 unique values present.

Order 4th taxon rank. 66 unique values present.

Class 5th taxon rank. 23 unique values present.

Phylum 6th taxon rank. 5 unique values present.

Kingdom 7th taxon rank. 3 unique values present.

CountryCode ISO 3166-1 alpha-2 code (DK, AT, etc.) of the obser-

vation. The dataset covers 30 countries.

Locality More precise location information. Mostly smaller

than a district, e.g., part of a city or a specific forest.

9003 values present.

Level1Gid ID of a Country region related to the specimen obser-

vation, 115 regions are listed.

Level2Gid ID of a district region related to the specimen obser-

vation, 317 districts are listed.

Latitude A decimal GPS coordinate.

Longitude A decimal GPS coordinate.

GPSUncert GPS coordinates uncertainty in meters.

Table 4. Description of the provided metadata (observation at-

tributes). For almost all images, a detailed information about tax-

onomy, location, time, habitat and substrate type is included.
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5. Experiments

To establish a baseline performance on the DF20 and

DF20 - Mini datasets, we performed multiple experiments.

First, we train a wide variety of well known CNN architec-

tures such as Inception networks [47], ResNets [19], Mo-

bileNet [43], SE-ResNeXt-101-32x4d [23, 57], Efficient-

Nets [49], and EfficientNetV2-L [50]. Second, Effici-

enNets and SE-ResNeXt-101-32x4d are compared with

Vision Transformer architectures ViT-Base/16 and ViT-

Large/16 [8]. Finally, the impact of different metadata and

their combinations on both the CNN and the ViT final pre-

diction performance is evaluated.

5.1. Setup

In this section, we describe the full training and evalua-

tion procedure, including the training strategy, image aug-

mentations, and test-time procedure.

Training Strategy. All architectures were initialized

from publicly available ImageNet-1k pre-trained check-

points and further fine-tuned with the same strategy for 100

epochs with the PyTorch framework [40] within the 21.05

NGC deep learning framework Docker container. All neu-

ral networks were optimized by Stochastic Gradient De-

scent with momentum set to 0.9. The start Learning Rate

(LR) was set to 0.01 and was further decreased with a spe-

cific adaptive learning rate schedule strategy8 To have the

same effective mini-batch size of 64 for all architectures, we

accumulated gradients from smaller mini-batches accord-

ingly, where needed.

Augmentations. For training, we utilized several aug-

mentation techniques from the Albumentations library [5].

More specifically, we used: random horizontal flip with

50% probability, random vertical flip with 50% probabil-

ity, random resized crop with a scale of 0.8 - 1.0, random

brightness / contrast adjustments with 20% probability, and

mean and std. dev. normalization. All images were resized

to the required network input size: For the CNN perfor-

mance experiment, inputs of size 299×299 were used. In

the case of the CNN vs ViT experiment, we used two differ-

ent resolutions, 224×224 and 384×384, to match the input

resolutions of the pre-trained models.

Test-time. While testing, we avoided any addi-

tional techniques such as ensembles, centre-cropping, prior

weighting, etc. Only the resize and normalization opera-

tions were used to pre-process the data. The impact of test-

time augmentation methods on the final performance can be

studied in the future.

8If the validation loss is not reduced from two epochs in a row, Learning

Rate is reduced by 10%.

5.2. Metadata Use

We propose a simple method for the use of metadata to

improve the categorization performance – similar to spatio-

temporal prior used in [2]. For a given type of metadata (D)

and image (I), we adopt the following assumption for the

likelihood of an image observation:

P (I|S) = P (I|S,D), (1)

i.e., that the visual appearance of a species does not depend

on the metadata. This does not mean that the posterior prob-

ability of a species given an image is independent of meta-

data D.

A few lines of algebraic manipulation prove that under

assumption Eq. (1), the class posterior given the image I
and metadata D is easily obtained:

P (S|I,D) = P (S|I)P (S|D)

P (S)

P (I)

P (I|D)

∝ P (S|I)p(S|D)

p(S)
,

(2)

where P (S) is the class prior in the training set. The dis-

crete conditional probability P (S|D) is estimated as the rel-

ative frequency of species S with metadata D in the train-

ing set.

While we know this assumption is not always true in

practice, since metadata like substrate or time in fact do

impact the image background as well as the appearance

of the specimen, this is the only possible approach not re-

quiring modelling the dependence of visual appearance and

the metadata. The model trained without metadata has no

information about visual appearance changes of a species

as a function of D. Moreover, this assumption is applica-

ble for situations where the classifier has to be treated as a

black box without the possibility to retrain the model. Even

this simplistic model based on an unrealistic assumption re-

duces error rates, see Table 7.

With multiple metadata at once, e.g., substrate and habi-

tat or substrate and month, we combine the posteriors as-

suming statistical independence:

P (S|D1, D2) ∝ P (S|D1)P (S|D2)

P (S)
. (3)

This is a simple, baseline assumption, which again may not

always be valid for related meta-data. Direct estimation of

P (S|D1, D2), e.g., as relative frequencies, is another pos-

sibility. The D20 benchmark has thus the potential to be

a fertile ground for evaluation of intra-metadata, as well as

visual-metadata, dependencies.

The approach of Eq. (2) needs a probabilistic classifier

to serve as an estimator of P (S|I). In our experiments, we

use the outputs of the softmax layer. Note that for CNNs,

the estimates of maxP (S|I) are typically overconfident,

3286

Authorized licensed use limited to: Copenhagen University. Downloaded on February 20,2023 at 09:36:24 UTC from IEEE Xplore.  Restrictions apply. 



and the quality of the estimator can be improved by a pro-

cess is called calibration in the literature [17, 51]. The pro-

posed benchmark may be used, in the context of exploit-

ing metadata, to evaluate and compare classifier calibration

techniques.

5.3. Metrics

Besides commonly used metrics, Top1 and Top3 accu-

racy, we measured the macro-averaged F1 score, Fm
1 , which

is not biased by class frequencies and is more suitable for

the long-tailed class distributions observed in nature. Inter-

estingly, even though the performance across the whole tax-

onomy is highly demanded in nature-related applications,

most existing benchmarks are only using accuracy as the

score measure. Considering that the datasets are highly im-

balanced with long-tail distribution, learning procedure may

ignore the least present species. Additionally, usage of Fm
1

allows to easily assign a cost value to both types of error (fp
and fn) for each label and to measure more task-relevant

performance. For example, in fungi recognition, mistaking

a poisonous mushroom for the edible one is a more signifi-

cant problem than the opposite.

The Fm
1 is defined as the mean of class-wise F1 scores:

F
m
1 =

1

N

N∑

S=1

F1S , (4)

whereN represents the number of classes and S is the

species index. Than the F1 score for each class is calculated

as a harmonic mean of the class precision PS and recall RS :

F1S = 2× PS ×RS

PS +RS
, (5)

Top1 Top3 Fm
1 Top1 Top3 Fm

1

MobileNet-V2 65.58 83.65 0.550 69.77 85.01 0.606

ResNet-18 62.91 81.65 0.514 67.13 82.65 0.580

ResNet-34 65.63 83.52 0.559 69.81 84.76 0.600

ResNet-50 68.49 85.22 0.587 73.49 87.13 0.649

EfficientNet-B0 67.94 85.71 0.567 73.65 87.55 0.653

EfficientNet-B1 68.35 84.67 0.572 74.08 87.68 0.654

EfficientNet-B3 69.59 85.55 0.590 75.69 88.72 0.673

Inception-V3 65.91 82.97 0.535 72.10 86.58 0.630

Inception-ResNet-V2 64.67 81.42 0.542 74.01 87.49 0.651

Inception-V4 67.45 82.78 0.560 73.00 86.87 0.637

EfficienNetV2-L 70.77 86.48 0.595 77.43 89.65 0.687

SE-ResNeXt-101 72.23 87.28 0.620 77.13 89.48 0.693
DF20 - Mini DF20

Table 5. Classification performance of selected CNN architectures

on DF20 - Mini and DF20. All networks share the settings de-

scribed in Section 5.1 and were trained on 299×299 images. The

top results – Fm
1 , see Eq. (4), equal to 0.620 / 0.693 and Top1 to

72.23% / 77.43% – are far from saturated. The datasets are chal-

lenging for the state-of-the-art CNN classifiers.

PS =
tpS

tpS + fpS

, RS =
tpS

tpS + fnS

. (6)

In multi-class classification, the True Positive (tp) repre-

sents the number of correct Top1 predictions, False Posi-

tive (fp) how many times was a specific class predicted in-

stead of the (tp), and False Negative (fn) how many images

of class S have been misclassified.

5.4. Results

In this section, we compare the performance of the well

known CNN based models and ViT models in terms of Top1

and Top3 accuracy, and the newly included Fm
1 metric. Ad-

ditionally, we discuss the impact of the metadata on the

classification performance and differences in performance

between CNNs and ViTs.

Convolutional Neural Networks. Comparing well

known CNN architectures on DF20 and DF20 - Mini, we

can see a similar behaviour as on other datasets [7, 53, 55].

The best performing model in the Fm
1 score was SE-

ResNeXt-101 with 0.620 Fm
1 score on DF20 - Mini and

0.693 Fm
1 score on DF20. EfficientNetV2-L achieved

slightly better accuracy of 77.43% on the DF20 dataset.

A detailed comparison of the achieved scores (Top1, Top3,

and Fm
1 ) for each model are summarized in Table 5.

Vision Transformers. The recently introduced ViT [8]

showed excellent performance in object classification com-

pared to state-of-the-art convolutional networks. Unlike

CNNs, the ViT is not using convolutions, but interprets

an image as a sequence of patches and processes it by a

standard Transformer encoder as used in natural language

processing [54]. To evaluate its performance for transfer-

learning in the FGVC domain, we compare two ViT archi-

tectures – ViT-Base/16 and ViT-Large/16 – against the well

performing CNN models – EfficientNet-B0, EfficientNet-

Top1 Top3 Fm
1 Top1 Top3 Fm

1

EfficientNet-B0 65.66 83.65 0.531 70.33 85.19 0.613

2
2
4
×

2
2
4

EfficientNet-B3 67.39 83.74 0.550 72.51 86.77 0.634

SE-ResNeXt-101 68.87 85.14 0.585 74.26 87.78 0.660

ViT-Base/16 70.11 86.81 0.600 73.51 87.55 0.655

ViT-Large/16 71.04 86.15 0.603 75.29 88.34 0.675

EfficientNet-B0 69.62 85.96 0.582 75.35 88.67 0.670

3
8
4
×

3
8
4

EfficientNet-B3 71.59 87.39 0.613 77.59 90.07 0.699

EfficienNetV2-L 72.72 86.40 0.618 77.83 89.59 0.695

SE-ResNeXt-101 74.23 88.27 0.651 78.72 90.54 0.708

ViT-Base/16 74.23 89.12 0.639 79.48 90.95 0.727

ViT-Large/16 75.85 89.95 0.669 80.45 91.68 0.743
DF20 - Mini DF20

Table 6. Classification results of selected CNN and ViT architec-

tures on DF20 and DF20 - Mini datasets. ViT achieves results su-

perior to CNN baselines with 80.45% accuracy and 0.743 Fm
1 , re-

ducing the CNN error by 9% and 12% respectively.
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H M S Top1 Top3 Fm
1 Top1 Top3 Fm

1

× × × 80.45 91.68 0.743 73.51 87.55 0.655

� × × +1.50 +1.00 +0.027 +1.94 +1.50 +0.040

× � × +0.95 +0.62 +0.014 +1.23 +0.95 +0.020

× × � +1.13 +0.69 +0.020 +1.39 +1.17 +0.025

× � � +1.93 +1.27 +0.032 +2.47 +1.98 +0.042

� × � +2.48 +1.66 +0.044 +3.23 +2.47 +0.062

� � × +2.31 +1.48 +0.040 +3.11 +2.30 +0.057

� � � +2.95 +1.92 +0.053 +3.81 +2.84 +0.070
ViT-Large/16 – 384× 384 ViT-Base/16 – 224× 224

Table 7. Performance gains based on 3 observation metadata and

their combination. DF20. H - Habitat, S - Substrate, M - Month.

B3, EfficientNetV2-L and SE-ResNeXt-101. As ImageNet

pre-trained ViT models were available just for input sizes

of 224×224 and 384×384, we trained all networks on

these resolutions while following the training setup fully

described in subsection 5.1. Differently from the per-

formance evaluation on ImageNet [8, 50], in our experi-

ments on DF20, ViTs ourperform state-of-the-art CNNs by

a large margin. The best performing ViT model achieved

an impressive 0.743 Fm
1 score while outperforming the SE-

ResNeXt-101 by a significant margin of 0.035 in Fm
1 , and

1.73% of Top1 accuracy on the images with 384×384 input

size. In the case of the 224×224, we see a smaller margin of

1.62% in Top1 accuracy and 0.018 in the Fm
1 score. Wider

performance comparison is shown in Table 6.

Importance of the metadata. Inspired by the common

practice in mycology, we set up an experiment to show

the importance of metadata for Fungus species identifica-

tion. Using the approach described in Section 5.2, we im-

proved performance in all measured metrics by a signifi-

cant margin. We measured the performance improvement

with all metadata types and their combinations. Overall,

habitat was most efficient in improving the performance.

With the combination of habitat, substrate and month, we

improved the ViT-Large/16 model’s performance on DF20

by 2.95%, 1.92% and 0.053 in Top1, Top3 and Fm
1 , respec-

tively, and the performance of the ViT-Base/16 model by

3.81%, 2.84% and 0.070 in Top1, Top3 and Fm
1 Detailed

evaluation of the performance gain using different observa-

tion metadata and their combinations is shown in Table 7.

DF20 vs DF20 - Mini. The performance evaluation with

selected CNN and ViT architectures showed that even with

a smaller number of classes and one-tenth of the data,

DF20 - Mini as a compact subset of DF20 offers an even

more challenging problem for state-of-the-art architectures

while being less time and hardware demanding.

6. Conclusion

This paper introduced a novel fine-grained dataset and

classification benchmark, the Danish Fungi 2020, and its

Figure 5. Box plot of the dependence of classification performance

(F1) on the number of training samples of a class. Tested on DF20

with input resolution of 224× 224.

subset, Danish Fungi 2020 - Mini. The dataset was con-

structed from data submitted to the Atlas of Danish Fungi

and labeled by mycologists. It includes 295,938 pho-

tographs of 1,604 species – mainly from the Fungi kingdom

– together with full taxonomic labels, rich metadata, com-

pact size and severe difficulty, and the same training and test

set species distribution.

The quantitative and qualitative analysis of CNNs and

ViTs shows superior performance of the ViT in fine-grained

classification. We present the baselines for processing the

habitat, substrate and time (month) metadata. We show that

– even with the simple method from Section 5.2 – utilizing

the metadata increases the classification performance sig-

nificantly. We provide the code and trained model check-

points to all our baselines. A publicly available web bench-

mark allows – through CSV submision file – for an on-line

comparison of state-of-the-art results for both image-only

and image + metadata submissions. With the precise anno-

tation and rich metadata, we would like to encourage re-

search in other areas of computer vision and machine learn-

ing, beyond fine-grained visual categorization. The datasets

may serve as a benchmark for classifier calibration, loss

functions, validation metrics, taxonomy / hierarchical learn-

ing, device dependency or time series based species predic-

tion. For example, the standard loss function focusing on

recognition accuracy ignores the practically important cost

of predicting a species with high toxicity.
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