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A B S T R A C T   

Reconstructions of the spatiotemporal dynamics of human dispersal away from evolutionary origins in Africa are 
important for determining the ecological consequences of the arrival of anatomically modern humans in naïve 
landscapes and interpreting inferences from ancient genomes on indigenous population history. While efforts 
have been made to independently validate these projections against the archaeological record and contemporary 
measures of genetic diversity, there has been no comprehensive assessment of how parameter values and choice 
of palaeoclimate model affect projections of early human migration. We simulated human migration into North 
America with a process-explicit migration model using simulated palaeoclimate data from two different 
atmosphere-ocean general circulation models and did a sensitivity analysis on the outputs using a machine 
learning algorithm. We found that simulated human migration into North America was more sensitive to un
certainty in demographic parameters than choice of atmosphere-ocean general circulation model used for 
simulating climate-human interactions. Our findings indicate that the accuracy of process-explicit human 
migration models will be improved with further research on the population dynamics of ancient humans, and 
that uncertainties in model parameters must be considered in estimates of the timing and rate of human colo
nisation and their consequence on biodiversity.   

1. Introduction 

Early human migration has been reconstructed indirectly (Beyer 
et al., 2021), correlatively (Giampoudakis et al., 2017) and 
process-explicitly (Timmermann and Friedrich, 2016), allowing path
ways for the expansion of modern humans to be identified by inferring 
or modelling relationships between climatic conditions, occupancy and 
population growth (Eriksson et al., 2012; Steele et al., 1998). 
Process-explicit models have advantages over correlative re
constructions and inferences based on climate metrics because they 
explicitly capture demographic responses to changing climatic and 
environmental conditions in model simulations (Pilowsky et al., 2022). 
However, they are generally data intensive, with complex model 

structures, often resulting in high variability amongst simulations of 
early human migration owing to large uncertainties in underlying de
mographic parameters (Timmermann and Friedrich, 2016). Further
more, most models are fitted to a single set of simulated climatic 
reconstructions. It is unclear how different assumptions and biases in 
paleoclimate simulations (Solomon et al., 2007) affect model projections 
of human migration, and how important these effects are relative to 
uncertainties in demographic parameters. Sensitivity analyses can help 
improve projections of human expansion from process-explicit macro
ecology models by identifying parameters that contribute the most to 
model output, those that are insignificant and can be potentially omitted 
from the model, and those that need refining to improve model accuracy 
(Hamby, 1994). 
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The Climate-Informed Spatial Genetic Model (CISGeM) is one 
example of a process-explicit model of human dispersal out of Africa, 
which has been validated using genetic distances between contemporary 
human populations (Eriksson et al., 2012). Its outputs include human 
arrival times on non-African continents and islands, as well as spatial 
maps of effective population size (a proxy for relative abundance 
(Fordham et al., 2014)) from 120 kg-years before present (ka BP). The 
simulated outputs of CISGeM have been used to parametrise and inform 
other models of phenomena including megafaunal extinctions (Ford
ham et al., 2022) and species range dynamics (Canteri et al., 2022). 
However, CISGeM has never been subjected to a sensitivity analysis, 
meaning there is no knowledge of the importance of demographic pa
rameters and climatic conditions on model projections. Here we simu
late human migration into North America in the Pleistocene using 
CISGeM parametrised with two widely used atmosphere-ocean general 
circulation models (AOGCMs): the Hadley Centre Coupled Model, 
version 3 (HadCM3) (Singarayer and Valdes, 2010) and the Community 
Climate System Model version 3 (CCSM3) (Yeager et al., 2006) Transient 
Climate Evolution (TraCE-21ka) simulation (Z. Liu et al., 2009). We do a 
sensitivity analysis to determine whether well-established structural and 
projection differences in these two palaeoclimate models (; Burke et al., 
2018; Kageyama et al., 2018) strongly influence CISGeM simulations of 
human colonisation of North America when uncertainties in key de
mographic parameters are also considered. 

2. Material and methods 

2.1. Human expansion model 

We modelled the peopling of North America using CISGeM (Climate- 
Informed Spatial Genetic Model), which is a process- and spatially- 
explicit population model of global human migration during the late 
Pleistocene and Holocene (Eriksson et al., 2012). The model is driven by 
demographic processes responding to glacial-interglacial ice-land-sea 
dynamics, and spatiotemporal variation in net primary productivity that 
affects carrying capacities. The latter has been shown to be an important 
driver of population density for hunter-gatherers (Tallavaara et al., 
2018; but see Zhu et al., 2021). Previous model testing has shown that 
CISGeM accurately reconstructs global genetic diversity and human 
arrival times on the non-African continents (Eriksson et al., 2012; 
Raghavan et al., 2015). See Supplementary Information for more details 
on the model structure of CISGeM. 

Model parameters in CISGeM have been optimised using pattern- 
orientated modelling methods (Grimm et al., 2005) and Approximate 
Bayesian Computation (Csilléry et al., 2010). In this study, we used the 
posterior ranges of optimised model parameters to generate 4950 
plausible CISGeM models, each with different parameter values 
(Table S1). These posterior ranges have been used elsewhere to recon
struct human migration rates in North America and Eurasia using CIS
GeM (Canteri et al., 2022; Fordham et al., 2022). We used Latin 
hypercube sampling to generate a stratified random subset of parameter 
input values for simulations by specifying the posterior range for each 
parameter and sampling all portions of the distributions (Stein, 1987). 
We then ran each of these models using palaeoclimate data from two 
AOGCMs, and did a global sensitivity analysis (Antoniadis et al., 2021) 
to determine the influence of demographic parameters and climate 
model parametrisation on CISGeM projections of human colonisation of 
North America (Figure S2). 

2.2. Climate data 

Plausible models (n = 4950) were simulated using palaeoclimate 
AOGCM data from HadCM3 (Singarayer and Valdes, 2010) and the 
CCSM3 TraCE-21ka simulation (Z. Liu et al., 2009). These two palae
oclimate models were chosen because their climatic outputs are most 
frequently used in macroecological models (Blois et al., 2013; 

Theodoridis et al., 2020), including approaches that simulate colonisa
tion and extinction processes (Canteri et al., 2022; Fordham et al., 2022; 
He et al., 2013). Their high usage in ecological models reflects their 
temporal coverage, which tends to be more continuous than many other 
widely accessible paleoclimate datasets (Armstrong et al., 2019; S. C. 
Brown et al., 2020; Fordham et al., 2017), many of which are limited to 
widely spaced snapshots of key climatic periods (J. L. Brown et al., 2018; 
Lima-Ribeiro et al., 2015). While projections from the HadCM3 have 
been shown to be congruent with those from the CCSM3 TraCE-21ka 
simulation for some climatic parameters in some regions and time 
points (Armstrong et al., 2019), there are important local-to-regional 
differences between projections from these AOGCMs (Burke et al., 
2018; Kageyama et al., 2018), including in North America (Fig. 1). 

Unlike the TraCE-21ka simulation, the HadCM3 is not a fully tran
sient climate model, meaning that outputs from HadCM3 are climate 
snapshots rather than continuous projections. Climate snapshots from 
the HadCM3 outputs (separated by ≥ 1 ka) were temporally downscaled 
to 25 year timesteps to match the timestep of CISGeM simulations using 
a stochastic weather generator, which draws random values from 
empirical distributions adjusted to fit the temperature and precipitation 
intervals found in the climate data (Semenov and Barrow, 2002). The 
grid cell resolution of HadCM3 data is 3.75◦ longitude × 2.5◦ latitude. 
Forcings include orbitally forced insolation changes, changes in 
long-lived greenhouse gases, and meltwater from evolving ice sheets. 
These are the same forcings used in TraCE-21ka, with a key difference 
that HadCM3 does not account for vegetation-air-ocean interactions 
(Collins et al., 2006). 

The TraCE-21ka simulation (Z. Liu et al., 2009) uses the CCSM3 ( 
Yeager et al., 2006) to reconstruct daily global climate conditions at a 
spatial resolution of 3.75◦ longitude × 3.75 latitude (over land and sea) 
for the last 21,000 years. It accurately reproduces major climatic fea
tures associated with the most recent deglaciation event (Z. Liu et al., 
2009), and predicts present-day climate patterns with verified hindcast 
skill (Fordham et al., 2017). Importantly, both HadCM3 and 
TRaCE-21ka model ice sheet dynamics using the ICE-5 G reconstruction 
(Peltier, 2004), meaning that ice sheet barriers to human dispersal in 
CISGeM models were identical in simulations regardless of palae
oclimate model (Movie S1). We spatially downscaled data from both 
models to the equal-area resolution of CISGeM (100 km width). See 
Supplementary Information for details. 

2.3. Simulations 

We ran a single replicate of CISGeM for each combination of plau
sible parameters and recorded the simulated effective population size at 
each hex cell and time point. Previously, it has been shown that running 
a single simulation iteration per parameter sample is optimal for sensi
tivity analysis if the parameter space is extensively sampled (Prowse 
et al., 2016). All simulations were global, began at the same starting 
location in East Africa at 120 ka BP, and proceeded until present (0 BP, 
1950 C.E.) at 25-year time steps (Eriksson et al., 2012). 

We identified, a priori, time of movement out of Alaska and rate of 
expansion through North America as two important metrics of regional 
human migration that are likely to be sensitive to changes in de
mographic parameters and variation in climate model projections. This 
is because climatic change facilitated the initial movement of people 
into North America (Becerra-Valdivia and Higham, 2020), and the speed 
of this movement was constrained by demographic processes and their 
interaction with climate and environmental conditions (Timmermann 
and Friedrich, 2016). We calculated time of movement out of Alaska 
(after 19 ka BP) and rate of expansion through North America (14.7 to 
11 ka BP) for each projection. Movement out of Alaska was calculated as 
the time when the population-weighted centroid of the leading edge of 
the human range (Watts et al., 2013) crossed 130◦W or 51◦N. Rate of 
expansion through North America was calculated as the rate of move
ment, in kilometres per year, of the population-weighted centroid of the 
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leading edge of the human range. See Supplementary Information for 
more details on how these variables were calculated. CISGeM pro
jections of time of movement out of Alaska were independently vali
dated using inferences of the timing of arrival of Clovis culture in North 
America (13,250 to 12,800 years BP; Waters and Stafford 2007). 

2.4. Sensitivity analysis 

To determine which parameters contribute most to model pro
jections of human expansion in North America, we did a global sensi
tivity analysis using our summary metrics of time of movement out of 
Alaska and rate of expansion through North America (Antoniadis et al., 

2021). Sensitivity analyses were done in two ways: (i) using only CIS
GeM models simulated using HadCM3 climate data (demographic-only 
sensitivity analysis); (ii) using models simulated with climate and pre
cipitation data from HadCM3 and CCSM3 TRaCE-21ka palaeoclimate 
models (demographic + climate sensitivity analysis). This two-step 
approach was done because CISGeM were originally optimised using 
HadCM3 climate data (Eriksson et al., 2012). The sensitivity analysis did 
not account for potentially important structural uncertainties in CIS
GeM, including human generation length and the simulated sequence of 
modelled demographic processes. 

We determined the sensitivity of timing of movement out of Alaska 
and expansion rate using random forest learning methods (Antoniadis 

Fig. 1. Human range expansion in North America. Range size for humans in North America from 19,000 years ago to present according to simulations with the 
HadCM3 (blue) and CCSM3 TraCE-21ka (yellow) AOGCMs (thick lines). Thin lines show mean annual temperature anomaly for the two AOGCMs. . 

Fig. 2. Sensitivity analysis of human migration model parameters. Sensitivity of simulations of timing of human migration out of Alaska (A, C) and rate of 
southward expansion through North America (B, D). A and B are only for simulations run on HadCM3 climate data (demographic-only sensitivity analysis), while C 
and D are for both HadCM3- and TraCE-21ka-based simulations (demographic + climate sensitivity analysis). Relative importance scores from random forest models 
in B and C are shown for demographic parameters: migration rate, colonisation rate, carrying capacity, population growth rate, upper and lower net primary 
productivity (NPP) thresholds for occupancy. For C and D, relative importance scores also have choice of climate model simulation (HadCM3 or TraCE-21ka). 

J.A. Pilowsky et al.                                                                                                                                                                                                                             



Ecological Modelling 473 (2022) 110115

4

et al., 2021) following techniques established for process-explicit mac
roecology models (Pearson et al., 2014). We tuned the hyperparameters 
using k-fold cross-validation, choosing number of variables sampled per 
split and minimum node size by minimizing RMSE (RMSE = 478 ± 13.6 
for exit from Alaska and RMSE = 479 ± 15.3 for expansion rate). We 
assessed variable importance using unscaled permutation importance 
(Strobl et al., 2007). See Supplementary Information for details. 

3. Results 

While range size of humans in North America varied according to 
AOGCM (Fig. 1), time of movement out of Alaska and rate of human 
migration were most sensitive to uncertainty in key demographic pa
rameters (Fig. 2). The demographic-only sensitivity analysis, done using 
HadCM3 model-based simulations only, revealed: i) time of movement 
out of Alaska was most sensitive to colonisation rate, upper net primary 
productivity threshold for carrying capacity and population growth rate; 
while ii) population-weighted rate of expansion was most sensitive to 
population growth rate and colonisation rate (Fig. 2). This order of 
relative importance remained unchanged when the sensitivity analysis 
was done on simulations with varying temperature and precipitation 
inputs from the two AOGCMs (demographic + climate sensitivity anal
ysis) (Fig. 2). This indicates a relatively low sensitivity of CISGeM pro
jections to pronounced differences in palaeoclimate conditions in North 
America according to AOGCM (Fig. 1) when compared to uncertainties 
in demographic model parameters. 

Independent tests of CISGeM projections of time of movement out 
from Alaska showed that simulations of land migration from CISGeM 
parametrised with TraCE21-ka climate data gave a median exit date 
from Alaska that was closer to the estimated Clovis arrival (median: 
14,375 years BP, MAD: 482) compared to simulations parametrised with 
HadCM3 data (median: 15,000 years BP, MAD: 111). The difference for 
TraCE-21ka and HadCM3 was 1144 years (95% confidence interval [CI] 
= 1138–1150 years) and 1682 years (CI = 1663–1700 years), respec
tively. Model projections of migration patterns into North America and 
relative Ne for both models can be accessed on Figshare (Pilowsky et al., 
2022). 

4. Conclusions 

While projections of the peopling of North America from process- 
explicit models vary in response to two choices of AOGCM, un
certainties in key demographic parameters have a disproportionately 
larger influence on simulations of time of movement out of Alaska and 
rate of expansion through North America. This shows the likely impor
tance of considering uncertainties in the demographic parameters of 
process-explicit model projections of timing, rate and mechanisms of 
initial human expansion across continents (Raghavan et al., 2015), and 
the broader ecological consequences of human colonisation on biodi
versity (Canteri et al., 2022; Fordham et al., 2022). 

While arrival times of humans in different regions have been estab
lished archaeologically with reasonable certainty (Goebel et al., 2008; 
Groucutt et al., 2015), and dispersal rates have been inferred from 
genomic analysis of aDNA (Rasmussen et al., 2011), the pattern of 
human growth and expansion has been more difficult to reconstruct at 
fine spatiotemporal scales. Consequently, projections of early human 
migration across continents are still uncertain (H. Liu et al., 2006). This 
is partly because of overly simplistic parametrisation of the relationship 
between net primary productivity and population growth (Zhu et al., 
2021) and large uncertainties in other demographic parameters, 
including dispersal (French et al., 2021) 

Resolving these issues should be a priority, given how sensitive the 
rate of human movement in North America is to rates of population 
growth and colonisation. Promising avenues of research that could 
reduce uncertainty in early human demography include Bayesian 
analysis of spatiotemporal distributions of radiocarbon dates (Price 

et al., 2020); phylogenetic analysis of the human palaeoproteome, 
which is more resistant to degradation over long timescales compared to 
the palaeogenome (Welker, 2018); and sampling of environmental DNA, 
which can detect arrival and movement of small populations better than 
the archaeological or fossil record (Wang et al., 2021). 

Our finding that uncertainty in projections of human migration from 
process-explicit models is only weakly sensitive to the choice of under
lying palaeoclimate model is in stark contrast to findings for correlative 
models of species distributions (Beaumont et al., 2007; Tuck et al., 
2006), which model demographic processes implicitly, not explicitly 
(Pilowsky et al., 2022). When interpreting the generality of this result, it 
is important to recognise that CISGeM simulates pathways for the global 
expansion of modern humans. Therefore, in other regions and time pe
riods, the parametrisation of palaeoclimate could have a larger effect on 
human migration, especially since migration occurred at different rates 
in different regions. While we tested the sensitivity of CISGeM to 
palaeoclimate uncertainty using two AOGCMs with very different 
climate sensitivities (Masson-Delmotte et al., 2013), spatiotemporal 
uncertainty could potentially be greater in North America if more 
models were considered. Nevertheless, our results highlight the impor
tance of realistically capturing demographic mechanisms in 
process-explicit human migration models. 
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