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Ecologists and biogeographers usually rely on a single phylogenetic tree to study evolutionary processes that affect macroecological

patterns. This approach ignores the fact that each phylogenetic tree is a hypothesis about the evolutionary history of a clade, and

cannot be directly observed in nature. Also, trees often leave out many extant species, or include missing species as polytomies

because of a lack of information on the relationship among taxa. Still, researchers usually do not quantify the effects of phylogenetic

uncertainty in ecological analyses. We propose here a novel analytical strategy to maximize the use of incomplete phylogenetic

information, while simultaneously accounting for several sources of phylogenetic uncertainty that may distort statistical inferences

about evolutionary processes. We illustrate the approach using a clade-wide analysis of the hummingbirds, evaluating how

different sources of uncertainty affect several phylogenetic comparative analyses of trait evolution and biogeographic patterns.

Although no statistical approximation can fully substitute for a complete and robust phylogeny, the method we describe and

illustrate enables researchers to broaden the number of clades for which studies informed by evolutionary relationships are

possible, while allowing the estimation and control of statistical error that arises from phylogenetic uncertainty. Software tools to

carry out the necessary computations are offered.

KEY WORDS: Hummingbirds, sensitivity analysis, uncertainty quantification.

Ecological and biogeographical studies often involve hundreds

of species, representing both recent and ancient lineages, and

both locally endemic and cosmopolitan species. Although the ge-

ographic distribution of most groups of terrestrial vertebrates is

increasingly well known, species sampling for phylogenetic anal-

ysis is rarely complete for larger clades. Even when a comprehen-

sive phylogeny is available for ecological analyses, key sources

of phylogenetic uncertainty are seldom taken into account. We

begin this article by outlining the sources of uncertainty in studies

that rely on phylogenetic hypotheses to infer evolutionary pro-

cesses, and how these sources have been considered or ignored in

previous studies. With this motivation, we propose here a novel

analytical strategy to quantify and account for key sources of

phylogenetic uncertainty in any study that uses phylogenetic in-

put data. As an example of the application of our methodology, we

implement it to investigate patterns of trait evolution and phylo-

genetic assemblages in hummingbirds. We contend that any study

that infers evolutionary hypotheses should aim to account for all
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sources of phylogenetic uncertainty. Finally, we offer freely avail-

able software tools to help researchers account for phylogenetic

uncertainty in their own research.

Phylogenetic uncertainty may arise from two distinct sources

(FitzJohn et al. 2009; Diniz-Filho et al. 2014): (1) weak, miss-

ing, or conflicting empirical support for hypothesized relation-

ships among species in a given clade (e.g., tree topology, branch

length estimation, and absolute time calibration), which can be

expressed in the form of multiple alternative topologies (e.g., re-

sulting from different analysis methods or different data types),

polytomic clades, or low branch support values; and (2) incom-

plete and unrepresentative sampling of known species. Most eco-

logical studies implicitly assume absolute knowledge of phylo-

genetic history by simply ignoring the uncertainty caused by the

lack of empirical support for phylogenetic trees or issues related

to branch length estimation (Fig. 1). When contrasting phyloge-

netic hypotheses are available, ecologists usually rely on a con-

sensus tree to “average” phylogenetic information, thus failing to

take account of variation among trees (an expression of overall

phylogenetic uncertainty). In addition, although ecologists ac-

knowledge that most polytomies are expressions of ambiguous

or missing empirical data, highly polytomic trees are nonetheless

often used in ecological analyses without proper quantification of

phylogenetic uncertainty and without conducting the necessary

sensitivity analyses.

Ecologists have dealt with incomplete phylogenies in several

ways. The first approach is to focus only on clades for which

relatively complete phylogenies are available, but this strategy re-

stricts ecological studies to a very small number of groups (Pagel

1999) and can undermine assemblage-level or macroecological

studies (Webb and Donoghue 2005). A favored method is to as-

semble supertrees from smaller, overlapping trees and to fill gaps

in phylogenies by placing unsampled species in trees according

to their taxonomic classification (Bininda-Emonds 2004; Davies

et al. 2004; Hernandez and Vrba 2005; Webb and Donoghue 2005;

Ranwez et al. 2007). Nevertheless, even for the best-studied taxa,

such as mammals and birds, supertrees that span all species are

relatively recent achievements (e.g., Bininda-Emonds et al. 1999;

Beck et al. 2006). Unfortunately, supertrees are usually highly

polytomic (not fully resolved). Recent approaches based on build-

ing megatrees (Roquet et al. 2012) or complex addition of species

on backbone trees (Jetz et al. 2013) are still in their infancy. Phy-

lomatic software (Webb and Donoghue 2005), for instance, is

a popular tool for assemblage-level ecological studies that con-

structs customized trees of virtually any size. Although Phylo-

matic allows additional phylogenetic representations of the clade

when compared to the backbone phylogeny, terminal branches are

usually based on taxonomic relationships among inserted species

and thus are commonly polytomic. Additional drawbacks of su-

pertrees are the absence of information on branch lengths (which
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Figure 1. A conceptual example of the effect of different sources

of uncertainty in phylogenetic trees (left) on the estimation of phy-

logenetic relationship between species (right, represented as ma-

trices). In each matrix, cells in the lower left half-matrix represent

the existence of phylogenetic information about the relationship

between a pair of species because both species are present in the

tree. Conversely, a dash represents the absence of such phyloge-

netic information, as one or both of the species are missing from

the tree. In the upper-right half-matrix, a normal distribution rep-

resents the variance in the estimated phylogenetic relationship,

whereas a zero represents certainty. (A) Hypothetical, unknown

true tree, without missing species or uncertainty in species rela-

tionships. (B) Consensus tree with missing species. Relationships

are assumed to be known with certainty. (C) Polytomic supertree.

Insertion of missing species in polytomies generates a complete

tree, and relationships are assumed to be known with certainty,

although the tree differs from the true tree (A). (D) Replication

in the use of phylogenetic trees incorporates the uncertainty in

the relationship between species, but missing species are ignored.

(E) Missing species are inserted in multiple phylogenies, account-

ing for uncertainty in phylogenetic reconstruction and lack of a

complete phylogeny.

require further effort, and assume confidence in the fossil record

for time calibration) and, again, the lack of explicit conversion of

phylogenetic uncertainty into explicit measures of error associ-

ated with statistical inference and parameter estimates.

A second and more radical strategy consists of ignoring the

species that are absent from the available phylogeny, under the

assumption that the species included in the analysis represent an

unbiased and representative sample of all species in the clade
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(FitzJohn et al. 2009). Of course, the full evolutionary history of a

clade of substantial age can be described only by a phylogeny with

all species (including extinct ones), although this ideal is achiev-

able only in simulated scenarios (Colwell and Rangel 2010). Esti-

mating the degree of bias due to missing species can, in principle,

be achieved by replicating the analysis with random subsamples

of species that are present in the phylogeny (rarefaction or “thin-

ning,” Davies et al. 2012), but unfortunately this approach is not

common in evolutionary or ecological studies.

Several other approaches to deal with phylogenetic uncer-

tainty have been recently developed, increasing awareness that

species missing from phylogenetic trees may seriously affect sta-

tistical inference of evolutionary processes, even when the missing

species are inserted in the tree in the form of polytomies (Davies

et al. 2012; Diniz-Filho et al. 2014). For example, under the

Bayesian framework of molecular phylogenetic reconstruction,

missing species can be inserted by assigning empty sequences to

missing species and by constraining their insertion using priors

on the tree topology (Huelsenbeck and Rannala 2003). Several

recent studies have employed different analytical strategies to

account for phylogenetic uncertainty. For example, Isaac et al.

(2007) dealt with missing species in their analysis of evolutionary

distinctiveness of mammals by allocating missing species among

their presumed closest relatives using a model of constant rate

of speciation and extinction. Day et al. (2008) studied the di-

versification rates of cichlid fish radiation of Lake Tanganyika,

accounting for the potential effects of missing species on the esti-

mates of the timing and rate of diversification. Kuhn et al. (2011)

proposed a method and a computational tool that uses a birth–

death model of diversification to resolve polytomies and to define

not only tree topology, but also branch lengths in polytomic trees,

and Jetz et al. (2013) built sets of phylogenetic trees for the entire

avian clade, combining genetic and taxonomic information and

adding a simulation of evolutionary diversification to better estab-

lish branch lengths and resolve polytomies. Davies et al. (2012)

showed that phylogenetic uncertainty can dramatically inflate es-

timates of phylogenetic signal and proposed a rarefaction-based

method to guide inference. After accounting for phylogenetic

uncertainty, Batista et al. (2013) showed that potential loss of

evolutionary history caused by extinction of threatened Western

Hemisphere anurans would not be significantly higher than that of

nonthreated anurans. These few examples clearly show the impor-

tance of dealing with phylogenetic uncertainty, and demonstrate

that systematists and comparative biologists have already begun

to develop and employ methods to incorporate estimates of un-

certainty in the inference of diversification rates (Day et al. 2008;

FitzJohn et al. 2009), character evolution (Losos 1994; Huelsen-

beck et al. 2000; Housworth and Martins 2001; Huelsenbeck and

Rannala 2003; Ives et al. 2007), reconstruction of ancestral states

(Ronquist 2004), and tree topology (Felsenstein 1985; Holder and

Lewis 2003).

Here, we propose a unified analytical approach to estimate

and account for multiple sources of phylogenetic uncertainty. Our

method consists of partitioning variance among estimated param-

eters of evolutionary processes, using random sampling from the

universe of probable phylogenies. We illustrate the approach us-

ing a clade-wide analysis of the hummingbirds, evaluating how

different sources of uncertainty affect several phylogenetic com-

parative analyses of trait evolution and biogeographic patterns.

Accounting for Multiple Sources of
Phylogenetic Uncertainty
We propose here an empirical approach, based on simulations,

that maximizes the use of incomplete phylogenetic information

in ecological studies, while simultaneously accounting for several

sources of phylogenetic uncertainty that may distort statistical

inferences about evolutionary and ecological processes.

MISSING SPECIES

Here, we define a phylogenetically uncertain taxon (henceforth a

“PUT” for a single taxon, and “PUTs” for multiple taxa) as a tax-

onomic unit (e.g., population, species, genus) that is recognized

as valid and is accepted as belonging to a particular clade, but

is missing from the available phylogenetic tree(s) for that clade.

The absence from the tree could be due to multiple causes, such

as unavailability of molecular and morphological data (Fig. 2B).

However, although the data required to formally reconstruct the

phylogenetic relationships of a PUT may be missing, evolutionary

information about the PUT is rarely completely nonexistent, as no

authority would dispute that some other taxon in the clade must

be the closest relative of the PUT at some level in the phylogeny.

In fact, additional available information, such as taxonomic, mor-

phological, or behavioral data, may be useful to define a list of the

most likely sister species or lineages of any given PUT (Fig. 2C).

Therefore, it makes sense to use all acceptable information avail-

able to conservatively define what we will call the most derived

consensus clade (MDCC), that is, the node that unequivocally

contains each PUT.

Thus, an MDCC can be defined as the most recent com-

mon ancestor of all unquestioned candidates for being the closest

relative of the PUT (Fig. 2D). Of course, the validity of informa-

tion (e.g., taxonomic, biogeographical, behavioral, morphologi-

cal, etc.) used to define an MDCC can be questioned. However, if

two taxonomists, for example, disagree on the proper MDCC for

a given PUT, instead of eliminating the PUT from the statistical

analysis, thereby ignoring phylogenetic uncertainty, the MDCC

should be conservatively redefined as the most recent common
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Figure 2. Schematic representation of a workflow using the an-

alytical strategy, proposed here, to account for phylogenetic un-

certainty. (A) The true, but unknown, tree for a clade of eight

taxa. (B) Molecular data are available for only six taxa; for taxa

B and G no molecular data are available. (C) Two experts, based

on their knowledge (e.g., taxonomy, behavior, morphology, geo-

graphic distribution, etc.), suggest possible sister taxa of the two

taxa that lack molecular data. (D) Using the available molecular

data and phylogenetic reconstruction methods, three backbone

phylogenies are proposed. The variation between backbone phy-

logenies arises from uncertainty in the process of phylogenetic

reconstruction. Among the backbone phylogenies, the taxa B and

G are considered phylogenetically uncertain taxa (PUT), because

no molecular data are available for them, and therefore they are

ancestor of the two candidate MDCCs for the PUT, each cham-

pioned by a different taxonomist (Fig. 2). Thus, it is important

to stress that the goal of defining an MDCC to a PUT is not to

replace the formal methods of phylogenetic reconstruction, but to

conservatively use all available information to allow biologists to

make inference of ecological and evolutionary processes using all

available information, even with incomplete phylogenies.

We propose here a simple process of building a possible

phylogeny that includes all extant species. This process relies

on the definition of an MDCC for each PUT and the insertion

of the PUT in a random position within its MDCC. We begin

by randomizing the order in which PUTs are to be added to the

tree. Next, within each MDCC, we assign the PUT to a point

along one a branch of the clade. The choice of insertion point

along a branch can be uniform random if no additional informa-

tion is available, or it may be guided by a biologically realistic

model of diversification (Kuhn et al. 2011; Davies et al. 2012; Jetz

et al. 2013). If the baseline tree is ultrametric, the branch length

for the inserted PUT is simply the distance from the attachment

point to the end of all other tips. If, however, the baseline tree is

not ultrametric, the branch length of the PUT can be sampled from

a distribution of possible branch length values. Once a PUT has

been inserted, its own branch may serve as a potential insertion

point for subsequent species assigned from the PUT queue. Our

algorithm iterates until each PUT has been sequentially added

to the appropriate MDCC, producing a complete phylogeny of

known species (Batista et al. 2013; Martins et al. 2013).

POLYTOMIES

If all polytomies in a tree are the consequence of phylogenetic

uncertainty (i.e., “soft” polytomies), then it is necessary to ensure

that such uncertainty is quantified and accounted for in statisti-

cal analyses that use such a tree (Lewis et al. 2005). To explore

missing from the backbone phylogenies. Using the information

provided by the experts, the most derived consensus clade (MDCC)

is found for each PUT. For PUT B, the MDCC is the clade that nec-

essarily includes taxa C, D, and A (indicated by a bold B in each

backbone phylogeny), whereas for PUT G the MDCC must include

taxa F and H (indicated by a bold G in each backbone phylogeny).

(E) Statistical analyses that use phylogenetic trees as input data

should be replicated using samples of operational trees. In each of

the operational trees, the PUTs B and G were randomly inserted

within their respective MDCCs. The insertion of each PUT was repli-

cated three times (columns) for each backbone tree. The variation

among operational trees that use the same backbone tree (each

column of the operational trees) arises from variation in place-

ment of the missing taxa (as the backbone tree is not changed by

the randomization process), and is caused by uncertainty in the

phylogenetic relationships of taxa B and G (both PUTs).
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the space of all possible dichotomous trees one must resolve the

polytomies, assuming no additional information about the evolu-

tionary history of the clade (Batista et al. 2013), or employing a

model of diversification (Martins 1996; Housworth and Martins

2001; Kuhn et al. 2011).

Our approach consists in producing fully dichotomous trees

by resolving polytomies stochastically. For each node in the tree

with three or more branches, we choose two branches at random

and reassign them to the same node. Each remaining branch from

the original polytomy is then inserted sequentially, in random

order, within the clade constructed from the former polytomy,

at a randomly chosen position along the length of the existing

branches. Dichotomous nodes in the original phylogeny are not

changed, thereby preserving the phylogenetic information in the

original baseline tree. This process guarantees that the resulting

tree is fully resolved and that the phylogenetic uncertainty aris-

ing from polytomies is also taken into account when multiple

randomized trees are compared (Batista et al. 2013). As with

sampling multiple phylogenetic trees (below) or randomizing the

position of the PUTs in the phylogeny, not every possible tree

topology is examined. However, given a large enough number

of replicates, our stochastic procedure ensures that the parame-

ter space will be explored, thereby accounting for phylogenetic

uncertainty.

MULTIPLE PHYLOGENETIC TREES

Modern methods of phylogenetic reconstruction and inference are

based on searching the universe of possible phylogenetic trees.

The search is guided by empirical data among possible trees,

which are judged by their ability to predict the observed data,

given a model of molecular evolution (Holder and Lewis 2003).

However, because of scarce, ambiguous, or missing empirical

data, searches are often unable to unambiguously rank all trees

within an entire group of equally likely trees, therefore yielding a

large set of possible trees. Moreover, especially for large, genome-

scale datasets, analyses may yield multiple yet well-supported

topologies depending on the analytical approach or on selected

subsets of data (e.g., Xi et al. 2014, examples in Cooper 2014). To

account for the phylogenetic uncertainty that arises from lack of

definitive empirical support for a single phylogenetic hypothesis,

one must not limit the statistical analysis to a single sampled tree

or to a majority-rule consensus tree that “averages” a larger set

of possible trees (Fig. 1). Sampling or averaging among possible

trees can potentially improve a point-estimate of a parameter, but

does not account for statistical error in evolutionary inference,

thereby masking phylogenetic uncertainty associated with tree

reconstruction. In practice, variation in the results of ecological

analyses that use different phylogenetic trees is an expression

of uncertainty in phylogenetic reconstruction. Thus, it is neces-

sary to replicate these analyses over a large number of possible

phylogenetic trees, and subsequently study the variation in param-

eter estimates that arises as a consequence of differences among

trees (Fig. 2).

UNCERTAINTY AND SENSITIVITY ANALYSIS

Computer simulations have long been used to estimate the mag-

nitude of statistical error and to quantify the probability of a given

outcome when a system is not fully known (Doubilet et al. 1985;

Saltelli et al. 2008). Usually run in tandem with uncertainty quan-

tification, a sensitivity analysis allows one to determine the degree

to which the sources of uncertainty in model inputs are responsible

for the uncertainty in the model output (Pannell 1997). Coupling

uncertainty and sensitivity analysis offers us the opportunity to

quantify the robustness of models in the presence of phylogenetic

uncertainty, account for uncertainty in evolutionary inference, and

enhance communication of the magnitude of statistical error in

the study.

Martins (1996) proposed a way to carry out phylogenetic

comparative studies when the phylogenetic relationships among

species are unknown. In her method, a large sample of trees is

generated by randomly resolving a fully polytomic tree (star phy-

logeny), using models of phenotypic evolution and diversification

rates (so that uncertainty in branch lengths is also implicitly incor-

porated). Species traits are then analyzed on each of the possible

trees. Although the mean results of such analyses will converge

to a nonphylogenetic analysis (Abouheif 1998), the approach of

Martins (1996) represents a landmark in phylogenetic inference

under uncertainty present in an unresolved phylogeny (see also

Housworth and Martins 2001). The mean of the squared standard

error of the calculated evolutionary statistic (e.g., the correla-

tion between two species’ traits), known as Vs, estimates the true

variance of the statistic, which is due to sample variance. The

variance of the evolutionary statistic calculated among the ran-

domly generated trees, known as Vp, estimates the variance due

to phylogenetic uncertainty. Thus, inferences based on parameter

estimation must account for both sources of error, which can be

done by computing confidence intervals (C.Is) or P-values based

on the sum of Vp and Vs.

We expand Martins’ (1996) strategy for incorporating

phylogenetic uncertainty in parameter estimation further to

accommodate multiple sources of phylogenetic uncertainty. We

treat each source of uncertainty as a factor in an experimental

design, whereas parameter estimates are treated as the response

variable under study. Thus, we can ask how different phyloge-

netic trees, alternative resolutions of polytomies, and/or probable

configurations of PUTs would affect parameter estimates. We

partition the amount of variance in a parameter estimate arising

from each source of phylogenetic uncertainty with an analysis

of variance (ANOVA), which not only isolates variance among

sources but also calculate the magnitude of standard error in the
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parameter estimate (a separate Martins’ 1996 Vp for each source

of uncertainty).

We view the sources of phylogenetic uncertainty we have

outlined here as a hierarchy to be employed in the design of an

experiment used to assess uncertainty and sensitivity. If multiple

empirical phylogenies are available, then this source of uncer-

tainty can be regarded as the highest level of uncertainty in the

analysis. Because each empirical phylogeny is unique, its poly-

tomies must be treated individually. Thus, polytomies can be

regarded as the second level of phylogenetic uncertainty, imme-

diately below the multiple empirical phylogenies. Of course, for

each available empirical phylogeny there is a virtually unlimited

number of alternative ways to resolve polytomies randomly or by

following some diversification model. Finally, for each combi-

nation of original phylogeny and polytomy resolution, PUTs can

be inserted according to the procedure described above. Thus,

insertion of PUTs is the lowest level in the hierarchy of sources

of phylogenetic uncertainty. Because sources of uncertainty are

nested within a higher level of classification, and groups represent-

ing subordinate levels are randomly chosen, a nested (hierarchic)

ANOVA is ideal for the analysis of sensitivity and uncertainty.

Application Example: Trait Evolution
and Phylogenetic Assemblage
Patterns in Hummingbirds
We illustrate our method by applying it to ecological hypothe-

ses for the hummingbirds (Trochilidae), a large, monophyletic

clade (�330 species) with a rich natural history literature and

ongoing phylogenetic, morphological, behavioral, and ecological

research. McGuire et al. (2007) published a multilocus molecular

phylogeny for the hummingbirds that includes only 146 species,

but encompasses all the higher level trochilid diversity (73 of

the approximately 104 recognized genera, Schuchmann 1999).

Although a more complete hummingbird phylogeny is now avail-

able (McGuire et al. 2014), we use the earlier phylogeny (McGuire

et al. 2007) to demonstrate our methods because it is typical of

current level of phylogenetic knowledge for many comparably

diverse taxa.

Replicating the phylogenetic reconstruction methodology of

McGuire et al. (2007), we sampled 25,000 trees from the posterior

distribution (hereafter called “backbone” trees), after discarding a

burn-in of 5000 steps. We relied upon the taxonomic classification

of Schuchmann (1999) to designate the most likely MDCC for

each PUT (Fig. 3).

From the total of about 330 described species of humming-

birds, we compiled geographical distributions and ecologically

important morphological data for 304 species. Species endemic

to islands (the West Indies and the Juan Fernández Archipelago)

were not included in the analysis. We compiled estimates of

average body mass (intersexual mean) for each of the 304 species

from Dunning (2007) and Schuchmann (1999). Although large

intersexual and geographical variation in hummingbird body size

is well documented (Colwell 2000), the averages used here are

useful for broad taxonomic analyses. Based on the literature, we

also recorded the maximum known elevational range limits for

each species (see Appendix S1 for references). Body mass (as a

measure of body size) and maximum elevational range limit were

log-transformed to conform to a normal distribution.

We extracted distributional data for 304 species from an up-

dated version (16 July 2010) of the comprehensive database for all

land and freshwater birds known to have breeding populations in

the Western Hemisphere, complied by Rahbek and Graves (2000,

2001), and mapped the geographical range of each species on a

gridded map at a resolution of 1°× 1° (latitude-longitude). These

maps represent a conservative extent-of-occurrence estimate of

the breeding range based on museum specimens, published sight

records, and spatial distribution of habitats based on documented

records for South America.

UNCERTAINTY QUANTIFICATION

Variability in input data is a fundamental source of uncertainty. To

estimate the degree of phylogenetic uncertainty in the humming-

bird data due to phylogeny reconstruction and missing species we

randomly sampled 100 trees from the posterior (here after called

“backbone” trees), and for each tree we replicated the insertion

of PUTs 100 times, thereby generating a total of 10,000 fully

resolved phylogenetic trees. Next, we calculated the tree-to-tree

pairwise distance matrix using the weighted Robinson–Foulds

(wRF) metric, which measures the minimum number of internal

branches that must be collapsed or expanded to make two trees

identical. The weighted version of Robinson–Foulds distance ac-

counts for differences in branch lengths between trees (Steel and

Penny 1993). Distance matrices of phylogenetic trees have been

used in phylogenetic reconstruction to calculate consensus trees

(Swofford 1991), produce supertrees (Bansal et al. 2010), and

visualize multidimensional space of possible trees (Hillis et al.

2005).

The average wRF pairwise distance between the 10,000 trees

is 2.7423, with a standard deviation of 0.136. We used a multi-

variate ANOVA (PERMANOVA, Anderson 2001) to partition

variance among phylogenetic trees through the pairwise wRF

distance matrix. The estimated components of variance indicated

that 17.02% of total variance among trees is attributable to phy-

logenetic reconstruction (i.e., differences among backbone trees),

whereas 82.97% of total variance is due to phylogenetic uncer-

tainty of missing species (PUTs).

PHYLOGENETIC AUTOCORRELATION IN SPECIES

TRAITS

We used Moran’s I correlograms to estimate the magnitude of

phylogenetic autocorrelation in body size and elevational range
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A MDCCs                     B Polytomies                    C Resolved

Figure 3. Hummingbird phylogenies. (A) One backbone phylogeny from McGuire et al. (2007), with red internal branches indicating their

most derived consensus clades (MDCCs) used in this analysis. (B) Red taxa (polytomies) indicate PUTs inserted in the original phylogeny

at the base of their MDCCs. (C) Red taxa indicate PUTs inserted to yield a fully resolved phylogeny, randomizing their position within the

respective MDCCs.

limits among hummingbird species (see Gittleman and Kot 1990;

Diniz-Filho 2001; Pavoine and Ricota 2012). Moran’s I is larger

when species within a given phylogenetic distance interval have

similar trait values and smaller when species within the same

distance interval have very different trait values. To account for

uncertainty in phylogenetic reconstruction and missing species,

the calculation of correlograms was repeated 1,000,000 times

(i.e., replicating the insertion of PUTs 1000 times in each of

the 1000 randomly sampled backbone phylogenies). We used a

nested ANOVA to partition sources of uncertainty for each of

the 12 distance classes in the correlogram. Applying our method,

the average Moran’s I within a distance class is the parameter

estimate, whereas additive C.Is. are calculated around the estimate

for each source of uncertainty.

Results of these analyses showed that phylogenetic autocor-

relation in body size and maximum elevational range limit both

decline with phylogenetic distance, although at different rates

(Fig. 4, top panel in each plot). Closely related species tend to

have similar body sizes but less similar elevational range limits.

Accounting for phylogenetic uncertainty widens C.Is. by at least

a factor of two, regardless of trait (Fig. 4, C.Is. in upper panel; see

the caption for details). For all distance classes, standard C.Is. due

to sampling error are always narrower than C.Is. due to phyloge-

netic uncertainty. In addition, the magnitude of error attributed

to each source of uncertainty is not constant over phylogenetic

distance (Fig. 4, bottom panels). The relative proportion of error

caused by missing species tends to be higher in short distance

classes, as taxonomic information has been used to assign PUTs

to relatively derived positions in the phylogeny (MDCCs). In con-

trast, large phylogenetic C.Is. at intermediate and long distance

classes arise from uncertainty in the empirical phylogeny located

at the base of the Coquettes and Brilliants clades, which together

form the Andean clade (McGuire et al. 2007).

PHYLOGENETIC SIGNAL AND EVOLUTIONARY

MODELS IN SPECIES TRAITS

We used Blomberg et al.’s (2003) K-statistic (hereafter K) to esti-

mate the magnitude of deviation from Brownian motion in body

size and elevational range limits. K measures the degree of simi-

larity in species’ traits in relation to the similarity expected under

a Brownian motion model of phenotypic evolution, given a phylo-

genetic hypothesis. K is based on the ratio between two measures

of distance: MSE0, the squared distance between trait values and

the phylogenetically corrected mean trait value, and MSE, the

squared distance between trait values estimated from a variance–

covariance matrix derived from a phylogenetic hypothesis. Thus,

large values of MSE0/MSE indicate a strong phylogenetic signal.

To allow comparisons between different traits and trees, observed

MSE0/MSE is standardized by expected MSE0/MSE, assuming

that the trait evolves under a Brownian motion model of pheno-

typic evolution. K values less than one indicate that species are

less similar for a given trait than expected under Brownian motion

evolution, whereas K values greater than one indicate that species

are more similar for a given trait than expected under Brownian

motion evolution.

To account for uncertainty in phylogenetic reconstruction

and missing species, we again calculated 10,000 possible K val-

ues, replicating the insertion of PUTs 100 times in each of the 100

randomly sampled phylogenies. To estimate the accuracy (stan-

dard error) of K within each tree, we used jackknife permutation

for each combination of PUT insertion and sampled phylogeny

(Efron and Tibshirani 1994). Finally, we used a nested ANOVA

to partition error in estimated K among different sources of un-

certainty.

Our results revealed a surprisingly low phylogenetic signal

in body size among hummingbirds (K̄ = 0.0597); thus, body size

evolution can hardly be explained by a simple model of Brownian
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Figure 4. Moran’s I correlogram (top panels) for two hummingbird traits (body size and maximum elevational range limit). The inner

95% confidence interval (CI) around each estimate indicates variance due to sampling error, the intermediate 95% CI the variance due

to missing species, and the outer 95% CI the variance due to phylogenetic reconstruction. The bottom panels indicate the relative

proportion of statistical error caused by each source of uncertainty across evolutionary time: sampling (green), missing species (PUTs,

red), and phylogenetic reconstruction (blue).

evolution. However, the standard error of K due to sample size

(sKSamp = 0.0011) is relatively small (2.23%) compared to the er-

ror arising from phylogenetic uncertainty due to missing species

(sKSamp+PUT = 0.0494), as this source of uncertainty represents

97.1% of the total error in K. Finally, uncertainty due to phylo-

genetic reconstruction represents only 0.67% of total error of the

evolutionary inference (sKSamp+PUT+Phy = 0.0497).

The relative importance of sources of uncertainty shift dis-

cordantly when maximum elevational range limit is considered,

although this trait also has very little phylogenetic signal (K̄ =
0.0221). Standard error of K due to sampling size contributes

59.7% of total error (sKSamp = 0.0179), whereas error due to

missing species represents 40.1% of total error (sKSamp+PUT =
0.0300), and error due to phylogenetic reconstruction represents

only 0.2% of total error (sKSamp+PUT+Phy = 0.03001).

To test the hypothesis that estimated K values are not signif-

icantly different from random expectation, we calculated 100 Ks

for each combination of PUT insertion and sampled phylogeny,

randomizing trait values among species (Blomberg et al. 2003;

Revell et al. 2008). We employed the same nested ANOVA de-

sign to estimate standard error of the null distribution due to each

source of uncertainty. Finally, we used Welch’s t-test to evaluate

the hypothesis that estimated Ks do not differ significantly from

the null expectation:
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A B

Figure 5. Hummingbird assemblages with PSV values significantly different from null expectation. Blue cells indicate significant phylo-

genetic clustering, whereas red cells indicate significant phylogenetic dispersion. (A) Standard PSV analysis, considering only nonrandom

“sampling” from the phylogeny. (B) Re-analysis of PSV accounting for three sources of error: sampling, missing species, and phylogenetic

reconstruction. Notice absence of significant phylogenetic dispersion and decreased areas of phylogenetic clustering when all sources of

uncertainty are accounted for.

t = K̄trait − K̄ H0√
S2

Ktrait
nKtrait

+ S2
K H0

nK H0

Estimated K for hummingbird body mass is significantly

larger than expected under the null expectation (K̄ H0 = 0.0237),

and accounting for phylogenetic uncertainty does not affect

the hypothesis test (tSamp = 2589.92, tSamp+PU T = 62.5,

tSamp+PU T +phy = 76.72, all P-values < 0.001). Conversely, phylo-

genetic signal in maximum elevational range limit is significantly

smaller than expected under the null hypothesis (K̄ H0 = 0.0333).

Accounting for phylogenetic uncertainty also does not change the

inference of statistical significance in hummingbird maximum el-

evational range limit (tSamp = −275.36, tSamp+PU T = −34.74,

tSamp+PU T +phy = −44.47, all P-values < 0.001).

These results indicate that, although body size evolution de-

viates significantly from Brownian motion, it carries a small phy-

logenetic signal. Thus, evolutionary constraints and niche conser-

vatism can be invoked for body size (for instance, evolution under

an O-U process—see Hansen et al. 2008), whereas elevational

range has less phylogenetic signal than expected by chance.

PHYLOGENETIC COMMUNITY STRUCTURE AT THE

MACROECOLOGICAL SCALE

Phylogenetic species variability (PSV, Helmus et al. 2007) of

an assemblage is maximized (PSV = 1) when the assemblage

is composed of the least related species in a clade, and mini-

mized (PSV = 0) when the most related species coexist in an

assemblage. We calculated PSV for the 1979 assemblages in

the Western Hemisphere with at least two hummingbird species,

and tested statistical significance of each PSV value using 300

permutations of species identities. However, because phyloge-

netic distance between hummingbird species is not known with

certainty, we generated 300 possible phylogenies with different

PUT insertions, and replicated the calculation of PSV for each of

the 1979 assemblages using the each of the 300 randomly selected

phylogenetic trees.

Some hummingbird assemblages are composed of species

with nonrandom phylogenetic relationships (Fig. 5). However,

identifying any significant departure from randomness requires

accounting for all sources of uncertainty. Standard null mod-

els to test phylogenetic structure of communities (e.g., Graham

et al. 2009), which randomize species identities while preserv-

ing species richness, are designed to account only for nonrandom

“sampling” from the phylogeny. For hummingbird assemblages

across the Western Hemisphere, an analysis with such a null model

would lead to the inference of significant phylogenetic dispersion

along the middle and upper Andes (contrary to Graham et al.

2009), and significant phylogenetic clustering across the Pacific

coast of Central and North America (Fig. 5A). However, uncer-

tainty caused by missing species and phylogenetic reconstruction

may seriously affect pattern detectability. Because of substantial

uncertainty in the phylogenetic relationship of the two Andean

clades (Coquettes and Brilliants), when phylogenetic uncertainty

is taken into account no significant phylogenetic dispersion in

Andean assemblages is detected. Notice that this result is concor-

dant with the lack of phylogenetic signal and lack of phylogenetic

autocorrelation for elevational range at the species level, as we

previously discussed. Moreover, once phylogenetic uncertainly is

taken into account, many assemblages in Central America can no

longer be considered phylogenetically clustered (Fig. 5B).
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Figure 6. Relative statistical error associated with PSV analysis for hummingbird species present in each map cell, partitioned among

sources of uncertainty. Each point within the cube has a unique color that represents the relative proportions of uncertainty due to

phylogeny, PUTs and sampling error, as shown by the axes. In the map, the prevalence of red cells indicates sampling error as the main

source of uncertainty, whereas blue indicates substantial error caused by phylogenetic uncertainty. Notice the absence of green and

yellow areas, indicating that phylogenetic uncertainty due to missing species (PUTs) is relatively minor in the phylogenetic structure of

assemblages.

Because species are neither randomly distributed in the phy-

logeny nor in geographic space, the magnitude of error in the

analysis of phylogenetic structure of assemblages tends to be

strongly spatially autocorrelated. In addition, sampling effect is

usually higher in species-poor assemblages. On the other hand,

assemblages with a higher proportion of species that are mem-

bers of clades characterized by phylogenetic uncertainty in deep

(basal) nodes are subject to a higher proportion of error due to

phylogenetic reconstruction. Figure 6 depicts the relative contri-

bution of each source of error in the analysis of phylogenetic

structure of hummingbird assemblages. Because of phylogenetic

uncertainty in the reconstruction of the relationship between the

two, basal, Andean clades (Coquetes and Brilliants), statistical

error is substantially higher than the other two sources of error for

Andean assemblages. Conversely, statistical error in North Amer-

ican assemblages is mostly due to sampling, as species richness

is very low. Uncertainty due to missing species (PUTs) is not

particularly pronounced in any assemblage, as no assemblage is

composed by more than 17% PUTs.

Concluding Remarks
Phylogenetic uncertainty is not evenly distributed across time and

space. As a consequence, the effects of phylogenetic uncertainty

in the statistical analysis of phylogenetic data cannot be estimated

without a thorough sensitivity analysis on a case-by-case basis.

To illustrate the new methods we propose to account for phyloge-

netic uncertainty, in this article we used phylogenetic hypotheses

derived from molecular data to analyze the hummingbird clade, a

well-studied taxonomic group widely accepted as monophyletic.

Partition of variance among sources of uncertainty reveals that

variance among simulated phylogenies is caused primarily by

missing species, in this case, even using the best information

available to assign phylogenetically uncertain taxa (PUTs). Con-

versely, variance among backbone phylogenies, which are esti-

mated through molecular data, is substantially smaller, indicating

that efforts to improve the knowledge of evolutionary history of

hummingbirds (and other clades that share similar patterns of un-

certainty) should be concentrated on gathering molecular data for

additional species (e.g., McGuire et al. 2014).
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Because phylogenetic uncertainty is expected to be relatively

more concentrated within some clades of a phylogeny than within

others, statistical analyses of species assemblages or temporal

segments of the phylogeny will be affected differently. Thus, sta-

tistical analyses of different traits for the same group of species,

using the same phylogenetic information, may be differently af-

fected by phylogenetic uncertainty, both in intensity and direc-

tion of bias. Of course, comparative analyses among multiple

taxonomic groups, based on independently built phylogenetic hy-

potheses, require additional caution, as the heterogeneity of vari-

ance among groups may seriously distort results in unpredictable

directions.

Because the effects of phylogenetic uncertainty in ecologi-

cal and evolutionary analyses are not subject to generalization,

quantifying and accounting for phylogenetic uncertainty through

sensitivity analysis is required in all ecological studies. Modern

techniques of sensitivity analyses typically involve the application

of Monte Carlo methods. Although general simulation methods,

such as the one used in this study, could be modified to account

for phylogenetic uncertainty in most evolutionary and ecological

analyses, the framework for uncertainty quantification and sen-

sitivity analysis should be tailored to the purpose of the study

(e.g., estimate of diversification rates, community phylogenetics,

comparative analysis of species traits).

Finally, the approach proposed here can be used to quan-

tify the full spectrum of components of phylogenetic uncertainty,

guiding sampling strategies for future studies and allowing more

reliable interpretations of the relative magnitude of historical and

phylogenetic components of biodiversity patterns.

Software Tools
We provide two software toolkits to enable the application of the

analytical strategy proposed here. The first software is SUNPLIN

(Martins et al. 2013; https://sourceforge.net/projects/sunplin),

which is capable of generating randomized phylogenies af-

ter the insertion PUTs into backbone trees, with MDCCs as-

signed. The generated trees can then be applied in any analy-

sis that requires phylogenies as input data. SUNPLIN can be

used as an online web service (http://wsmartins.net/sunplin/), as

a library that connects through Application Program Interface

(APIs) to any compiled software, or directly integrated into R

(http://www.ecoevol.ufg.br/pam).

The second software toolkit, PAM (Phylogenetic Analysis

in Macroecology, http://www.ecoevol.ufg.br/pam), is a compiled

computational platform for inference of ecological and evolution-

ary processes in a spatially explicit context. In PAM, users can not

only generate replicates of phylogenetic trees to be used in other

software applications, but can also run several statistical analy-

ses commonly used in biodiversity analysis, while estimating and

accounting for multiple sources of uncertainty using the analytical

framework proposed here. PAM is a work in progress and will be

continuously expanded in the future.
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