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HIGHLIGHTS

Climate-only and climate plus land-
scape models yielded different future
species range shifts.

Different models also predicted con-
trasting geographical patterns of change
in species richness.

Habitat farmland specialists tend to ex-
pand, whereas generalist to retract
under the same scenarios.

Predicted expansions under climate
change scenarios are severely
constrained by predicted landscape
changes.

Incorporating landscape factors is cru-
cial to forecast range shifts of farmland
habitat specialists.

ARTICLE INFO

Article history:

Received 22 September 2017

Received in revised form 16 November 2017
Accepted 1 January 2018

Available online 12 January 2018

Editor: R Ludwig

Keywords:

Boosting regression trees
Conservation

Environmental envelope models
Farmland birds

Global change scenarios
Specialist and generalist species

GRAPHICAL ABSTRACT

ATLAS OF FARMLAND BIRDS

Richness
variation (%)

CLIMATE  wmmp MODEL1 O ~ e

I (TIPS

T < 5
LANDSCAPE mmmsp MODEL2 3 = Naw
v MODEL 1

‘ 4 L 4

ABSTRACT

Several studies estimating the effects of global environmental change on biodiversity are focused on climate
change. Yet, non-climatic factors such as changes in land cover can also be of paramount importance. This may
be particularly important for habitat specialists associated with human-dominated landscapes, where land
cover and climate changes may be largely decoupled. Here, we tested this idea by modelling the influence of cli-
mate, landscape composition and pattern, on the predicted future (2021-2050) distributions of 21 farmland bird
species in the Iberian Peninsula, using boosted regression trees and 10-km resolution presence/absence data. We
also evaluated whether habitat specialist species were more affected by landscape factors than generalist species.
Overall, this study showed that the contribution of current landscape composition and pattern to the perfor-
mance of species distribution models (SDMs) was relatively low. However, SDMs built using either climate or cli-
mate plus landscape variables yielded very different predictions of future species range shifts and, hence, of the
geographical patterns of change in species richness. Our results indicate that open habitat specialist species tend
to expand their range, whereas habitat generalist species tend to retract under climate change scenarios. The ef-
fect of incorporating landscape factors were particularly marked on open habitat specialists of conservation
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concern, for which the expected expansion under climate change seems to be severely constrained by land cover
change. Overall, results suggest that particular attention should be given to landscape change in addition to cli-
mate when modelling the impacts of environmental changes for both farmland specialist and generalist bird

distributions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many studies have attempted to estimate the future effects of global
environmental changes on biodiversity (e.g., Thuiller et al., 2005; Aradjo
etal., 2006; Garcia et al., 2011). Many of these studies examine the effect
of climate change alone, leaving aside the effects of non-climatic drivers
(e.g., Harfoot et al.,, 2014; Morelli and Tryjanowski, 2015; Titeux et al.,
2016). However, the effects of climate change on biodiversity can be in-
fluenced by interactions with other components of global change
(e.g., Clavero et al., 2011; Hof et al.,, 2011; Maxwell et al., 2016), partic-
ularly with land use changes and related effects on other pressures such
as water regime (e.g., Jetz et al,, 2007; Rosenzweig et al., 2008; Thuiller
et al., 2014a; Newbold et al., 2016).

Both climate and land cover changes are considered major drivers of
global biodiversity change (Sala et al., 2000; Jetz et al., 2007; de Chazal
and Rounsevell, 2009). However, climate is often regarded as the most
important driver at large spatial extents and coarse spatial resolutions
(e.g., Thuiller et al., 2004a; Luoto et al., 2007; Trivifio et al., 2011). The
relative contribution of climate and land cover on future species range
shift projections remain poorly explored (Pearce-Higgins and Green,
2014; but see studies from Table S1, Appendix A). Previous studies
have found that land cover can be correlated with climate and that in-
cluding land cover variables did not improve the accuracy of species dis-
tribution models, as expected (e.g., Seoane et al., 2003; Thuiller et al.,
2004a; Trivifo et al., 2011; Reino et al., 2013). Although climate and
land cover are generally correlated, however, climate does not necessar-
ily fully control land cover, which may be affected by a number of addi-
tional factors such as soil type, topography, socio-economic contexts
and policies (Veldkamp and Lambin, 2001; Ribeiro et al., 2014, 2016).
In addition, because climate and land cover often play key roles at differ-
ent spatial scales (Pearson et al., 2004), they are likely to show different
geographical patterns of change and hence may affect different regions
in a distinct way. Moreover, climate and landscape drivers may interact
in their effect on species geographical range, because the two drivers
may have different effects on different groups of species (Opdam and
Wascher, 2004; Sohl, 2014; Jarzyna et al,, 2015).

Most studies modelling the consequences of changes in the structur-
al component of landscape have ignored potentially important process-
es related to landscape fragmentation (e.g., Vallecillo et al., 2009;
Trivifio et al., 2011), although they have been shown to be determinant
for some species (Jarzyna et al., 2015). This is the case, for instance, of
some farmland bird specialists that were shown to be very sensitive to
habitat fragmentation at several spatial scales (Reino et al., 2009;
Reino et al., 2013). There is a well-established idea that generalist spe-
cies tend to cope better with environmental changes than specialist spe-
cies (Gilman et al., 2010; Clavel et al., 2011; Davey et al., 2012; Lurgi
et al,, 2012; Case et al., 2015). However, at the same time, some studies
point to an idiosyncratic nature of species responses to climate change,
making it difficult to draw generalizations (e.g., Mair et al., 2012; Moritz
and Agudo, 2013; Sohl, 2014). For example, in a recent study, Princé
et al. (2015) found that the relative sensitivity of farmland bird special-
ists and generalists to climate and land cover changes varied among the
different global change scenarios that were considered.

Here we model the relative importance of changes at the landscape
level on range shifts predictions under future environmental change sce-
narios, aiming at bringing new insights on the interplay of three compo-
nent of the environment: biosphere, atmosphere and anthroposphere.
We focused on farmland birds in the Iberian Peninsula, considering both

climate change and changes in land cover and landscape structure, mainly
as the result of land abandonment and changes in agricultural practices,
associated with three socioeconomic scenarios for the period of 2021 to
2050. We hypothesize that taking into account changes in landscape com-
position and structure will potentially strongly affect predictions of farm-
land bird geographical ranges under climate change scenarios. We also
expect that the potential impacts of landscape changes on farmland bird
geographical ranges is dependent on the degree of habitat specialization
(Clavel et al., 2011), namely the association to farmland landscapes. The
overarching goal of this study is thus to examine the proposition that
landscape changes should be accounted for when forecasting the effects
of environmental changes on the distribution of species highly sensitive
to landscape structure.

2. Material and methods
2.1. Data

We used distributional records for 21 Iberian farmland bird species
(Table 1), obtained from the most recent breeding bird atlas from
Spain (Marti and Moral, 2003) and Portugal (Equipa Atlas, 2008),
reporting the occurrence of bird species in 5923 10 x 10 km resolution
UTM cells. These are the highest-resolution bird distribution data avail-
able for Iberia. Farmland birds selected for this study include species
with different degrees of habitat specialization to open habitats, because
these seem to be those most at risk from ongoing changes in agricultural
land cover. Some of the species are highly specialized to open grassland
habitats (e.g., Calandra lark Melanocorypha calandra), whereas others
can tolerate different degrees of habitat fragmentation (e.g., Little
bustard Tetrax tetrax), or are often considered habitat generalists
(e.g., Corn bunting Emberiza calandra). Nonetheless, most of the

Table 1

Discrimination power as measured by the mean cross-validation AUC among the nine
combinations of BRT settings, and respective standard deviation, of distribution models
developed for each farmland bird species using either climate variables and both climate
and landscape variables. In each case we indicate the percent variation of mean AUC for
climate + landscape models in relation to climate only models.

Species Climate Climate + landscape % AUC variation
Falco naumanni 0.878 (0.0005) 0.888 (0.0005) 1.16
Circus pygargus 0.820 (0.0017) 0.859 (0.001) 4.68
Tetrax tetrax 0.852 (0.0014) 0.882 (0.0007) 3.42
Otis tarda 0.867 (0.0015) 0.889 (0.0011) 2.53
Coturnix coturnix 0.774 (0.0023) 0.804 (0.0013) 3.89
Pterocles alchata 0.933 (0.0011) 0.941 (0.0007) 0.89
Pterocles orientalis 0.859 (0.0008) 0.884 (0.0009) 293
Burhinus oedicnemus 0.852(0.0011) 0.876 (0.0012) 2.82
Coracias garrulus 0.846 (0.0011) 0.856 (0.001) 1.21
Alauda arvensis 0.868 (0.0003) 0.871 (0.0004) 0.28
Anthus campestris 0.846 (0.0006) 0.851 (0.0008) 0.60
Lullula arborea 0.839 (0.0005) 0.851 (0.0004) 1.49
Melanocorypha calandra  0.885 (0.0006) 0.909 (0.0004) 2.69
Calandrella 0.824 (0.0005) 0.842 (0.0007) 2.11
brachydactyla
Calandrella rufescens 0.947 (0.0009) 0.947 (0.0007) 0.06
Galerida cristata 0.908 (0.0006) 0.925 (0.0004) 1.86
Galerida theklae 0.869 (0.0012) 0.877 (0.0012) 0.90
Chersophilus duponti 0.919 (0.0009) 0.928 (0.0007) 0.87
Oenanthe hispanica 0.856 (0.0006) 0.861 (0.0009) 0.55
Carduelis cannabina 0.793 (0.0015) 0.801 (0.0017) 0.97
Emberiza calandra 0.892 (0.0007) 0.913 (0.0006) 2.29
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farmland species considered may tolerate a wide range of habitats,
though we excluded species which are often associated with tree-
cover habitats (e.g., red-legged partridge Alectoris rufa). For each spe-
cies, the mean landscape Shannon diversity index in the occurrence
cells, based on the forty-four land cover classes from CORINE (EEA,
2000), was computed and the resulting values, after rescaling be-
tween 0 and 1, were inverted. We used the resulting index, here re-
ferred to as Landscape Specialization Index (LSI), as a surrogate of
habitat specialization (see Table 1). A significant negative relation-
ship between bird's habitat specialization and landscape fragmenta-
tion derived from CORINE land cover maps was shown elsewhere
(Devictor et al., 2008).

We used three climatic variables that synthetize two factors - ener-
gy and water - that determine biological diversity distribution world-
wide (Hawkins et al., 2003): average minimum temperature of the
coldest month, average mean maximum temperature of the hottest
month and average total annual precipitation. A fourth selected climatic
variable - standard deviation of monthly means of minimum tempera-
ture - reflected seasonality of climate. The baseline climatic data was
obtained from the Portuguese and Spanish meteorological agencies
(IM and AEMET, respectively), interpolated to a UTM 10 x 10 km grid
(Aragjo et al,, 2012).

The future climate was based on the scenarios developed in the
ALARM project (http://www.alarmproject.net/alarm, Assessing Large-
scale Environmental Risks for biodiversity with tested Methods;
Settele et al., 2005), resampled at a 10-min resolution (~16 km at the
latitude of the study). Future scenarios of climate and land cover for
the period 2021-2050 were based on the three alternative storylines
developed in the ALARM project: 1) “Business As Might Be Usual”
(BAMBU based on the A2 scenario from the IPCC), 2) “Growth Applied
Strategy” (GRAS based on the A1F1 scenario from IPCC) and 3) “Sustain-
able European Development Goal” (SEDG based on the B1 scenario from
IPCC). These scenarios covered a broad range of potential socio-
economic, political, technological and geobiosphere changes, and were
developed to describe alternative future pathways of key driving factors
affecting biodiversity (Aradjo et al., 2008; Dendoncker et al., 2006;
Rounsevell et al., 2006; Spangenberg, 2007; Spangenberg et al., 2012).
The future land cover change scenarios were based on the Coordination
of Information on the Environment (CORINE Land Cover; European
Environmental Agency, 2002, see Rounsevell et al. (2006) and
Dendoncker et al. (2007) for methodology details). The forty-four land
cover classes from CORINE were aggregated into six classes for these
scenarios: Urban, Cropland, Permanent crops, Grassland, Forest, and
Others. We assumed that Cropland was the class encompassing the
most suitable habitats for the selected Iberian farmland bird species.
For both future scenarios and the baseline period, the Cropland class re-
sulted from aggregation of the following CORINE classes: 1) Non-
irrigated arable land; 2) Permanently irrigated land; 3) Rice fields; and
4) Complex cultivation patterns. The Grassland class was not considered
as arelevant land cover aggregation for farmland bird species because it
is overly abundant in Portugal due to a somehow arbitrary amalgam-
ation of several land cover types (for example, the category “Land prin-
cipally occupied by agriculture with significant areas of natural
vegetation” was included in the Grassland category).

Future climatic scenarios were downscaled to the same 10-km grid
cell resolution of the baseline data. For both baseline period and future
land cover scenarios, we assumed that the quantity of suitable habitat
for farmland birds is strongly influenced by the percentage of the grid
cells covered with the class Cropland. We computed three landscape frag-
mentation metrics on the distribution of croplands for each 10 x 10 km
UTM grid cell of Iberian Peninsula, following the approach used in a pre-
vious study (Reino et al., 2013). Landscape metrics comprised three var-
iables: mean cropland patch area, number of cropland patches, and edge
density. We computed edge density, i.e. edges between patches of differ-
ent classes, using the total edge length of cropland patches at each grid
square. The computation of the percentage of cropland area and the

three landscape metrics at each 10 km grid cell were based on land
cover raster themes with 100 m resolution. We carried out the analyses
in ArcGIS 9.3 (ESRI, 2011).

Because birds' data were restricted to the Iberian Peninsula, arguably
the models may fail to capture the full range of suitable conditions of
each species. This may cause truncated response curves at extreme con-
ditions and, consequently, biased projections (Thuiller et al., 2004b). To
evaluate this potential effect, we mapped the grid cells that in the future
would lay outside the training conditions for each climatic variable.
Only for the BAMBU scenario and one variable (Mean Maximum Tem-
perature), a considerable extension of the Iberian Peninsula (24,7% of
the grid cells) was predicted to be outside the baseline range of values.
For the remaining variables, extrapolation area represented <5% of the
grid cells. For the GRAS and SEDGE scenarios, the extrapolation area rep-
resented, respectively, <2% and 1% for all climatic variables. All extrapo-
lation areas showed warmer and drier climates. Because all species
occur in North Africa we can assume that climate projections will not
go beyond species tolerances. Nevertheless, this potential problem
was duly considered when interpreting our modelling results, though
violation of such assumption would mainly affect the high-end scenario
(BAMBU). Regarding landscape structure, given the high structural het-
erogeneity of Iberian landscape we can assume that a sufficient broad
gradient is covered in the baseline.

2.2. Statistical modelling

We developed boosted regression trees (BRT) (Friedman et al.,
2000; Hastie et al.,, 2001) to estimate the relationship between the 21
Iberian farmland birds and the climatic and landscape variables for the
baseline period. We then used the resulting relationships to project
the potential distributions under the three future climate and land
cover change scenarios for 2021-2050. BRT differs from the traditional
classification and regression tree techniques that produce a single
‘best’ tree, by making use of a ‘boosting’ technique to combine large
numbers of relatively simple tree models adaptively, in order to opti-
mize predictive performance (see e.g., Elith et al., 2008; Leathwick
et al., 2006, 2008 for further details). The main difference between
BRT and other tree-based ensemble techniques (e.g., random forests;
Prasad et al., 2006) is that trees are fitted sequentially through a
stagewise process, i.e., at each step of model development, the trees
from previous steps are left unchanged as the model is enlarged (Elith
et al,, 2008). This relative model rigidity, where the overall hierarchical
structure of variable effects is maintained stable, is an important feature
for the purpose of our study, which focuses on two very different sets of
variables (climate and landscape) that are expected to act hierarchically
on species distributions (Pearson et al., 2004). Furthermore, BRT are rec-
ognized for their capabilities to reliably selected meaningful variables,
through automatic detection of interactions and robust fitting of trends
(Hastie et al., 2001). BRT has also the advantage of handling different
types of variables, and coping with collinearity and non-linear relation-
ships between predictors (Elith et al., 2008).

To optimize the number of trees in each BRT model, we carried out a
stepwise process based on 10-fold cross-validations using mean devi-
ance on the validation data as a measure of predictive performance
(Elith et al., 2008). Two important parameters must be defined a priori
to determine the number of trees required for optimal predictions: the
learning rate, which determines the contribution of each tree to the
growing model, and the tree complexity that controls the number of in-
teractions among variables (i.e., the number of splits of individual
trees). We used three alternative values for both tree complexity and
learning rate to account for the uncertainties introduced by the subjec-
tivity of the previously selected parameter values. To select a range of
learning rate and tree complexity values ensuring that at least 1000
trees were achieved after the stepwise process (Elith et al., 2008), we
first trained the data using several alternative learning rate and tree
complexity values. We finally set learning rate values to 0.002, 0.003
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and 0.004 and tree complexity values to 3, 4 and 5. Discrimination
power of models was assessed by computing the mean Area Under
the Receiver Operational Curve (AUC; Fielding & Bell, 1997) based on
10-fold cross-validations. BRT were computed with the gbm
(Ridgeway, 2013) and dismo (Hijmans et al., 2012) libraries in R soft-
ware version 2.15.2 (R Development Core Team, 2013).

To assess the impact of including landscape variables in the predic-
tions of distribution expansion/retraction of species, we fitted two dif-
ferent models per species for each learning rates and tree complexity
combination: a climate-only model and a climate + landscape model.
For each kind of model, the probabilities of occurrence from the nine
models resulting from the pairwise combination of learning rates and
tree complexity values were averaged following standard committee
averaging procedures in ensemble modelling (Aratijo and New, 2007).
The importance of each variable to the model was based on the measure
of relative influence described in Friedman (2001) and averaged across
the nine models.

2.3. Range shifts

We classified the probabilities of occurrence obtained with the BRT
models into potential presence/absence maps for the baseline period
and for the period of 2021-2050 under the three alternative scenarios
hypothesis. The probability value that maximized the sum of sensitivity
and specificity was used as the cut-off point for discriminating predicted
presence and absence (Liu et al., 2005).

Using the resulting maps of the potential species distributions we
computed the net variation of the geographical range for both
climate-only and climate + landscape models (% of variation of the pre-
dicted species prevalence relative to the baseline), between the baseline
and the future scenarios. We also computed the difference of the range
variation between climate-only and climate + landscape models to as-
sess if the inclusion of landscape variables led to a weaker/stronger
range retraction or weaker/stronger range expansion. We tested the
correlation between the Landscape Specialization Index for each species
and both the variation of the geographical range area and the differ-
ence of the range area variation between climate-only and climate +
landscape models. We computed the number of winner species (i.e.
species that are currently absent but predicted to be present in the
future) and of loser species (i.e. species that are currently present
but predicted to be absent in the future) in each grid cell based on
the differences between species presence/absence maps for the
baseline and each future scenario predictions. To test differences
among the three scenarios in the resulting maps, we used a modified
version of the t-test to assess correlation between two spatial pro-
cesses (Clifford et al., 1989) implemented in the SpatialPack R pack-
age (Osorio et al., 2012).

3. Results
3.1. Model performance

The incorporation of landscape variables in the climate-based
models consistently improved model's discrimination ability, as mea-
sured with mean cross-validation AUC values (Wilcoxon signed rank
test, p < 0.001). However, the contribution of landscape variables did
not increase substantially the discrimination ability of models, with per-
cent (%) of improvements varying from 0.06% for Calandrella rufescens
to 4.68% for Circus pygargus (Table 1). The species Landscape Specializa-
tion Index was positively correlated with AUC values of both the
climate-only (Pearson r = 0.49, p < 0.05) and climate + landscape
models (Pearson r = 0.51, p < 0.02). However, habitat specialization
was not correlated with the percentage increase of discrimination abil-
ity (Pearson r = —0.08, p = 0.74).

3.2. Variable importance

The climatic variables with the highest relative influence in the
models were the average minimum temperature of the coldest month
and the average mean maximum temperature of the warmest month
(Table 2). The importance of these two variables showed no significant
correlations with the species Landscape Specialization Index (mean
maximum temperature, Pearson r = 0.06, p-value = 0.80; mean maxi-
mum temperature, Pearson r = —0.16, p-value = 0.48). Among the
landscape variables, the mean cropland patch area followed by the
edge density were found to be the most influential for all the species, in-
dependently of their degree of specialization.

3.3. Range shifts

The direction of projected range shifts for 17 out of 21 farmland bird
species were consistent among the three socio-economic scenarios.
Among these, range expansion was predicted for 10 species and range
contraction was predicted for 7 species (Table 3).

Overall, the strongest influence of landscape variables in range shifts,
were found for species predicted either to show stronger retraction or
weaker expansion of their geographical range (Table 3). The maximum
variation in the percentage of range shift change was found for Otis
tarda (e.g., —158.8% for the GRAS scenario) and Pterocles alchata
(e.g., 151.0% for the GRAS scenario). For the three scenarios, no signifi-
cant correlations were found between the percentage of increase in
the discrimination ability of models and the percentage of predicted
range shift changes after considering landscape variables (Pearson's
correlation, r < 1 and p > 0.6 for all scenarios).

When the outputs of climate + landscape models were related with
the species' degree of habitat specialization, as given by the Landscape
Specialization Index (LSI), some general trends on the predicted range
shifts emerged. The relationship between predicted range shifts and
LSI indicates a tendency from range retractions to range expansions
for increasing species' habitat specialization (Fig. 1). This positive corre-
lation was significant (Pearson's correlation, p < 0.05) for all scenarios in
the case of climate-only models. In the case of climate + landscape
models, the correlation was significant for the GRAS scenario, whereas
for the BAMBU and SEDGE scenarios the relationships were only mar-
ginally significant (Fig. 1).

A significant negative relationship between LSI and the variation of
range shift percent change after including landscape variables in the
models (i.e. the difference between the percent change of range shift in
the climate-only model and the percent change of range shift in the cli-
mate + landscape model), was found for the three scenarios (Pearson's
correlation, p < 0.05; Fig. 2). For increasing LSI values, a tendency for the
percentages of change to be more negative was found, i.e., as the degree
of species habitat specialization increases, climate-only models tended
to be more over-optimistic in comparison to climate + landscape models.

3.4. Species richness

The mean number of farmland bird species per 10 x 10 km UTM grid
cell was forecasted to be significantly higher in the future under any of
the three socioeconomic scenarios than at present (Wilcoxon signed
rank test, p < 0.001). However, the average absolute increase in local
species richness was significantly lower using the climate + landscape
model than the climate-only model under the BAMBU (0.48 species
4+3.16 SD vs. 1.43 species +3.74 SD), GRAS (0.20 species +3.34 SD
vs. 1.31 species 4-3.83 SD) and SEDGE (0.59 species #+3.21 SD vs. 1.68
species 43.65 SD) scenarios. There were also differences between
models in the spatial pattern of absolute variation in local species rich-
ness. Generally, climate-only models tended to predict larger areas of
richness increase in both central and southern Iberia, while climate +
landscape models tended to predict larger areas of richness increase in
Northern Iberia (Fig. 3). Consistent increases in species richness were
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Mean importance of variables in the climate + landscape BRT model (grey intensity reflects variable importance). Crop - presence/absence of cropland; Edge - edge density; MPA - mean
cropland patch area; NUMP - number of cropland patches; Prec - average total annual precipitation; Tmax - average mean maximum temperature; Tmin - average minimum temperature

of the coldest month; Tmin SD - minimum temperature standard deviation.

Species Crop  Edge MPA NUMP Prec Tmax Tmin Tmin SD
F. naumanni 0.01 6.07 25.99 2.11 9.42 36.63 6.95 12.83
C. pygargus 0.02 8.96 9.51 3.20 12.55 21.66 30.92 13.19
T. tetrax 0.00 7.29 7.64 2.25 13.03 17.18 38.40 14.22
O. tarda 0.00 7.28 14.45 2.29 10.25 43.23 8.57 13.92
C. coturnix 0.11 9.05 13.04 2.85 15.51 18.99 23.19 17.26
P. alchata 0.00 7.33 22.84 2.85 12.89 28.47 7.72 17.89
P. orientalis 0.00 8.23 21.08 2.76 10.16 36.25 8.39 13.13
B. oedicnemus 0.01 6.68 7.22 2.71 9.87 2231 40.24 10.97
C. garrulus 0.00 6.58 9.76 2.06 12.82 20.12 30.43 18.24
A. arvensis 0.05 3.47 3.85 1.87 11.79 18.48 48.09 12.39
A. campestris 0.01 5.20 6.31 2.16 13.65 23.29 34.99 14.38
L. arborea 0.04 4.13 11.91 2.96 13.68 24.34 24.89 18.05
M. calandra 0.00 4.47 8.25 1.55 9.18 31.46 34.58 10.51
C. brachydactyla 0.01 6.61 7.58 2.34 8.28 17.38 47.51 10.30
C. rufescens 0.00 7.17 8.22 5.24 9.84 15.52 43.01 11.00
G. cristata 0.02 4.55 6.53 1.06 7.08 8.41 64.70 7.65
G. theklae 0.01 4.34 5.69 1.51 10.05 19.26 46.36 12.78
C. duponti 0.00 9.64 12.21 7.45 13.41 18.58 23.26 15.45
O. hispanica 0.01 3.73 5.64 3.23 8.68 18.94 46.28 13.49
C. cannabina 0.05 7.99 21.67 3.11 12.69 25.17 12.00 17.32
E. calandra 0.09 5.06 13.40 1.87 10.57 49.40 8.73 10.89

Table 3

Differences between the range shifts predicted by species distribution models based on
climate alone and on climate + landscape for the three future ALARM storyline scenarios.
Values indicate the additional percentage of change introduced when landscape variables
are also considered in the models. Symbols denote the direction of the range change of the
climate/landscape and whether the model based on climate/landscape predicts stronger
or lower changes than model based on climate alone. ¥ - weaker retraction; V- stronger
retraction; A - weaker expansion; A - stronger expansion.

Species Additional % change
BAMBU GRAS SEDGE

Falco naumanni —21.2 A —8.0 A —33.0 A
Circus pygargus —144 A —17.7 A —12.7 A
Tetrax tetrax —20.6 A —25.0 A —21.0 A
Otis tarda —1326 A —158.8 A —138.7 A
Coturnix coturnix —40.8 v —44.8 v —42.7 v
Pterocles alchata —1215 v —151.0 A —132.6 v
Pterocles orientalis —58.1 v —733 v —745 v
Burhinus oedicnemus —28.2 A —29.7 A —284 A
Coracias garrulus 14.6 A 23.6 A 7.5 A
Alauda arvensis 19 v 39 v —09 v
Anthus campestris —21.2 v —33.7 v —22.6 v
Lullula arborea 371 A 44.9 A 40.6 A
Melanocorypha calandra —-9.1 A —39 A —16.5 A
Calandrella brachydactyla 10.7 A 134 A 8.0 A
Calandrella rufescens —454 A —29.5 A —58.0 A
Galerida cristata 7.3 v 13 \% 129 v
Galerida theklae 20.3 v 21.2 v 225 v
Chersophilus duponti —0.8 v 2.7 v 1.2 v
Oenanthe hispanica 10.1 v 9.7 v 194 v
Carduelis cannabina 24 A 42 v —1.0 A
Emberiza calandra —22 v —33 v —48 v

predicted to occur irrespective of model type in central and southern
Iberia.

3.5. Losers and winners

The geographical patterns of loser and winner species per 10 km grid
square were also largely dependent on whether landscape variables
were included or not in the models (Fig. 4). Significant correlations
among the three climate change scenarios were found for both winners
and losers maps, even after accounting for spatial autocorrelation (mod-
ified t-test, p < 0.001). Climate-only models predicted a larger area with
high numbers of winner species (Fig. 4, left maps, yellow areas), mainly
in the centre, southern Iberian mountain ranges and the eastern coast.
Contrarily, climate + landscape models predicted a larger area showing
high numbers of loser species, mainly in the southern plains (Fig. 4,
right maps, blue areas).

4. Discussion

Our results confirm the hypothesis that the inclusion of landscape
variables in species distribution models strongly affect range shift pre-
dictions of Iberian farmland birds, despite a generally low contribution
to models' performance. Overall, the resulting species distribution
models predict that habitat specialists will tend to expand their range,
whereas generalists will tend to retract under climate change scenarios.
However, in many cases, the inclusion of landscape variables in the
models leads to an attenuation of the projected range expansion of spe-
cialist species under scenarios of both climate and landscape changes.
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Fig. 1. Relationship between the species Landscape Specialization Index (LSI) in the presence cells, and the predicted species percent range variation (future) in relation to the baseline
modelled range, for the climate-only (a) and the climate + landscape models (b). The Pearson correlation coefficient and the respective p-level are shown.

4.1. Impacts of landscape variables on predicted range shifts

Our results are in agreement with other studies that also show a rel-
atively small contribution of landscape related covariates in relation to
climate when modelling distributions at coarse spatial resolutions
(e.g., Thuiller et al., 2004a; Luoto et al., 2007; Trivifio et al., 2011).

These findings have supported the view that, for many species, variables
such as land cover could sometimes be disregarded from predictive dis-
tribution models at wide spatial scales and coarse resolutions (Pearson
et al.,, 2004; Thuiller et al., 2004a; Trivifo et al., 2011). Furthermore, the
often-found correlation between climate and land cover variables has
supported this view (e.g., Thuiller et al., 2004a).
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Fig. 2. Relationship between the species Landscape Specialization Index (LSI) in the presence cells and the difference in the percent range shift change predicted by the climate + landscape
models in relation to the climate-only models. The Pearson correlation coefficient and the respective p-level are shown.
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Fig. 3. Bivariate map of species richness percent variation per 10-km grid squares for the three future climate change scenarios. Deviations from the grayscale gradient represent larger
richness variations predicted either by climate only-based models (yellow) or by climate/landscape-based models (blue). Brighter tones represent regions with a more positive
richness percent variation and darker tones represent regions with a more negative richness percent variation.
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Fig. 4. Bivariate map of the number of loser (left maps) and winner (right maps) species per 10-km grid squares for the three future climate change scenarios. Deviations from the grayscale
gradient represent larger number of losers or winners predicted either by climate only-based models (yellow) or by climate/landscape-based models (blue). Brighter tones represent

regions with a larger number of winners or losers.

Despite the small explanatory power of landscape metrics, we found
that they were associated to major changes on species range shifts
under global environmental change. In fact, the addition of landscape
variables in the models resulted in deviations up to 150% of the range
shift predictions of models using climate alone (Table 3). Landscape
changes may occur at a higher pace and magnitude compared to climat-
ic changes and consequently even small contributions to models might
result in a noticeable impact on predictions. The significant impact of

land use on predictions is also partially in accordance with recent stud-
ies that predict large-scale changes in biodiversity (Thuiller et al.,
2014a; Princé et al., 2015, Estrada et al., 2016).

Finally, despite their low contribution to models' accuracy, the inclu-
sion of landscape variables also extensively affected predictions of the
geographical patterns of richness and of species gains and losses in rela-
tion to the climate-only based models. Joint models (climate/landscape)
predicted globally more “loser species” and less “winner species” per
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grid-square than the climate-only models, resulting in an overall lower
predicted mean richness per grid-square. In fact, it has been shown that
population changes in farmland birds are often closely related to chang-
es in the intensity of agricultural management rather than to be driven
by climatic changes alone (e.g., Pearce-Higgins and Green, 2014). These
may implicitly suggest that for the majority of farmland species, recent
climate change could still be considered of secondary importance, when
compared to changes in agricultural management, which is generally
leading worldwide to the intensification of agriculture (e.g., Eglington
and Pearce-Higgins, 2012). Even if climatic variables are more determi-
nant according to models of farmland bird distribution, their change in
the recent past has been much more subtle than land use changes,
which might explain the aforementioned trend.

4.2. The importance of landscape variables along the habitat specialization
gradient

The trend found in the projected range shifts along the species' hab-
itat specialization gradient contrasts with the generally accepted idea
that generalist species cope better with environmental changes than
specialist species (e.g., Clavel et al., 2011). The latter species also appear
to have a narrower thermal tolerance, for instance, when compared
with more generalist species. This means that habitat change unrelated
to climate change may affect species community composition
(e.g., Clavero et al., 2011). Nevertheless, the general results of this
study are in line with a recent study that found a tendency of generalist
bird species occurring in farmlands to be often more affected by climate
and land cover changes than specialist farmland birds (Princé et al.,
2015). However, strict generalizations can hardly be drawn from our re-
sults, which supports the idiosyncratic nature of species responses to
climate change (Moritz and Agudo, 2013). In the case of Iberian farm-
land birds, specialist species are most often adapted to higher tempera-
tures, which might explain the frequent geographic range expansions
predicted for these species. However, because habitat specialists are
often more dependent of specific habitat conditions this may halt their
expansion to other areas with suitable habitat conditions due to habitat
and land cover change, for instance.

A major effect of incorporating landscape variables in the models was
a less optimistic future for specialist species, mainly with a lower range
expansion or, in some cases, a stronger range contraction than predicted
by climate-only models. A possible explanation is that, since specialist
species tend to be more constrained by both landscape changes and the
level of intensity of agricultural management (see Eglington and
Pearce-Higgins, 2012), a decrease in landscape favourability in the new
expansion areas will counteract with the climatic favourability, resulting
in an antagonistic effect between climate and landscape. This is a relevant
result for conservation purposes because very often specialist species
have an important conservation status and therefore it is crucial to pro-
duce more realistic predictions when accounting for the potential effects
of climate change (Eglington and Pearce-Higgins, 2012).

Lower expansions after including landscape variables in the models
were projected for six non-passerine species (out of nine) and two pas-
serine species. This outcome suggests that for a considerable number of
species, including some of the most relevant farmland species of
European conservation concern (e.g., little and great bustards and lesser
kestrel), future projections based on climatic variables alone might lead
to overestimating the expected expansion. Stronger contractions after
accounting for landscape changes were predicted only for four species,
including three non-passerine species, of which two are of European
conservation concern (Black-bellied Sandgrouse and Pin-tailed Sand-
grouse), and a passerine species (Corn Bunting). On the contrary, for
some species, including some with a relevant conservation status, the
incorporation of landscape variables reduced the possibility of a strong
range contraction or lead to an increase of the predicted geographical
ranges. The set of species in this group included both lark species (crest-
ed and Thekla's larks) and two species of European conservation

concern (Black-eared wheatear and Dupont's lark). For two Iberian
widespread species (skylark and Linnet), at least partially, lower im-
pacts on species range are also expected when landscape variables are
included in the models. After accounting for landscape changes, a future
range increase was predicted for a few generalist and ecotone-related
species. This seems to be the case of the woodlark, which is an open-
habitat species associated with more fragmented farmland landscapes,
but also of other farmland species like short-toed lark, which is frequent
in more fragmented and convoluted landscapes (Reino et al., 2009).

5. Conclusions

This study underpins the need to consider landscape composition
and structure when modelling species range shifts under future climate
scenarios. This is particularly the case for habitat specialists, which are
strongly constrained by habitat availability and configuration. In addi-
tion, our models show that specialist species (many with relevant
European conservation concern, Table S2) produce less optimistic pre-
dictions when landscape changes are also accounted for. The interplay
between climate and landscape variables has important implications
for an adequate mitigation strategy under climate change. Because
farmlands are one of the most extensively modified landscapes and
very dependent on management practices and regional policies, the
rate, magnitude and direction of alteration is probably more decoupled
from climate change than other less altered landscapes. For example,
Princé et al. (2015) recently reported that including farmland cover var-
iables could potentially compensate the negative effect of climate
change on some species. This means that one needs to be aware when
attributing some of the forecasted changes specifically to climate
warming (Eglington and Pearce-Higgins, 2012). On the other hand, it
also means there is more margin to put into practice management ac-
tions that may counteract the negative effects of climate change on
bird communities. Our results confirm this idea by showing that more
optimistic predictions under climate change for the future are possible
when land cover changes are also taken into account. This might suggest
that, by implementing right mitigation measures at the landscape level,
it would be possible to produce more optimistic predictions for the fu-
ture, i.e., enlarged range expansions and reduced range contractions.
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