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Abstract
Arid	environments	provide	 ideal	ground	for	 investigating	the	mechanisms	of	adaptive	
evolution.	High	temperatures	and	low	water	availability	are	relentless	stressors	for	many	
endotherms,	including	birds;	yet	birds	persist	in	deserts.	While	physiological	adaptation	
probably	involves	metabolic	phenotypes,	the	underlying	mechanisms	(plasticity,	genet‐
ics)	are	largely	uncharacterized.	To	explore	this,	we	took	an	intraspecific	approach	that	
focused	on	a	species	that	is	resident	over	a	mesic	to	arid	gradient,	the	Karoo	scrub‐robin	
(Cercotrichas coryphaeus).	Specifically,	we	integrated	environmental	(climatic	and	primary	
productivity),	 physiological	 (metabolic	 rates:	 a	measure	of	energy	expenditure),	 geno‐
typic	(genetic	variation	underlying	the	machinery	of	energy	production)	and	microbiome	
(involved	in	processing	food	from	where	energy	is	retrieved)	data,	to	infer	the	mechanism	
of	physiological	adaptation.	We	that	found	the	variation	in	energetic	physiology	pheno‐
types	and	gut	microbiome	composition	are	associated	with	environmental	features	as	
well	as	with	variation	in	genes	underlying	energy	metabolic	pathways.	Specifically,	we	
identified	a	 small	 list	of	 candidate	adaptive	genes,	 some	of	 them	with	known	 ties	 to	
relevant	physiology	phenotypes.	Together	our	results	suggest	that	selective	pressures	
on	energetic	physiology	mediated	by	genes	related	to	energy	homeostasis	and	possi‐
bly	microbiota	composition	may	facilitate	adaptation	to	local	conditions	and	provide	an	
explanation	to	the	high	avian	intraspecific	divergence	observed	in	harsh	environments.
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1  | INTRODUC TION

Arid	environments	provide	ideal	ground	for	investigating	the	mech‐
anisms	 of	 adaptive	 evolution	 in	 endotherms.	 The	 environmental	
stressors	 associated	with	 elevated	 aridity,	 i.e.,	 increasing	 levels	 of	
daytime	 heat	 and	 dryness,	 pose	 challenges	 that	 may	 need	 to	 be	
compensated	 through	 physiological	 performance.	 Thus,	 there	 is	 a	
growing	 interest	 in	 the	 role	of	physiology	 in	adaptive	evolution	 to	
arid	 environments	 (Boyles,	 Seebacher,	 Smit,	 &	 McKechnie,	 2011;	
MacManes,	2017;	Sabat,	Cavieres,	Veloso,	&	Canals,	2006).

Birds	inhabit	desert	regions	across	all	of	the	world's	continents.	
They	typically	have	high	body	temperatures	and	the	highest	mass‐
specific	metabolism	of	all	terrestrial	vertebrates	(Bicudo,	Buttemer,	
Chappell,	Pearson,	&	Bech,	2010).	At	face	value	this	suggests	they	
should	be	poor	candidates	for	inhabiting	an	ecosystem	in	which	they	
must	experience	daily	air	temperatures	far	beyond	their	normal	body	
temperatures,	face	food	shortages	due	to	low	primary	productivity,	
and	withstand	low	and	unpredictable	water	availability.

Nevertheless,	the	results	of	compelling	comparative	physiolog‐
ical	 studies	 indicate	 that	 birds	 have	 evolved	 physiological	mecha‐
nisms	 to	 cope	with	 these	 extreme	 conditions,	 including	 to	 reduce	
cutaneous	water	 loss	 (e.g.,	Muñoz‐Garcia,	 Ro,	 Brown,	 &	Williams,	
2008;	Williams	&	Tieleman,	2005),	control	blood	 flow	as	 to	 retain	
or	dissipate	heat	(e.g.,	Tattersall,	Andrade,	&	Abe,	2009)	and	lower	
energetic	demands	(e.g.,	Sabat	et	al.,	2006;	Smit	&	McKechnie,	2010;	
Tieleman,	Williams,	&	Bloomer,	2003;	Williams	&	Tieleman,	2001).	
Despite	the	efforts	to	understand	energy	economy	in	arid	biomes,	
there	is	still	a	knowledge	gap	pertaining	to	the	adaptive	mechanisms	
(phenotypic	plasticity	and	adaptive	genetic	changes)	that	allow	en‐
ergetic	 physiological	 phenotypes	 to	match	 the	 prevailing	 environ‐
mental	conditions.

Given	that	environmental	spatial	heterogeneity	should	maintain	
genetic	 differentiation	 among	 populations	 (Hedrick,	 2006;	 Lande,	
1976),	 temporal	 change	may	 favour	 phenotypic	 plasticity	 (Chevin,	
Lande,	&	Mace,	 2010;	 Schlichting	&	 Pigliucci,	 1998),	 both	mecha‐
nisms	can	potentially	result	in	local	adaptation,	we	hypothesised	that	
it	might	be	possible	to	untangle	the	physiological	conundrum	of	life	
in	deserts,	through	combining	ecological,	physiological	and	genetic	
data,	from	an	avian	species	that	spans	mesic	to	desert	habitats.	One	
such	 example	 is	 the	 Karoo	 scrub‐robin	 (Cercotrichas coryphaeus),	
a	 passerine	 whose	 distribution	 range	 spans	 the	 highly	 seasonal	
semi‐arid	and	arid	zones	of	southern	Africa.	The	Karoo	scrub‐robin	
(hereafter:	scrub‐robin)	has	two	subspecies	recognized	according	to	
plumage	colour	(Collar,	2005):	C. c. cinerea,	a	greyish	form	restricted	
to	a	coastal	semi‐arid	environment,	and	C. c. coryphaeus,	a	brown‐
ish	form	that	inhabits	the	inland	Karoo	desert	(Figure	1a).	Critically,	
each	subspecies	occupies	a	different	climatic	niche	(Ribeiro,	Lopes,	
&	Bowie,	2012),	with	cinerea	 inhabiting	a	region	where	rain	falls	 in	
winter	and	mean	annual	 thermal	 amplitude	 seldom	exceeds	20°C,	
while	 coryphaeus'	 habitat	 mostly	 receives	 erratic	 rains	 during	 the	
summer,	and	has	mean	annual	thermal	amplitudes	exceeding	30°C	
as	a	 result	of	cold	winter	 temperatures.	This	climatic	and	plumage	
concordance	is	mirrored	through	fixed	mitochondrial	types	(Ribeiro,	

Lloyd,	&	Bowie,	2011;	amino	acid	changes	in	the	ATPase6	gene	that	
is	 part	 of	 the	pathway	 responsible	 for	 energy	production)	 despite	
extensive	 nuclear	 gene	 flow	 (Figure	 1a),	 suggesting	 that	 different	
energetic	physiology	phenotypes	may	have	higher	fitness	in	differ‐
ent	conditions.	Taken	together	this	information	suggests	this	species	
may	be	an	excellent	model	with	which	to	assess	the	roles	of	genetic	
determination	and	plasticity	in	facilitating	adaptation	to	local	condi‐
tions,	with	a	particular	emphasis	to	temperature,	an	environmental	
factor	that	affects	all	levels	of	biological	organization:	from	aerobic	
metabolism	at	 the	cellular	 level,	 to	driving	biogeographic	patterns,	
through	modifying	whole	organism	metabolic	rates	(Schulte,	2015).

An	 organism's	metabolic	 rate	 reflects	 the	 biochemical	 process	
of	transforming	food	into	energy,	that	is	then	used	to	ensure	basic	
cellular	 functioning,	 thermoregulation,	 digestive	 activity	 and	 loco‐
motion	 (Lovegrove,	 2006).	 Thus,	 in	 a	 fasted	 endotherm	 in	 its	 rest	
phase	and	under	thermoneutral	conditions,	it	is	possible	to	quantify	
the	minimum	energy	spent	on	homeostasis,	i.e.,	basal	metabolic	rate	
(BMR;	Lovegrove,	2006).	Variation	in	BMR	has	a	strong	genetic	com‐
ponent	(Nilsson,	Åkesson,	&	Nilsson,	2009;	Rønning,	Jensen,	Moe,	
&	 Bech,	 2007;	 Tieleman	 et	 al.,	 2009;	Wikelski,	 Spinney,	 Schelsky,	
Scheuerlein,	&	Gwinner,	2003)	with	both	mitochondria	and	nuclear	
genomes	being	implicated	in	adaptive	response	to	extreme	environ‐
mental	challenges	(Pichaud,	Ballard,	Tanguay,	&	Blier,	2012;	Tieleman	
et	al.,	2009;	Welch	et	al.,	2014).	Alongside	the	genetic	component,	
BMR	 is	 also	 affected	 by	 environmental	 factors	 such	 as	 ambient	
temperature	 (Jetz,	 Freckleton,	 &	McKechnie,	 2008;	McKechnie	 &	
Swanson,	 2010;	White,	Blackburn,	Martin,	&	Butler,	 2007).	 In	 ad‐
dition	to	the	genetic	and	plastic	components	of	energetic	metabo‐
lism,	one	other	element	has	been	suggested	as	potentially	relevant:	
the	 gut	 microbiome.	 In	 fact,	 there	 is	 a	 growing	 appreciation	 that	
the	microbial	 community	 that	 lives	 in	 the	 gastrointestinal	 tract	 of	
animals	may	affect	the	metabolic	traits	of	hosts	(Alberdi,	Aizpurua,	
Bohmann,	Zepeda‐Mendoza,	&	Gilbert,	2016;	Sommer	&	Bäckhed,	
2013;	Tremaroli	&	Bäckhed,	2012).	Unlike	the	host	genome,	the	mi‐
crobiome	can	change	rapidly	(Bletz	et	al.,	2016;	David	et	al.,	2014),	
thus	potentially	allowing	for	the	preservation	of	beneficial	 interac‐
tions,	which	may	be	key	for	the	host's	metabolic	function	and	energy	
balance.

Thus,	 to	 assess	 whether	 energetic	 phenotypes	 (measured	 as	
metabolic	 rates)	 are	 adaptive	 and	 discover	 the	 underlying	mecha‐
nism	 (plasticity,	 molecular	 variation	 and/or	 modulation	 by	 micro‐
biota)	 we	 combined	 field	 physiological	 experiments	 to	 measure	
metabolic	rates	with	avian	genome	screening	(target	enrichment	ap‐
proach)	and	gut	microbiome	profiling	(metabarcoding)	to	ultimately	
contemplate	an	understanding	of	the	mechanisms	that	allow	birds	to	
occupy	these	challenging	arid	environments.

We	predicted	that,	should	the	rate	at	which	birds	expend	energy	
(metabolic	rate)	confer	fitness	advantages	in	different	environmen‐
tal	 conditions,	 then:	 (a)	metabolic	 rates	 should	 be	 associated	with	
environmental	conditions	(i.e.,	lower	in	populations	from	more	arid	
regions)	 and;	 (b)	 if	 the	gut	microbiome	plays	a	 role	 in	 this	 system,	
it	 would	 co‐vary	 with	 environmental	 change,	 possibly	 implying	 a	
functional	 role	 in	energy	balance;	 (c)	variation	 in	genes	underlying	
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energetic	 metabolism	 would	 be	 associated	 with	 environmental	
change,	contrasting	with	variation	 in	noncoding	regions	of	 the	ge‐
nome	that	should	mostly	be	affected	by	gene	flow;	and	(d)	metabolic	
rates	would	be	correlated	with	functional	genetic	background,	 i.e.,	
variation	in	genes	underlying	energy	production	pathways.

2  | MATERIAL S AND METHODS

2.1 | Study system: sampling sites and climatic 
variation

During	 the	 summer	 (November–December)	 of	 2015	 and	 win‐
ter	 (June–July)	 2016,	 we	 captured	 96	 scrub‐robins	 in	 seven	 sites	
(CoastalNorth,	 CoastalSouth1,	 CoastalSouth2,	 CentralSouth,	 CentralNorth,	
InlandSouth,	 InlandNorth;	 summer:	 47,	 winter:	 49)	 along	 two	 tran‐
sects	 (Figure	 1b)	which	 concomitantly	 cross	 (a)	 the	 subspecies	 di‐
vide,	 (b)	 the	 ATP	 synthase	 subunit	 6	 break	 (Ribeiro	 et	 al.,	 2011),	
and	 (c)	 the	 climatic	 niche	 of	 the	 species	 (Figure	 1c).	We	 captured	
individuals	 using	 spring	 traps	 baited	 with	 mealworms	 (Tenebrio 
molitor).	 Immediately	after	capture,	we	weighed	 the	birds	and	col‐
lected	a	blood	sample	from	the	brachial	vein	that	was	preserved	in	
RNAlater.	Birds	were	 then	kept	 in	 cages	 for	no	 longer	 than	48	hr,	
until	 the	 physiological	 experiment,	 with	 food	 provided	 ad libitum. 

Permits	for	capturing	the	birds	were	 issued	by	the	Northern	Cape	
Department	of	Environmental	Affairs	(ODB	2665	&	2666/2015)	and	
CapeNature	 (0056‐AAA008‐00051)	 in	 South	 Africa.	 The	 Animal	
Ethical	Committee	at	the	Nelson	Mandela	University	(South	Africa)	
approved	all	experiments	(A15‐SCI‐ZOO‐005).

We	used	climatic	variables	and	a	proxy	of	primary	productivity	
(normalized	 difference	 vegetation	 index	 [NDVI])	 as	 surrogates	 for	
environmental	selection	pressures	because	precipitation,	tempera‐
ture	and	NDVI	have	been	correlated	with	variation	in	metabolic	rates	
in	birds	(Jetz	et	al.,	2008;	Swanson	&	Vézina,	2015).	We	used	GPS	
coordinates	 of	 each	 sampling	 location	 (obtained	 with	 a	 handheld	
device;	Garmin)	 to	 extract	 climatic	 data	 from	Worldclim	 database	
(30	arc‐second	 resolution;	www.world	clim.org;	Hijmans,	Cameron,	
Parra,	Jones,	&	Jarvis,	2005)	and	NDVI	(the	proxy	for	primary	pro‐
ductivity)	from	USGS‐LandDAAC‐MODIS	data	set	hosted	by	United	
States	 Geological	 Survey	 (250	 m	 resolution;	 https	://lpdaac.usgs.
gov/datas	et_disco	very/modis	).	 We	 performed	 a	 principal	 compo‐
nent	analysis	 (PCA)	to	summarise	the	climatic	variation,	using	only	
climatic	variables	with	cross‐correlation	coefficient	value	 (Pearson	
correlation r)	value	≤80%.	The	two	principal	components	were	des‐
ignated	climatePC1	and	climatePC2,	for	the	sake	of	clarity.	We	per‐
formed	all	analyses	using	r‐packages	raster	(Hijmans,	2017)	and	stats 
(R	Core	Team,	2018).

F I G U R E  1  Details	about	the	study	system—the	Karoo	scrub‐robin.	(a)	Distribution	of	the	Karoo	scrub‐robin.	Depiction	of	the	two	
subspecies	(C. c. cinerea and C. c. coryphaeus)	range	and	coincidence	with	distribution	of	two	mitochondria	haplotypes	(ATP	synthase	subunit	
6	nonsynonymous	substitutions)	as	reported	in	Ribeiro	et	al.	(2011).	(b)	Diagram	of	our	sampling	design:	two	transects	(TNorth	and	TSouth)	
across	the	subspecies	boundary,	mitochondrial	divide	and	climatic	gradient.	Geographic	distance	between	sampling	sites,	as	estimated	
with	the	great	circle	method.	(c)	Representativeness	of	our	sampling	sites	in	regards	to	the	climatic	niche	of	the	Karoo	scrub‐robin:	the	first	
two	principal	components	of	19	bioclimatic	variables	explained	~73%	of	the	variation.	GPS	coordinates	for	species	wide	distribution	from	
Ribeiro	et	al.	(2012).	Populations	at	the	extreme	of	our	transects	occupy	different	portion	of	the	climatic	niche	(Tukey's	HSD,	p	<	.01,	after	
significant	ANCOVA,	controlling	for	the	effect	of	latitude	and	longitude)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

http://www.worldclim.org
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2.2 | Energetic physiology: basal metabolic rate and 
metabolic scope

To	 assess	 energetic	 physiology	 phenotypes	 we	 measured	 basal	
metabolic	rates	(BMR;	energy	required	by	an	endotherm	to	maintain	
energetic	homeostasis	under	resting	conditions	at	thermoneutrality)	
and	metabolic	expansibility	(ME;	the	capacity	to	elevate	the	meta‐
bolic	output	from	a	basal	to	maximum	level,	so	as	to	meet	the	ther‐
moregulatory	demands	of	cold	conditions).

We	excluded	from	the	metabolic	experiments	juvenile	birds	(as	
assessed	 by	 plumage),	 birds	 showing	 any	 sign	 of	 body	moult,	 and	
those	showing	body	mass	loss	exceeding	5%	while	in	captivity.	This	
left	70	birds	remaining:	CoastalSouth1:	8,	CoastalSouth2:	8,	CoastalNorth: 
8,	CentralSouth:	12,	CentralNorth:	10,	InlandSouth:	17,	InlandNorth:	7.	To	
quantify	 BMR	we	measured	 gas	 exchange	 rates	 (O2	 consumption	
and	CO2	emission)	of	individual	birds	in	post‐absorptive	conditions	
throughout	 the	 bird's	 resting‐phase	 (night),	 using	 a	 regularly	 cali‐
brated	open‐flow	respirometry	system	(FoxBox‐C	Field	Gas	Analysis	
System,	Sable	Systems).	Gas	exchange	was	recorded	using	expedata 
v.1.2.6	(Sable	Systems).	BMR	was	determined	as	the	lowest	10	min	
mean	 VCO2	 at	 thermoneutrality	 (Londoño,	 Chappell,	 Castañeda,	
Jankowski,	 &	 Robinson,	 2014).	 Full	 details	 of	 experimental	 proce‐
dures	are	in	Appendix	S1,	Methodology.

Metabolic	expansibility	was	estimated	as	the	ratio	between	Msum 
(maximum	metabolic	capacity)	and	BMR	obtained	for	the	same	individ‐
uals:	ME	=	Msum/BMR.	We	used	Msum	values	(maximum	thermogenic	
capacity,	obtained	as	maximum	VCO2	at	low	helix	temperatures)	from	
Ribeiro,	Prats,	Pattinson,	Gilbert,	and	Smit	(2018)	and	calculated	ME	
for	61	adult	scrub‐robins:	Coastal	=	21,	Central	=	18	and	Inland	=	22.	
Briefly,	as	reported	in	Ribeiro,	Prats,	et	al.	(2018),	Msum	was	measured	
as	 the	bird's	O2	 consumption	and	CO2	production	while	exposed	 to	
a	 HelOx	 atmosphere	 (79%	 helium	 +	 21%	 oxygen).	 The	 birds	 were	
exposed	to	a	sliding	cold	exposure	protocol	by	reducing	HelOx	tem‐
perature	by	3°C	every	10	min.	Trials	ended	when	(a)	VCO2	started	to	
decline	indicating	peak	thermogenic	metabolism	was	reached,	and	(b)	
body	temperature—Tb	<	34°C.

2.2.1 | Phenotype‐environment association

To	test	whether	environmental	variation	was	a	significant	predictor	of	
the	energetic	phenotype	 (BMR	and	ME),	we	used	generalized	 linear	
models	 (GLM).	BMR	and	ME	were	the	dependent	variables	(normal‐
ity	and	homogeneity	of	variance	tests	in	Appendix	S1,	Methodology),	
and	body	 condition	 (Mb‐scaled;	 estimation	procedure	 in	Appendix	 S1,	
Methodology;	Peig	&	Green,	2012),	sex	and	environment	(NDVI,	cli‐
matePC1)	were	the	predictor	variables.	Due	to	the	lack	of	morphologi‐
cal	sexual	dimorphism	 in	scrub‐robins,	we	determined	sexes	using	a	
molecular	method	(Appendix	S1,	Methodology).	To	assess	the	effect	
of	 region	 (three	 levels	as	defined	from	climatePC1:	Coastal,	Central,	
Inland)	 and	 season	 (two	 levels:	 summer	 and	 winter)	 in	 phenotypic	
variation,	we	 implemented	 a	GLM.	 Finally,	 to	 test	 for	within‐region	
seasonal	differences	in	basal	metabolism	and	metabolic	expansibility,	
while	controlling	for	the	effect	of	body	condition,	we	used	a	one‐way	

analysis	of	covariance	(ANCOVA);	upon	significance,	post‐hoc	Tukey's	
HSD	tests	were	carried	out	to	identify	significant	pairwise	differences	
between	 populations.	 All	 statistical	 analyses	 were	 performed	 in	 r 
v3.3.2	 (R	Core	Team,	2018)	using	mass	 package	and	plots	produced	
with	ggplot2	package	(Wickham,	2016).	We	accepted	p	≤	.05	as	a	sig‐
nificant	difference	for	all	statistical	tests.

2.3 | Gut microbiome composition

2.3.1 | Amplicon sequencing, sequence 
processing and data filtering

From	 the	 96	 birds	 handled,	 we	 collected	 18	 individual	 faecal	
pellets	 (NCoastal	 =	 6,	NCentral	 =	 7,	NInland	 =	 5)	 using	 single‐use	 fil‐
ter‐paper	bags	that	lined	cloth	bags	in	which	captured	birds	were	
placed.	All	 samples	were	collected	 in	summer	2015.	Faecal	sam‐
ples	were	preserved	 in	soil/faecal	DNA	MiniPrep	kit	 lysis	buffer	
(ZymoResearch)	and	DNA	extracted	following	the	soil/faecal	DNA	
MiniPrep	 kit	 instructions.	 A	 negative	 control	 proceeded	 in	 the	
workflow	with	all	other	extracts	as	to	control	for	contamination.	
The	DNA	extracted	was	used	in	a	dual	indexed	PCR	approach	to	
target	the	V3–V4	variable	region	of	the	bacterial	16S	rRNA	gene	
(465	bp)	using	the	primer	pair	Bact‐341F	and	Bakt‐806R	(Hansen	
et	 al.,	 2012)	 with	 Illumina	 Nextera	 overhang	 adapters	 (Illumina	
Inc.).	 PCR	 products	 were	 pooled	 in	 equimolar	 proportions	 and	
sequenced	on	an	Illumina	MiSeq	platform	with	250PE	chemistry.	
Details	 about	DNA	extraction,	PCRs	 and	 library	preparation	 are	
provided	as	Appendix	S1,	Methodology.

2.3.2 | Sequence processing

Post	 sequencing,	 raw	 reads	 for	 the	16S	 rRNA	amplicon	were	pro‐
cessed	 using	 a	 similar	 approach	 to	 the	 UPARSE	 pipeline	 (Edgar,	
2013)	with	vsearch	v2.1.2	(Rognes,	Flouri,	Nichols,	Quince,	&	Mahé,	
2016).	 Briefly,	 (a)	 paired	 reads	 were	 merged,	 quality	 filtered	 and	
lengths	trimmed	to	>400	bp;	and	(b)	barcodes,	adapters	and	primers	
were	trimmed.	Filtered	reads	were	then	clustered	into	Operational	
Taxonomic	Units	 (OTUs)	 in	usearch	 v9.0.2132	with	default	 param‐
eters	(Edgar,	2010)	and	chimeras	were	additionally	removed	(Edgar,	
2016).	OTU	 taxonomic	 assignment	was	 performed	using	 the	 soft‐
ware lcaclassifier	 v.2.0.4	 and	 the	 silvamod	 reference	 database	
(Lanzén	et	al.,	2012)	with	50	database	matches	per	OTU.	Unassigned	
OTUs,	eukaryotic	OTUs	and	samples	with	 fewer	 than	9,000	reads	
were	removed	from	the	OTU	table	prior	to	statistical	analyses.

2.3.3 | Microbiome‐environmental association

We	 estimated	 Shannon‐Wiener's	 and	 Simpon's	 indexes	 to	 quantify	
bacterial	 community	diversity	by	 region	using	 the	r‐package	phyloseq 
(McMurdie	&	Holmes,	2013;	r	v3.4.3,	R	Core	Team,	2018).	Differences	
in	 richness	were	 assessed	using	 an	ANOVA	after	 confirming	normal‐
ity	 (Shapiro‐Wilk	 test).	 Prior	 to	 multivariate	 analyses,	 samples	 were	
subsampled	randomly	to	9,871	reads	(we	contend	is	close	enough	to	
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the	minimum	10,000	reads;	Faith	et	al.,	2013)	and	log	+	1	transformed.	
Differences	in	bacterial	community	composition	were	inspected	with	a	
principal	coordinate	analysis	using	a	Bray‐Curtis	dissimilarity	matrix	in	
r‐package	phyloseq.	To	test	whether	climate	(measured	as	climatePC1)	
or	 primary	 productivity	 (assessed	 as	 NDVI)	 were	 shaping	 the	 diver‐
sity	 in	 gut	microbiome	we	 used	multiple	matrix	 regression	 approach	
(MRM;	Lichstein,	2006).	We	implemented	the	tests	at	 individual‐level	
and	 tested	 significance	 by	 permutation	 (n	 =	 9,999)	 using	 r‐package	
ecodist	 (Goslee	&	Urban,	2007;	r	v3.3.2;	R	Core	Team,	2018).	Briefly,	
we	compared	the	observed	dissimilarity	matrix	(Bray‐Curtis	dissimilar‐
ity)	against	a	matrix	for	climate	(Euclidean	distance	along	climatePC1)	
or	NDVI	(Euclidean	distance	between	NDVI	value	at	time	of	sampling)	
effects	while	controlling	 for	 the	effect	of	geographical	distances	 (dis‐
tance	in	Km).	Taxonomic‐based	pairwise	comparisons	of	microbial	com‐
munities	between	each	of	the	three	geographical	regions	were	tested	
in r‐package	metacoder	 (Foster,	 Sharpton,	 &	 Grünwald,	 2017)	 with	
Wilcoxon	rank‐sum	test	followed	by	a	Benjamini‐Hochberg	correction	
for	multiple	testing	(Benjamini	&	Hochberg,	1995).

2.4 | Avian genomics

2.4.1 | Target enrichment, sequence processing and 
data filtering

We	 extracted	 DNA	 for	 96	 samples	 (CoastalSouth1:	 14,	 CoastalSouth2: 
9,	 CoastalNorth:	 13,	 CentralSouth:	 20,	 CentralNorth:	 12,	 InlandSouth:	 21,	
InlandNorth:	 7)	 using	 DNeasy	 Kit	 (Qiagen)	 or	 KingFisher	 Duo	 Prime	
System	 (ThermoFisher	 Scientific)	 and	 built	 genomic	 libraries	 slightly	
adapting	the	protocol	by	(Carøe	et	al.,	2018;	details	 in	Appendix	S1,	
Methodology).	We	 enriched	 our	 libraries	 for	 protein	 coding	 regions	
(2,889	exons	associated	with	energetic	metabolism,	water	economy,	
heat	tolerance,	mitochondria	biogenesis,	egg	shell	features)	and	non‐
coding	 regions	 (2,122	 intergenic	 regions	of	200	bp)	 using	 a	 custom	
myBaits	 target	 capture	Kit	 (Arbor	Biosciences).	These	 libraries	were	
sequenced	on	 the	 Illumina	HiSeq	2000	platform	 to	 generate	80	bp	
single‐end	 reads.	 Prior	 to	downstream	analysis,	we	 first	 filtered	 the	
raw	data	 to	 remove	adapters	and	 low	quality	bases	and	reads	using	
Trimmomatic	 (Bolger,	 Lohse,	 &	Usadel,	 2014).	The	 reads	were	 then	
mapped	 to	 the	 Oenanthe oenanthe	 genome	 with	 BWA‐mem	 (Li,	
2013);	 we	 used	 this	 species	 as	 reference	 because	 it	 is	 the	 closest	
(Muscicapidae	family)	currently	available	relative	to	Cercotrichas	with	
an	annotated	genome.	Mapped	reads	were	 further	 filtered	as	 to	 re‐
move	multi‐mappers	and	 low	quality	mapping	reads	using	SAMtools	
(Li	 et	 al.,	 2009)	 and	 duplicates	with	 Picard	 tools	 (https	://broad	insti	
tute.github.io/picar	d/).	The	resulting	BAM	files	were	used	to	estimate	
genotype	 likelihoods	 or	 for	 genotype	 calling	when	 site	 depth	 >15×	
(hereafter	 hard	 genotypes)	 in	ANGSD	 (Korneliussen,	Albrechtsen,	&	
Nielsen,	2014).	See	Appendix	S1	for	full	details.

2.4.2 | Population genetic structure

To	minimize	 the	potential	effect	of	 selection	on	measures	of	ge‐
netic	structure,	we	restricted	this	analysis	to	the	intergenic	regions.	

We	assessed	population	genetic	structure	following	two	methodo‐
logical	 approaches:	 (a)	 non‐model‐based	methods	 using	 a	 princi‐
pal	 components	analysis	 (DPCA)	and	 sparse	non‐negative	matrix	
factorization	 (sNMF);	and	 (b)	model‐based	methods	testing	mod‐
els	with	1–6	clusters	(K),	using	NGSadmix	(Skotte,	Korneliussen,	&	
Albrechtsen,	2013;	16,104	single	nucleotide	polymorphism—SNPs;	
minor	 allele	 frequency—MAF	 >1%)	 and	 fastSTRUCTURE	 (Raj,	
Stephens,	&	Pritchard,	2014).	Discriminant	analysis	of	PCA	(DPCA;	
Jombart,	Devillard,	&	Balloux,	2010,	 implemented	with	adegenet	
r	package),	sNMF	(performed	in	lea	package	in	r)	and	fastSTRUC‐
TURE	were	applied	to	hard	genotypes.	Because	rare	alleles	can	af‐
fect	inference	of	population	structure,	we	retained	only	sites	with	
MAF	>1%.	In	addition,	we	used	genotypes	likelihoods	to	estimated	
pairwise	FST	 (among	 seven	 populations)	 using	 a	 two‐dimensional	
site	 frequency	 spectrum	 (SFS)	with	 ANGSD	 (Korneliussen	 et	 al.,	
2014).	 For	 comparative	 purposes	 we	 also	 ran	 fastSTRUCTURE	
with	our	gene	data	set.	Details	on	model	parameterization	are	pro‐
vided	in	Appendix	S1.

2.4.3 | Isolation by distance and isolation by ecology

The	degree	of	genetic	differentiation	between	populations,	 if	 any,	
translates	 the	 relative	 effect	 of	 drift	 and	 gene	 flow	 (Lenormand,	
2002),	 which	 in	 turn	 are	 affected	 by	 geographical	 distances	 and	
selective	factors.	Because	disentangling	the	relative	effects	of	geo‐
graphic	distance	 (isolation	by	distance;	Slatkin,	1993)	and	environ‐
mental	factors	(isolation	by	environment;	Wang	&	Bradburd,	2014)	is	
essential	for	understanding	local	adaptation	(Sexton,	Hangartner,	&	
Hoffmann,	2013),	we	tested	for	isolation	by	distance	and	isolation	by	
environment	using	a	Mantel	test	(Mantel,	1967)	and	multiple	matrix	
regression	 (MRM;	Lichstein,	2006)	approach,	 respectively.	We	 im‐
plemented	the	tests	at	individual‐	and	population‐level,	and	tested	
significance	by	permutation	 (n	=	9,999).	Genetic	distance	between	
individuals	 (Dxy)	 was	 calculated	 from	 genotype	 posterior	 prob‐
abilities	as	the	average	number	of	nucleotide	differences	as	imple‐
mented	in	ngsDist	(Vieira,	Lassalle,	Korneliussen,	&	Fumagalli,	2016).	
At	population‐level,	genetic	distance	between	populations	was	es‐
timated	 as	 FST/1−FST.	 Environmental	 distance	 between	 individuals	
was	estimated	as	the	Euclidean	distance	between	points	along	the	
climatePC1.	 Geographical	 distance	 between	 sampling	 points	 was	
calculated	as	the	great‐circle	distance,	i.e.,	the	shortest	distance	be‐
tween	two	points	on	the	surface	of	a	sphere	in	kilometres.	All	analy‐
ses	were	performed	in	r	using	packages	vegan	(Oksanen	et	al.,	2017),	
ecodist	 (Goslee	 &	 Urban,	 2007)	 and	 sp	 (https	://github.com/edzer/	
sp/).

2.4.4 | Genotype‐environment associations

Although	isolation	by	environment	(IBE)	can	indicate	a	role	of	the	en‐
vironment	in	shaping	genetic	variation,	it	cannot	pinpoint	the	loci	that	
exhibit	deviations	 from	patterns	of	neutral	evolution.	Thus,	we	pro‐
ceeded	to	find	a	genotype‐environment	association	using	latent	fac‐
tor	mixed	models	(lfmm v1.3;	Frichot,	Schoville,	Bouchard,	&	François,	

https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
https://github.com/edzer/sp/
https://github.com/edzer/sp/
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2013)	using	the	r	package	LEA	(Frichot	&	François,	2015).	Specifically,	
we	applied	this	method	to	investigate	for	correlations	between	allele	
frequencies	with	climatic	variables	(climatePC1),	while	controlling	for	
the	effect	of	population	structure.	Although	our	analyses	of	popula‐
tion	structure	did	not	indicate	any	clear	clustering,	we	decided	to	run	
the	model	with	two	latent	factors	(clusters;	K	=	2),	as	a	conservative	
approach	to	control	for	any	subtle	pattern	in	allele	frequencies.	To	also	
avoid	 any	 false	positives	 caused	by	 rare	 alleles,	we	used	only	 SNPs	
with	MAF	>5%.	For	each	K,	we	ran	10	repetitions	with	100,000	itera‐
tions	each,	which	were	performed	after	discarding	the	initial	50,000	
steps	as	burnin.	The	median	Z‐scores	of	the	10	runs	were	converted	
into p‐values	and	those	adjusted	for	a	false‐discovery	rate	threshold	of	
1%.	We	further	investigated	the	function	of	the	top	25%	SNPs	signifi‐
cantly	correlated	with	climatic	variables.	We	utilized	our	scrub‐robin	
consensus	sequence	(built	for	bait	design,	details	in	Appendix	S1)	ob‐
tained	using	the	Oenanthe oenanthe	annotated	genome	as	a	reference,	
to	extract	and	translate	the	coding	regions	containing	the	LFMM	out‐
liers	into	amino	acid	sequences.	And	then	used	Blast2GO	(Conesa	et	
al.,	2005)	to	retrieve	functional	annotations	by	comparison	with	birds	
sequences	 in	the	nr	database	(8,792	bird	species).	Only	hits	with	an	
e‐value	<1.0E‐5	and	percent	identity	>80%	were	retained	and	used	to	
assign	GO	categories	to	the	matching	coding	regions.

2.5 | Phenotype‐genotype association

We	defined	an	“adaptive	genotype”	by	applying	a	PCA	implemented	
in	ngsTools	(Fumagalli,	Vieira,	Linderoth,	&	Nielsen,	2014)	on	the	gen‐
otype	 likelihood	 of	 SNPs	 significantly	 associated	with	 climate	 (from	
LFMM)	and	extracting	PC1	values	(henceforth	snpsPC1)	for	each	bird.	
The	snpsPC1	was	then	used	as	a	predictor	of	energetic	phenotypes	
(BMR	 and	ME)	 in	 a	 GLM.	 Statistical	 analyses	were	 performed	 in	 r 
v3.3.2	 (R	Core	Team,	2018)	using	mass	 package	and	plots	produced	
with	ggplot2	package	(Wickham,	2016).	We	accepted	p	≤	.05	as	a	sig‐
nificant	difference	for	all	statistical	tests.

3  | RESULTS

3.1 | Environmental variation: climate and primary 
productivity variation across the transect

We	 found	 a	 clear	 environmental	 heterogeneity	 across	 the	 transect.	
The	first	two	principal	component	analysis	axis,	implemented	with	14	
noncollinear	climatic	variables,	explained	91.2%	of	the	variation	in	the	
data	 (Figure	 2a).	While	 PC1	 (climatePC1)	 explained	 61.9%	of	varia‐
tion,	PC2	(climatePC2)	only	explained	29.3%.	Therefore,	we	retained	

F I G U R E  2  Environmental	variation	across	the	study	transects.	(a)	Climatic	variation	using	14	noncolinear	bioclimatic	variables.	(b)	
Variation	in	minimum	temperature—Tmin	(°C).	(c)	Seasonal	change	in	primary	productivity	(NDVI)	in	the	year	of	sampling	[Colour	figure	can	be	
viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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climatePC1	for	further	analyses	because	it	is	related	to	temperature.	
Mean	minimum	 temperature	 in	 summer	 is	 similar	 in	 all	 populations,	
but	decreases	dramatically	in	winter	to	subzero	values	in	the	Inland	re‐
gions	and	~2°C	in	the	Central	area	(Figure	2b).	Regarding	primary	pro‐
ductivity,	while	there	was	a	winter	increase	in	the	Coastal	and	Central	
regions,	NDVI	did	not	change	much	in	the	Inland	region	(Figure	2c).

3.2 | Energetic phenotype versus environment

Our	 analyses	 revealed	 the	 association	 of	 physiological	 phenotypes	
(BMR	and	ME)	with	environmental	variables.	Variation	of	BMR	was	as‐
sociated	with	NDVI	and	climate	(Table	S1).	Overall,	BMR	was	lower	in	
winter	than	in	summer	(GLM;	p	<	.001).	Across	regions,	BMR	was	simi‐
lar	in	winter	(ANCOVA,	F	=	0.337,	p	>	.1),	yet	there	were	regional	differ‐
ences	in	BMR	in	summer	(Figure	3a;	Table	S2):	both	Coastal	and	Central	
populations	 had	 higher	 summer	 BMR	 than	 Inland	 birds	 (post‐hoc	
Tukey's	HSD,	pCoastal‐Central	>	.1,	pCoastal‐Inland	<	.001,	pCentral‐Inland	<	.001).	
Within‐region,	BMR	decreased	in	winter	in	Coastal	and	Central	birds	
(ANCOVA;	FCoastal:	39.070,	p < .001; FCentral:	21.180,	p	<	.001)	but	not	in	
the	Inland	population	(ANCOVA:	FInland:	2.656,	p	=	.118).

Metabolic	 expansibility	 varied	 with	 climatic	 variation	 and	
NDVI	 (Table	 S1).	We	 found	 significant	 regional	 differences	 in	ME	
(Figure	3b;	Table	S2):	Central	and	Inland	birds	had	greater	ME	than	
the	Coastal	population	(GLM;	p	<	.01).	Across	regions,	ME	increased	
in	winter	(GLM;	p	=	.005).	The	post‐hoc	comparisons	revealed	that	
in	winter	only	Central	populations	significantly	increased	ME	com‐
pared	 to	Costal	 birds	 (post‐hoc	Tukey's	HSD,	pCoastal‐Central	 =	 .001,	
pCoastal‐Inland	 >	 .1,	 pCentral‐Inland	 >	 .1).	 In	 addition,	 within	 region	 ME	
was	only	 seasonally	 flexible	 for	 the	Central	population	 (ANCOVA:	
FCentral	=	7.768,	p	=	.014;	FCoastal	=	2.871,	p	>	.1,	FInland	=	0.216,	p	>	.1).

3.3 | Gut microbiome versus environment

The	sequences	obtained	from	18	individual	faecal	samples	targeting	
bacterial	16S	rRNA	gene	allowed	the	identification	802	different	op‐
erational	taxonomic	units	(OTUs)	representing	167	bacterial	genera.	
The	diversity	of	gut	microbiota	as	measured	with	Shannon‐Wiener	
and	Simpson	 indices	was	not	 significantly	different	 across	 regions	
(FShannon‐Wiener	=	0.153,	p	>	.1;	FSimpson	=	0.325,	p	>	.1;	Figure	S2a).	In	
addition,	the	principal	coordinate	analysis	revealed	no	apparent	geo‐
graphical	structure	in	gut	microbiota	diversity	(Figure	S2b).

We	found	no	association	between	climate	or	NDVI	with	micro‐
biome	dissimilarities,	while	controlling	for	the	effect	of	geographic	
distances:	MRM‐Climate,	coefficient‐climate	=	−0.084	(p	>	.1)	and	
coefficient‐geography	 =	 0.035	 (p	 >	 .1);	MRM‐NDVI:	 coefficient‐
NDVI	 =	 0.058	 (p	 >	 .1)	 coefficient‐geography	 =	 −0.077	 (p	 >	 .1).	
In	 fact,	 both	 climate	 and	NDVI	 explained	 a	 very	 low	 portion	 of	
the	overall	 variance	 in	gut	microbiome	diversity	 (R2

climate
	=	0.003,	

R
2

NDVI
	=	0.003).	Although	we	found	birds	from	the	three	regions	to	

have	 similarly	diverse	gut	microbiota,	when	 inspecting	 the	 taxo‐
nomic	composition	of	the	communities	we	found	regional	enrich‐
ment	 for	 some	 bacteria	 (Figure	 S3).	 Namely,	 while	 scrub‐robins	
from	the	Coastal	population	had	highest	proportions	of	gut	bacte‐
ria	from	the	genera	Kocuria,	Tepidimonas, Pseudomonas, Rhizobium 
and Anoxybacillus	(Figure	S3),	the	microbiota	of	Inland	birds	were	
enriched	for	several	genera	of	the	Order	Rhizobiales,	an	unknown	
Coxiellaceae	genus,	and	the	genera	Sphingomonas and Leucobacter 
(Figure	S3).

3.4 | Genotype versus environment

Our	sequence	capture	enrichment	assay	yielded	genetic	information	
for	98.2%	±	2.34	 (mean	±	SD)	of	 the	 total	876,500	sites	 targeted.	
The	median	on‐target	depth	per	 sample	was	68×.	Overall,	 genetic	
diversity	in	the	intergenic	regions	was	two‐fold	of	that	observed	in	
coding‐regions—genetic	diversity	indexes	are	reported	in	Appendix	
S1,	Results.

From	the	total	of	1,211	SNPs	identified	in	coding‐regions	(consid‐
ering	only	SNPs	with	MAF	>5%	and	present	in	at	least	94	individuals),	
the	LFMM	analysis	classified	94	SNPs,	located	in	63	genes,	as	puta‐
tively	adaptive	and	associated	with	climatePC1	(heavily	influenced	by	
temperature	 seasonality;	 Figure	 4a).	 The	 top	 25%	 SNPs	 associated	
with	climate	where	located	in	the	following	genes	(Table	S3):	myosin	

F I G U R E  3  Phenotypic	variation	in	energetic	phenotypes	across	
regions	and	between	seasons.	(a)	Basal	metabolic	rate	(BMR):	
Coastal	and	Central	populations	had	larger	summer	BMR	than	
Inland	birds	(post‐hoc	Tukey's	HSD,	pCoastal‐Central	>	.1,	pCoastal‐
Inland	<	.001,	pCentral‐Inland	<	.001).	Overall,	BMR	was	lower	in	winter	
than	in	summer	(GLM:	twinter:	–8.266,	p	<	.001).	(b)	Metabolic	
expansibility	(ME):	Central	and	Inland	birds	had	greater	ME	than	the	
Coastal	population	(GLM:	tCentral:	3.763,	p < .001 and tInland:	3.244,	
p	=	.002)	and	ME	increased	in	winter	(GLM:	twinter:	2.917,	p	=	.005).	
Regional	significant	differences	are	annotated	with	asterisk	[Colour	
figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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light	chain	and	the	troponin	(part	of	the	muscle	contraction	machin‐
ery),	calcium	voltage‐gated	channel	auxiliary	subunit	gamma	1	(plays	
a	 role	 in	 excitation‐contraction	 coupling	 process	 that	 initiates	mus‐
cle	 contraction),	 5′AMP‐activated	 kinase	 subunit	 gamma	 and	 alpha	
(metabolic	switch	by	which	cells	sense	changes	in	energy	status),	the	
ATP	synthase	subunit	beta	 (catalytic	core	of	complex	V	of	OXPHOS	
pathway)	and	the	catalase	(protection	from	oxidative	damage).	Often,	
Coastal	and	Inland	populations	represent	the	extremes	of	SNP	allele	
frequency	(Figure	4b).	In	contrast,	frequencies	in	Central	populations	
were	 sometimes	 intermediate	 (e.g.,	5′AMP	activated	kinase	gamma)	
and	in	other	instances	similar	to	one	of	the	extremes	(e.g.,	Myosin	light	
chain	1,	Figure	4b).

3.5 | Phenotype versus genotype

The	first	principal	component	of	a	PCA	on	the	genotype	likelihood	
of	SNPs	(henceforth	snpsPC1)	significantly	associated	with	climate	

(from	LFMM)	was	a	significant	predictor	of	variation	in	BMR	(GLM;	
p	=	.011;	Figure	5a)	as	well	as	in	ME	(GLM;	p	=	.006;	Figure	5b),	while	
including	body	condition	and	sex	as	covariates	in	the	model.

4  | DISCUSSION

Our	understanding	of	the	physiological	traits	that	contribute	to	tol‐
erance	to	arid	conditions	has	improved	greatly	over	the	last	decade	
(Sabat	et	al.,	2006;	Smit	&	McKechnie,	2010;	Williams	&	Tieleman,	
2002).	Nevertheless,	knowledge	on	how	those	traits	came	to	exist,	
and	their	role	in	enabling	adaptation	to	local	conditions	in	such	harsh	
ecosystems	 is	 still	 poor.	We,	 therefore,	 combined	 environmental,	
phenotypic,	microbiome	and	genomic	data	 to	address	 this	and	 re‐
vealed	 that:	 (a)	 energetic	 phenotypes	 were	 associated	 with	 envi‐
ronmental	features,	with	scrub‐robins	living	in	the	most	arid	region	
having	the	 lowest	BMR	and	wider	metabolic	expansibility;	 (b)	only	

F I G U R E  4  Adaptive	variation	across	the	gradient.	(a)	Genotypic	variation	for	94	candidate	SNPs	as	identified	by	LFMM	was	summarized	
as	snpsPC1.	(b)	Variation	in	allele	frequency	of	the	top	10%	candidate	SNPs	across	transects.	SNP	frequencies	for	each	population	were	
estimated	using	the	allele	in	the	reference	genome	to	polarize	the	data.	Absence	of	a	column	denotes	the	lack	of	the	reference	allele	in	the	
respective	population	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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a	 few	 components	 of	 gut	microbiota	 changed	 across	 the	 environ‐
mental	transect;	 (c)	a	small	 list	of	genes	 (94	SNPs	 in	63	genes)	are	
putative	targets	of	natural	selection	despite	overall	low	differentia‐
tion;	and	(d)	variation	in	putatively	adaptive	SNPs	genes	explains	the	
differences	 observed	 in	 energetic	 phenotypic	 traits	 suggesting	 a	
modular	but	simple	basis	for	adaptation	to	arid	conditions.

4.1 | Energetic metabolism

The	 intraspecific	variation	 in	the	energy	expended	to	maintain	basic	
function	(BMR)	as	well	as	in	the	energetic	capacity	to	deal	with	cold	
stress	(ME)	supports	the	adaptive	role	of	energetic	metabolism.	Scrub‐
robins	living	in	the	most	arid	region	(lower	NDVI,	larger	temperature	
amplitude)	had	a	lower	BMR,	and	this	trait	was	not	seasonally	flexible,	
i.e.,	 low	phenotypic	flexibility	(Figure	3).	These	findings	support	pre‐
vious	work	that	attributed	selective	advantages	 to	 low	maintenance	
energy	phenotypes	(BMR)	in	birds	living	in	arid	environments	(Williams	
&	Tieleman,	2005).	Although	we	strongly	believe	that	our	results	were	
not	affected	by	regional	differences	in	life‐history	traits	such	as	breed‐
ing	time,	as	we	found	no	evidence	of	reproduction	(e.g.,	active	brood‐
patches	 in	 females,	 nesting	 or	 chick	 provisioning),	 we	 cannot	 fully	
reject	the	idea.	It	may	be	possible	that	the	temporal	proximity	of	our	
experiments	(start:	middle	November)	to	the	end	of	the	energetically	
demanding	breeding	activity	(end:	late	October–early	November)	had	
some	carryover	effects	in	the	Coastal	birds,	and	hence	increased	BMR.

When	comparing	the	BMR	values	obtained	here	with	the	allome‐
tric	expectations	for	an	18–20	g	passerine	(Londoño	et	al.,	2014)	the	
Inland	population	stayed	below	the	expected	values	both	in	winter	
(68%)	 and	 summer	 (74%)	 as	 opposed	 to	Coastal	 and	Central	 pop‐
ulations	which	 approached	 the	 above	mentioned	 expected	 values	
(~95%).	The	selective	advantages	attributed	to	a	 reduced	BMR	 in‐
clude	a	lower	overall	energy	and	water	demands,	and	low	endoge‐
nous	heat	production	(Williams	&	Tieleman,	2005).	Such	traits	may	
be	favoured	in	the	scrub‐robin	populations	living	in	the	most	arid	re‐
gion	(Inland)	because	a	reduced	metabolism	not	only	decreases	heat	
load	and	hence	the	risk	of	hyperthermia	in	summer,	but	also	reduce	
overall	energy	demands,	hence	the	need	to	obtain	food	in	an	area	
of	low	productivity.	This	pattern	was	also	reported	for	bird	species	
inhabiting	 the	Kalahari	 desert	 (Smit	&	McKechnie,	2010),	 a	 region	
adjacent	 to	 the	 Karoo	 desert.	 BMR	was	 revealed	 to	 be	 a	 flexible	
phenotype	in	the	Coastal	and	Central	populations.	These	short‐term	
changes	in	BMR	are	thought	to	arise	from	adjustments	in	the	mass	of	
metabolically	active	organs:	mass	of	thermogenic	muscles	in	winter	
(Zheng,	Liu,	&	Swanson,	2014),	and/or	mass	of	reproductive	organs	in	
spring/summer	of	reproductive	organs	(Vézina,	Salvante,	&	Williams,	
2003).	 Although	 the	 striking	 increase	 in	 BMR	 during	 summer	 in	
Coastal	and	Central	populations	cannot	be	explained	by	hypertro‐
phy	of	thermogenic	muscles	(Ribeiro,	Prats,	et	al.,	2018)	we	cannot	
rule	out	the	possible	effect	of	metabolic	costs	of	maintaining	repro‐
ductive	organs.	However,	we	find	it	unlikely,	because	the	breeding	

F I G U R E  5  Phenotype‐genotype	
association:	variation	of	energetic	
phenotype	with	different	putatively	
adaptive	genotypes	as	summarized	
by	snpsPC1.	(a)	Association	of	BMR	
with	adaptive	genotypes	(GLM,	
tsnpsPC1	=	2.604,	p	=	.011)	and	(b)	
Association	of	Metabolic	Expansibility	
with	adaptive	genotypes	(GLM,	
tsnpsPC1	=	−2.848,	p	=	.006).	Regression	
line	fitting	a	GLM:	Phenotype	~	Mb‐

scaled	+	Sex	+	snpsPC1	[Colour	figure	can	
be	viewed	at	wileyonlinelibrary.com]
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season	 of	 subspecies	 cinerea	 (Coastal	 morph	 showing	 increase	 in	
summer	 BMR)	 typically	 occurs	 between	 September–October	 and	
we	 collected	data	 from	11–18	November	2015.	Moreover,	we	did	
not	observe	any	sign	of	breeding	activity	(e.g.,	active	brood	patches)	
at	the	time	of	our	study.

Metabolic	expansibility	 reflects	 the	capacity	of	an	organism	to	
rapidly	 adjust	 its	 metabolism	 to	 meet	 the	 energetic	 challenge	 of	
thermoregulation	 under	 cold	 conditions	 (measured	 as	 the	 ratio	 of	
maximum	 thermogenic	 capacity	 and	 basal	metabolism).	Given	 the	
absence	 of	 regional	 differences	 in	 maximum	 thermogenic	 capac‐
ity	 (Ribeiro,	 Prats,	 et	 al.,	 2018),	 the	 wider	metabolic	 expansibility	
observed	 in	 populations	 experiencing	 lower	 winter	 temperatures	
(Central	and	Inland	populations;	mean	minimum	temperature	in	win‐
ter	<2°C)	inescapably	stems	from	the	lower	BMR.	Thus,	as	opposed	
to	northern‐temperate	climates,	where	highly	variable	climates	se‐
lect	for	higher	maximum	thermogenic	capacity	(Swanson,	Zhang,	&	
King,	 2014),	 subtropical	 and	highly	 variable	 climates	 should	 select	
for	lower	BMR.

Living	in	arid	environments	poses	energetic	constraints	because	
food	is	not	only	scarce,	but	unpredictable.	In	the	southwestern	arid‐
zone	 of	 Africa,	 insectivorous	 birds	 such	 as	 the	 Karoo	 scrub‐robin	
face	dramatic	spatial	and	temporal	changes	in	food	abundance	as	a	
consequence	of	unpredictable	pulses	of	rainfall	followed	by	dramatic	
droughts	(Dean	&	Milton,	1999;	Lloyd,	1999).	Thus,	maximizing	en‐
ergy	intake	from	food	items	is	of	utmost	importance,	and	indeed	the	
major	role	of	the	gut	microbiome	(Valdes,	Walter,	Segal,	&	Spector,	
2018).	Our	 findings	 that	a	 few	bacterial	genera	were	differentially	
enriched	 in	 different	 environments	 may	 indicate	 functional	 shifts	
associated	with	energetic	demands.	For	instance,	the	gut	microbiota	
of	 Inland	birds	was	enriched	for	genera	Sphingomonas,	chemohet‐
erotrophic	bacteria	that	can	survive	conditions	of	nutrient	stress	and	
metabolizes	a	wide	variety	of	carbon	sources	(Balkwill,	Fredrickson,	
&	Romine,	 2006),	 and	 several	 genera	 from	 the	Order	 Rhizobiales,	
which	 include	bacteria	capable	of	nitrogen	fixing.	The	presence	of	
the	latter	bacteria	may	contribute	to	nitrogen	budget	as	the	Karoo	
scrub‐robin	has	been	found	to	supplement	its	diet	with	plant	items	
(Ribeiro,	Smit,	&	Gilbert,	2018),	which	are	low	in	nitrogen.	Although	
our	 integrative	approach	would	have	benefited	from	larger	sample	
sizes,	 we	 contend	 our	 results	 provide	 solid‐ground	 to	 further	 ex‐
plore	whether	the	observed	bacterial	turnover	have	functional	con‐
sequences,	namely	in	energy	homeostasis	(e.g.,	Debebe	et	al.,	2017).

4.2 | Energetic metabolism and local adaptation

Disentangling	the	effects	of	demography	from	local	adaptation	can	
be	particularly	challenging	in	systems	where	isolation	by	distance	co‐
incides	with	the	environmental	gradient	(Nadeau,	Meirmans,	Aitken,	
Ritland,	&	Isabel,	2016).	Thus,	to	accurately	detect	signatures	of	local	
adaptation	using	genetic‐environment	associations	and	reduce	the	
risk	of	false	positives	it	is	fundamental	to	control	for	possible	effects	
of	 demographic	 processes	 such	 as	 differential	migration	 and	 thus	
gene	flow.	 In	our	study,	 there	was	no	sign	of	 isolation	by	distance	
(see	Appendix	S1,	Results),	population	structure	was	undetectable	

to	shallow	(pending	on	the	use	of	hard	genotypes	or	genotype	likeli‐
hoods;	Appendix	S1,	Results)	and	there	was	no	indication	of	popu‐
lation	 demographic	 expansion	 as	 revealed	 by	 the	 site	 frequency	
spectrum	 (Figure	S6)	and	Tajima's	D	values	 (Table	S4).	These	 find‐
ings	were	further	corroborated	 in	a	species‐wide	study	 (Ribeiro	et	
al.,	2011)	where	putatively	neutral	microsatellites	and	 introns	also	
revealed	the	lack	of	population	structure	and	extensive	gene	flow.	
However,	as	a	conservative	approach,	our	association	analysis	incor‐
porated	neutral	population	structure	(k	=	2).	If	anything,	this	would	
lead	to	an	underestimation	of	putative	adaptive	SNPs.	Thus,	we	con‐
tend	that	the	signatures	of	genetic	 local	adaptation	were	not	con‐
founded	with	footprints	of	neutral	processes.

Local	adaptation	emerges	when	a	spatially	heterogeneous	en‐
vironment	 generates	 differential	 pressures,	 and	 depends	 on	 the	
balance	among	drift,	 selection	and	gene	 flow	 (Lenormand,	2002;	
Yeaman	&	Otto,	2011).	While	extensive	gene	flow	has	been	thought	
to	 erase	 any	 locally	 adapted	 genotype/phenotype	 (Lenormand,	
2002),	 when	 considering	 temporal	 heterogeneity,	 intermediate	
levels	 of	 gene	 flow	 can	 have	 beneficial	 effects	 on	 local	 adapta‐
tion	 (Blanquart	&	Gandon,	2011;	Blanquart,	Gandon,	&	Nuismer,	
2012).	Because	temporal	unpredictability	is	a	well	known	feature	
of	the	arid	Nama	Karoo,	where	our	Inland	populations	occur	(Dean	
&	Milton,	1999),	it	was	not	unexpected	to	uncover	potential	adap‐
tive‐loci	 in	 the	presence	of	extensive	gene	 flow	as	 suggested	by	
the	lack	of	isolation	by	distance	pattern,	the	low	to	undetectable	
population	 structure	 and	 low	 degree	 of	 genetic	 differentiation	
among	populations.

Being	aware	that	footprints	of	selection	associated	with	spatial	
climatic	variation	do	not	necessarily	 imply	causality,	 it	 is	compel‐
ling	that	several	of	the	putative	adaptive	SNPs	(Table	S3)	localize	
in	genes	encoding	machinery	responsible	for	skeletal	fibre	twitch‐
ing	(myosin,	troponin	and	calcium	channel)	as	this	 is	the	principal	
mechanism	that	birds	use	as	a	heat	source	in	response	to	cold	stress	
(shivering	thermogenesis;	Hohtola,	2004).	This	finding	is	simulta‐
neously	 surprising	 and	 fascinating,	 because	 Inland	 birds	 did	 not	
increase	winter	 thermogenic	 capacity	 through	 shivering	 (Ribeiro,	
Prats,	et	al.,	2018;	measured	as	whole	organism	O2	consumption/
CO2	production	under	cold	conditions),	suggesting	that	natural	se‐
lection	may	be	favouring	genotypes	that	have	a	high	efficiency	of	
fibre	 twitching	 without	 altering	O2/CO2	 rates.	 Furthermore,	 the	
potential	role	of	5′AMP	activated	kinase	in	allowing	local	adapta‐
tion	is	noticeable.	This	enzyme	maintains	the	intracellular	energy	
balance	through	decreasing	energy	demand	by	switching	off	ATP‐
consuming	 pathways,	 and	 increasing	 energy	 supply	 by	 switching	
on	ATP‐generating	pathways	 (Carling,	2004).	Catalase	 is	 another	
enzyme	that	may	be	facilitating	local	adaptation,	as	it	 is	essential	
to	 convert	 hydrogen	 peroxide,	 highly	 toxic	 reactive	 oxygen	 spe‐
cies	which	 result	 from	 electron	 transport	 chain	 in	mitochondria,	
into	water	and	oxygen	and	thereby	mitigates	its	toxic	effects	(Bai	
&	Cederbaum,	 2001).	 These	 reactive	 oxygen	 species	 increase	 in	
domestic	chicken	(Gallus gallus)	during	heat	stress	conditions	and	
consequently	 affected	 mitochondria	 function	 by	 disrupting	 its	
membrane	(Azad,	Kikusato,	Hoque,	&	Toyomizu,	2010).
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Although	 Janzen's	 perspective	 about	 the	 evolutionary	 effects	
of	climatic	variability	on	physiological	tolerances	(Janzen,	1967)	was	
originally	proposed	to	explain	biodiversity	patterns	in	the	tropics,	it	
also	offers	a	useful	conceptual	corollary	with	which	to	understand	
intraspecific	 divergence	 in	 arid‐zones.	 If	 climatic	 variability	 deter‐
mines	population	physiological	 tolerances,	 and	 this	 in	 turn	affects	
dispersal	among	populations,	then	adaptation	to	local	conditions	is	
facilitated.	Our	results	at	the	intraspecific	level	support	the	idea	that	
divergent	selection	between	climatic	environments	is	strong	enough	
to	maintain	a	nonrandom	distribution	of	genotypes	underlying	key	
fitness‐associated	 traits	 (here	 energetic	 phenotype)	 in	 a	 genomic	
background	 of	 low	 differentiation	 (e.g.,	 Schweizer	 et	 al.,	 2015).	
Yet,	we	contend	that	future	work	 including	a	“common	garden	ex‐
periment”	or	“egg	transplantation”	is	fundamental	to	test	for	geno‐
type‐by‐environment	interactions	while	accounting	for	the	possible	
effects	of	phenotypic	plasticity.

Ultimately,	our	findings	highlight	the	need	for	an	intraspecific	ap‐
proach	 when	 modelling	 species	 physiological	 responses	 to	 climate	
change	or	 forecasting	adaptive	shifts,	 rather	 than	assuming	species‐
specific	responses	(e.g.,	Moran,	Hartig,	&	Bell,	2016)	and	may	provide	
an	explanation	to	the	high	avian	intraspecific	divergence	in	harsh	en‐
vironments	(Botero,	Dor,	McCain,	&	Safran,	2013):	local	adaptation	in	
energy	maintenance‐related	traits,	at	least	in	arid	environments.

To	conclude,	we	believe	our	study	exemplifies	how	it	is	only	within	
an	integrative	and	detailed	framework,	that	one	can	begin	to	pinpoint	
the	factors	underlying	phenotypic	adaptation,	and	provide	candidates	
for	further	functional	testing	under	controlled	conditions.
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