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Abstract
Arid environments provide ideal ground for investigating the mechanisms of adaptive 
evolution. High temperatures and low water availability are relentless stressors for many 
endotherms, including birds; yet birds persist in deserts. While physiological adaptation 
probably involves metabolic phenotypes, the underlying mechanisms (plasticity, genet‐
ics) are largely uncharacterized. To explore this, we took an intraspecific approach that 
focused on a species that is resident over a mesic to arid gradient, the Karoo scrub‐robin 
(Cercotrichas coryphaeus). Specifically, we integrated environmental (climatic and primary 
productivity), physiological (metabolic rates: a measure of energy expenditure), geno‐
typic (genetic variation underlying the machinery of energy production) and microbiome 
(involved in processing food from where energy is retrieved) data, to infer the mechanism 
of physiological adaptation. We that found the variation in energetic physiology pheno‐
types and gut microbiome composition are associated with environmental features as 
well as with variation in genes underlying energy metabolic pathways. Specifically, we 
identified a small list of candidate adaptive genes, some of them with known ties to 
relevant physiology phenotypes. Together our results suggest that selective pressures 
on energetic physiology mediated by genes related to energy homeostasis and possi‐
bly microbiota composition may facilitate adaptation to local conditions and provide an 
explanation to the high avian intraspecific divergence observed in harsh environments.

K E Y W O R D S

aridity, birds, energetic physiology, microbiome, natural selection, target enrichment

www.wileyonlinelibrary.com/journal/mec
mailto:﻿
https://orcid.org/0000-0003-0666-3449
mailto:ribeiro.angela@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fmec.15176&domain=pdf&date_stamp=2019-08-06


3710  |     RIBEIRO et al.

1  | INTRODUC TION

Arid environments provide ideal ground for investigating the mech‐
anisms of adaptive evolution in endotherms. The environmental 
stressors associated with elevated aridity, i.e., increasing levels of 
daytime heat and dryness, pose challenges that may need to be 
compensated through physiological performance. Thus, there is a 
growing interest in the role of physiology in adaptive evolution to 
arid environments (Boyles, Seebacher, Smit, & McKechnie, 2011; 
MacManes, 2017; Sabat, Cavieres, Veloso, & Canals, 2006).

Birds inhabit desert regions across all of the world's continents. 
They typically have high body temperatures and the highest mass‐
specific metabolism of all terrestrial vertebrates (Bicudo, Buttemer, 
Chappell, Pearson, & Bech, 2010). At face value this suggests they 
should be poor candidates for inhabiting an ecosystem in which they 
must experience daily air temperatures far beyond their normal body 
temperatures, face food shortages due to low primary productivity, 
and withstand low and unpredictable water availability.

Nevertheless, the results of compelling comparative physiolog‐
ical studies indicate that birds have evolved physiological mecha‐
nisms to cope with these extreme conditions, including to reduce 
cutaneous water loss (e.g., Muñoz‐Garcia, Ro, Brown, & Williams, 
2008; Williams & Tieleman, 2005), control blood flow as to retain 
or dissipate heat (e.g., Tattersall, Andrade, & Abe, 2009) and lower 
energetic demands (e.g., Sabat et al., 2006; Smit & McKechnie, 2010; 
Tieleman, Williams, & Bloomer, 2003; Williams & Tieleman, 2001). 
Despite the efforts to understand energy economy in arid biomes, 
there is still a knowledge gap pertaining to the adaptive mechanisms 
(phenotypic plasticity and adaptive genetic changes) that allow en‐
ergetic physiological phenotypes to match the prevailing environ‐
mental conditions.

Given that environmental spatial heterogeneity should maintain 
genetic differentiation among populations (Hedrick, 2006; Lande, 
1976), temporal change may favour phenotypic plasticity (Chevin, 
Lande, & Mace, 2010; Schlichting & Pigliucci, 1998), both mecha‐
nisms can potentially result in local adaptation, we hypothesised that 
it might be possible to untangle the physiological conundrum of life 
in deserts, through combining ecological, physiological and genetic 
data, from an avian species that spans mesic to desert habitats. One 
such example is the Karoo scrub‐robin (Cercotrichas coryphaeus), 
a passerine whose distribution range spans the highly seasonal 
semi‐arid and arid zones of southern Africa. The Karoo scrub‐robin 
(hereafter: scrub‐robin) has two subspecies recognized according to 
plumage colour (Collar, 2005): C. c. cinerea, a greyish form restricted 
to a coastal semi‐arid environment, and C. c. coryphaeus, a brown‐
ish form that inhabits the inland Karoo desert (Figure 1a). Critically, 
each subspecies occupies a different climatic niche (Ribeiro, Lopes, 
& Bowie, 2012), with cinerea inhabiting a region where rain falls in 
winter and mean annual thermal amplitude seldom exceeds 20°C, 
while coryphaeus' habitat mostly receives erratic rains during the 
summer, and has mean annual thermal amplitudes exceeding 30°C 
as a result of cold winter temperatures. This climatic and plumage 
concordance is mirrored through fixed mitochondrial types (Ribeiro, 

Lloyd, & Bowie, 2011; amino acid changes in the ATPase6 gene that 
is part of the pathway responsible for energy production) despite 
extensive nuclear gene flow (Figure 1a), suggesting that different 
energetic physiology phenotypes may have higher fitness in differ‐
ent conditions. Taken together this information suggests this species 
may be an excellent model with which to assess the roles of genetic 
determination and plasticity in facilitating adaptation to local condi‐
tions, with a particular emphasis to temperature, an environmental 
factor that affects all levels of biological organization: from aerobic 
metabolism at the cellular level, to driving biogeographic patterns, 
through modifying whole organism metabolic rates (Schulte, 2015).

An organism's metabolic rate reflects the biochemical process 
of transforming food into energy, that is then used to ensure basic 
cellular functioning, thermoregulation, digestive activity and loco‐
motion (Lovegrove, 2006). Thus, in a fasted endotherm in its rest 
phase and under thermoneutral conditions, it is possible to quantify 
the minimum energy spent on homeostasis, i.e., basal metabolic rate 
(BMR; Lovegrove, 2006). Variation in BMR has a strong genetic com‐
ponent (Nilsson, Åkesson, & Nilsson, 2009; Rønning, Jensen, Moe, 
& Bech, 2007; Tieleman et al., 2009; Wikelski, Spinney, Schelsky, 
Scheuerlein, & Gwinner, 2003) with both mitochondria and nuclear 
genomes being implicated in adaptive response to extreme environ‐
mental challenges (Pichaud, Ballard, Tanguay, & Blier, 2012; Tieleman 
et al., 2009; Welch et al., 2014). Alongside the genetic component, 
BMR is also affected by environmental factors such as ambient 
temperature (Jetz, Freckleton, & McKechnie, 2008; McKechnie & 
Swanson, 2010; White, Blackburn, Martin, & Butler, 2007). In ad‐
dition to the genetic and plastic components of energetic metabo‐
lism, one other element has been suggested as potentially relevant: 
the gut microbiome. In fact, there is a growing appreciation that 
the microbial community that lives in the gastrointestinal tract of 
animals may affect the metabolic traits of hosts (Alberdi, Aizpurua, 
Bohmann, Zepeda‐Mendoza, & Gilbert, 2016; Sommer & Bäckhed, 
2013; Tremaroli & Bäckhed, 2012). Unlike the host genome, the mi‐
crobiome can change rapidly (Bletz et al., 2016; David et al., 2014), 
thus potentially allowing for the preservation of beneficial interac‐
tions, which may be key for the host's metabolic function and energy 
balance.

Thus, to assess whether energetic phenotypes (measured as 
metabolic rates) are adaptive and discover the underlying mecha‐
nism (plasticity, molecular variation and/or modulation by micro‐
biota) we combined field physiological experiments to measure 
metabolic rates with avian genome screening (target enrichment ap‐
proach) and gut microbiome profiling (metabarcoding) to ultimately 
contemplate an understanding of the mechanisms that allow birds to 
occupy these challenging arid environments.

We predicted that, should the rate at which birds expend energy 
(metabolic rate) confer fitness advantages in different environmen‐
tal conditions, then: (a) metabolic rates should be associated with 
environmental conditions (i.e., lower in populations from more arid 
regions) and; (b) if the gut microbiome plays a role in this system, 
it would co‐vary with environmental change, possibly implying a 
functional role in energy balance; (c) variation in genes underlying 
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energetic metabolism would be associated with environmental 
change, contrasting with variation in noncoding regions of the ge‐
nome that should mostly be affected by gene flow; and (d) metabolic 
rates would be correlated with functional genetic background, i.e., 
variation in genes underlying energy production pathways.

2  | MATERIAL S AND METHODS

2.1 | Study system: sampling sites and climatic 
variation

During the summer (November–December) of 2015 and win‐
ter (June–July) 2016, we captured 96 scrub‐robins in seven sites 
(CoastalNorth, CoastalSouth1, CoastalSouth2, CentralSouth, CentralNorth, 
InlandSouth, InlandNorth; summer: 47, winter: 49) along two tran‐
sects (Figure 1b) which concomitantly cross (a) the subspecies di‐
vide, (b) the ATP synthase subunit 6 break (Ribeiro et al., 2011), 
and (c) the climatic niche of the species (Figure 1c). We captured 
individuals using spring traps baited with mealworms (Tenebrio 
molitor). Immediately after capture, we weighed the birds and col‐
lected a blood sample from the brachial vein that was preserved in 
RNAlater. Birds were then kept in cages for no longer than 48 hr, 
until the physiological experiment, with food provided ad libitum. 

Permits for capturing the birds were issued by the Northern Cape 
Department of Environmental Affairs (ODB 2665 & 2666/2015) and 
CapeNature (0056‐AAA008‐00051) in South Africa. The Animal 
Ethical Committee at the Nelson Mandela University (South Africa) 
approved all experiments (A15‐SCI‐ZOO‐005).

We used climatic variables and a proxy of primary productivity 
(normalized difference vegetation index [NDVI]) as surrogates for 
environmental selection pressures because precipitation, tempera‐
ture and NDVI have been correlated with variation in metabolic rates 
in birds (Jetz et al., 2008; Swanson & Vézina, 2015). We used GPS 
coordinates of each sampling location (obtained with a handheld 
device; Garmin) to extract climatic data from Worldclim database 
(30 arc‐second resolution; www.world​clim.org; Hijmans, Cameron, 
Parra, Jones, & Jarvis, 2005) and NDVI (the proxy for primary pro‐
ductivity) from USGS‐LandDAAC‐MODIS data set hosted by United 
States Geological Survey (250  m resolution; https​://lpdaac.usgs.
gov/datas​et_disco​very/modis​). We performed a principal compo‐
nent analysis (PCA) to summarise the climatic variation, using only 
climatic variables with cross‐correlation coefficient value (Pearson 
correlation r) value ≤80%. The two principal components were des‐
ignated climatePC1 and climatePC2, for the sake of clarity. We per‐
formed all analyses using r‐packages raster (Hijmans, 2017) and stats 
(R Core Team, 2018).

F I G U R E  1  Details about the study system—the Karoo scrub‐robin. (a) Distribution of the Karoo scrub‐robin. Depiction of the two 
subspecies (C. c. cinerea and C. c. coryphaeus) range and coincidence with distribution of two mitochondria haplotypes (ATP synthase subunit 
6 nonsynonymous substitutions) as reported in Ribeiro et al. (2011). (b) Diagram of our sampling design: two transects (TNorth and TSouth) 
across the subspecies boundary, mitochondrial divide and climatic gradient. Geographic distance between sampling sites, as estimated 
with the great circle method. (c) Representativeness of our sampling sites in regards to the climatic niche of the Karoo scrub‐robin: the first 
two principal components of 19 bioclimatic variables explained ~73% of the variation. GPS coordinates for species wide distribution from 
Ribeiro et al. (2012). Populations at the extreme of our transects occupy different portion of the climatic niche (Tukey's HSD, p < .01, after 
significant ANCOVA, controlling for the effect of latitude and longitude) [Colour figure can be viewed at wileyonlinelibrary.com]

http://www.worldclim.org
https://lpdaac.usgs.gov/dataset_discovery/modis
https://lpdaac.usgs.gov/dataset_discovery/modis
www.wileyonlinelibrary.com
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2.2 | Energetic physiology: basal metabolic rate and 
metabolic scope

To assess energetic physiology phenotypes we measured basal 
metabolic rates (BMR; energy required by an endotherm to maintain 
energetic homeostasis under resting conditions at thermoneutrality) 
and metabolic expansibility (ME; the capacity to elevate the meta‐
bolic output from a basal to maximum level, so as to meet the ther‐
moregulatory demands of cold conditions).

We excluded from the metabolic experiments juvenile birds (as 
assessed by plumage), birds showing any sign of body moult, and 
those showing body mass loss exceeding 5% while in captivity. This 
left 70 birds remaining: CoastalSouth1: 8, CoastalSouth2: 8, CoastalNorth: 
8, CentralSouth: 12, CentralNorth: 10, InlandSouth: 17, InlandNorth: 7. To 
quantify BMR we measured gas exchange rates (O2 consumption 
and CO2 emission) of individual birds in post‐absorptive conditions 
throughout the bird's resting‐phase (night), using a regularly cali‐
brated open‐flow respirometry system (FoxBox‐C Field Gas Analysis 
System, Sable Systems). Gas exchange was recorded using Expedata 
v.1.2.6 (Sable Systems). BMR was determined as the lowest 10 min 
mean VCO2 at thermoneutrality (Londoño, Chappell, Castañeda, 
Jankowski, & Robinson, 2014). Full details of experimental proce‐
dures are in Appendix S1, Methodology.

Metabolic expansibility was estimated as the ratio between Msum 
(maximum metabolic capacity) and BMR obtained for the same individ‐
uals: ME = Msum/BMR. We used Msum values (maximum thermogenic 
capacity, obtained as maximum VCO2 at low helix temperatures) from 
Ribeiro, Prats, Pattinson, Gilbert, and Smit (2018) and calculated ME 
for 61 adult scrub‐robins: Coastal = 21, Central = 18 and Inland = 22. 
Briefly, as reported in Ribeiro, Prats, et al. (2018), Msum was measured 
as the bird's O2 consumption and CO2 production while exposed to 
a HelOx atmosphere (79% helium  +  21% oxygen). The birds were 
exposed to a sliding cold exposure protocol by reducing HelOx tem‐
perature by 3°C every 10 min. Trials ended when (a) VCO2 started to 
decline indicating peak thermogenic metabolism was reached, and (b) 
body temperature—Tb < 34°C.

2.2.1 | Phenotype‐environment association

To test whether environmental variation was a significant predictor of 
the energetic phenotype (BMR and ME), we used generalized linear 
models (GLM). BMR and ME were the dependent variables (normal‐
ity and homogeneity of variance tests in Appendix S1, Methodology), 
and body condition (Mb‐scaled; estimation procedure in Appendix S1, 
Methodology; Peig & Green, 2012), sex and environment (NDVI, cli‐
matePC1) were the predictor variables. Due to the lack of morphologi‐
cal sexual dimorphism in scrub‐robins, we determined sexes using a 
molecular method (Appendix S1, Methodology). To assess the effect 
of region (three levels as defined from climatePC1: Coastal, Central, 
Inland) and season (two levels: summer and winter) in phenotypic 
variation, we implemented a GLM. Finally, to test for within‐region 
seasonal differences in basal metabolism and metabolic expansibility, 
while controlling for the effect of body condition, we used a one‐way 

analysis of covariance (ANCOVA); upon significance, post‐hoc Tukey's 
HSD tests were carried out to identify significant pairwise differences 
between populations. All statistical analyses were performed in r 
v3.3.2 (R Core Team, 2018) using mass package and plots produced 
with ggplot2 package (Wickham, 2016). We accepted p ≤ .05 as a sig‐
nificant difference for all statistical tests.

2.3 | Gut microbiome composition

2.3.1 | Amplicon sequencing, sequence 
processing and data filtering

From the 96 birds handled, we collected 18 individual faecal 
pellets (NCoastal  =  6, NCentral  =  7, NInland  =  5) using single‐use fil‐
ter‐paper bags that lined cloth bags in which captured birds were 
placed. All samples were collected in summer 2015. Faecal sam‐
ples were preserved in soil/faecal DNA MiniPrep kit lysis buffer 
(ZymoResearch) and DNA extracted following the soil/faecal DNA 
MiniPrep kit instructions. A negative control proceeded in the 
workflow with all other extracts as to control for contamination. 
The DNA extracted was used in a dual indexed PCR approach to 
target the V3–V4 variable region of the bacterial 16S rRNA gene 
(465 bp) using the primer pair Bact‐341F and Bakt‐806R (Hansen 
et al., 2012) with Illumina Nextera overhang adapters (Illumina 
Inc.). PCR products were pooled in equimolar proportions and 
sequenced on an Illumina MiSeq platform with 250PE chemistry. 
Details about DNA extraction, PCRs and library preparation are 
provided as Appendix S1, Methodology.

2.3.2 | Sequence processing

Post sequencing, raw reads for the 16S rRNA amplicon were pro‐
cessed using a similar approach to the UPARSE pipeline (Edgar, 
2013) with vsearch v2.1.2 (Rognes, Flouri, Nichols, Quince, & Mahé, 
2016). Briefly, (a) paired reads were merged, quality filtered and 
lengths trimmed to >400 bp; and (b) barcodes, adapters and primers 
were trimmed. Filtered reads were then clustered into Operational 
Taxonomic Units (OTUs) in usearch v9.0.2132 with default param‐
eters (Edgar, 2010) and chimeras were additionally removed (Edgar, 
2016). OTU taxonomic assignment was performed using the soft‐
ware lcaclassifier v.2.0.4 and the silvamod reference database 
(Lanzén et al., 2012) with 50 database matches per OTU. Unassigned 
OTUs, eukaryotic OTUs and samples with fewer than 9,000 reads 
were removed from the OTU table prior to statistical analyses.

2.3.3 | Microbiome‐environmental association

We estimated Shannon‐Wiener's and Simpon's indexes to quantify 
bacterial community diversity by region using the r‐package phyloseq 
(McMurdie & Holmes, 2013; r v3.4.3, R Core Team, 2018). Differences 
in richness were assessed using an ANOVA after confirming normal‐
ity (Shapiro‐Wilk test). Prior to multivariate analyses, samples were 
subsampled randomly to 9,871 reads (we contend is close enough to 
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the minimum 10,000 reads; Faith et al., 2013) and log + 1 transformed. 
Differences in bacterial community composition were inspected with a 
principal coordinate analysis using a Bray‐Curtis dissimilarity matrix in 
r‐package phyloseq. To test whether climate (measured as climatePC1) 
or primary productivity (assessed as NDVI) were shaping the diver‐
sity in gut microbiome we used multiple matrix regression approach 
(MRM; Lichstein, 2006). We implemented the tests at individual‐level 
and tested significance by permutation (n  =  9,999) using r‐package 
ecodist (Goslee & Urban, 2007; r v3.3.2; R Core Team, 2018). Briefly, 
we compared the observed dissimilarity matrix (Bray‐Curtis dissimilar‐
ity) against a matrix for climate (Euclidean distance along climatePC1) 
or NDVI (Euclidean distance between NDVI value at time of sampling) 
effects while controlling for the effect of geographical distances (dis‐
tance in Km). Taxonomic‐based pairwise comparisons of microbial com‐
munities between each of the three geographical regions were tested 
in r‐package Metacoder (Foster, Sharpton, & Grünwald, 2017) with 
Wilcoxon rank‐sum test followed by a Benjamini‐Hochberg correction 
for multiple testing (Benjamini & Hochberg, 1995).

2.4 | Avian genomics

2.4.1 | Target enrichment, sequence processing and 
data filtering

We extracted DNA for 96 samples (CoastalSouth1: 14, CoastalSouth2: 
9, CoastalNorth: 13, CentralSouth: 20, CentralNorth: 12, InlandSouth: 21, 
InlandNorth: 7) using DNeasy Kit (Qiagen) or KingFisher Duo Prime 
System (ThermoFisher Scientific) and built genomic libraries slightly 
adapting the protocol by (Carøe et al., 2018; details in Appendix S1, 
Methodology). We enriched our libraries for protein coding regions 
(2,889 exons associated with energetic metabolism, water economy, 
heat tolerance, mitochondria biogenesis, egg shell features) and non‐
coding regions (2,122 intergenic regions of 200 bp) using a custom 
myBaits target capture Kit (Arbor Biosciences). These libraries were 
sequenced on the Illumina HiSeq 2000 platform to generate 80 bp 
single‐end reads. Prior to downstream analysis, we first filtered the 
raw data to remove adapters and low quality bases and reads using 
Trimmomatic (Bolger, Lohse, & Usadel, 2014). The reads were then 
mapped to the Oenanthe oenanthe genome with BWA‐mem (Li, 
2013); we used this species as reference because it is the closest 
(Muscicapidae family) currently available relative to Cercotrichas with 
an annotated genome. Mapped reads were further filtered as to re‐
move multi‐mappers and low quality mapping reads using SAMtools 
(Li et al., 2009) and duplicates with Picard tools (https​://broad​insti​
tute.github.io/picar​d/). The resulting BAM files were used to estimate 
genotype likelihoods or for genotype calling when site depth >15× 
(hereafter hard genotypes) in ANGSD (Korneliussen, Albrechtsen, & 
Nielsen, 2014). See Appendix S1 for full details.

2.4.2 | Population genetic structure

To minimize the potential effect of selection on measures of ge‐
netic structure, we restricted this analysis to the intergenic regions. 

We assessed population genetic structure following two methodo‐
logical approaches: (a) non‐model‐based methods using a princi‐
pal components analysis (DPCA) and sparse non‐negative matrix 
factorization (sNMF); and (b) model‐based methods testing mod‐
els with 1–6 clusters (K), using NGSadmix (Skotte, Korneliussen, & 
Albrechtsen, 2013; 16,104 single nucleotide polymorphism—SNPs; 
minor allele frequency—MAF >1%) and fastSTRUCTURE (Raj, 
Stephens, & Pritchard, 2014). Discriminant analysis of PCA (DPCA; 
Jombart, Devillard, & Balloux, 2010, implemented with adegenet 
r package), sNMF (performed in lea package in r) and fastSTRUC‐
TURE were applied to hard genotypes. Because rare alleles can af‐
fect inference of population structure, we retained only sites with 
MAF >1%. In addition, we used genotypes likelihoods to estimated 
pairwise FST (among seven populations) using a two‐dimensional 
site frequency spectrum (SFS) with ANGSD (Korneliussen et al., 
2014). For comparative purposes we also ran fastSTRUCTURE 
with our gene data set. Details on model parameterization are pro‐
vided in Appendix S1.

2.4.3 | Isolation by distance and isolation by ecology

The degree of genetic differentiation between populations, if any, 
translates the relative effect of drift and gene flow (Lenormand, 
2002), which in turn are affected by geographical distances and 
selective factors. Because disentangling the relative effects of geo‐
graphic distance (isolation by distance; Slatkin, 1993) and environ‐
mental factors (isolation by environment; Wang & Bradburd, 2014) is 
essential for understanding local adaptation (Sexton, Hangartner, & 
Hoffmann, 2013), we tested for isolation by distance and isolation by 
environment using a Mantel test (Mantel, 1967) and multiple matrix 
regression (MRM; Lichstein, 2006) approach, respectively. We im‐
plemented the tests at individual‐ and population‐level, and tested 
significance by permutation (n = 9,999). Genetic distance between 
individuals (Dxy) was calculated from genotype posterior prob‐
abilities as the average number of nucleotide differences as imple‐
mented in ngsDist (Vieira, Lassalle, Korneliussen, & Fumagalli, 2016). 
At population‐level, genetic distance between populations was es‐
timated as FST/1−FST. Environmental distance between individuals 
was estimated as the Euclidean distance between points along the 
climatePC1. Geographical distance between sampling points was 
calculated as the great‐circle distance, i.e., the shortest distance be‐
tween two points on the surface of a sphere in kilometres. All analy‐
ses were performed in r using packages vegan (Oksanen et al., 2017), 
ecodist (Goslee & Urban, 2007) and sp (https​://github.com/edzer/​
sp/).

2.4.4 | Genotype‐environment associations

Although isolation by environment (IBE) can indicate a role of the en‐
vironment in shaping genetic variation, it cannot pinpoint the loci that 
exhibit deviations from patterns of neutral evolution. Thus, we pro‐
ceeded to find a genotype‐environment association using latent fac‐
tor mixed models (lfmm v1.3; Frichot, Schoville, Bouchard, & François, 

https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
https://github.com/edzer/sp/
https://github.com/edzer/sp/
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2013) using the r package LEA (Frichot & François, 2015). Specifically, 
we applied this method to investigate for correlations between allele 
frequencies with climatic variables (climatePC1), while controlling for 
the effect of population structure. Although our analyses of popula‐
tion structure did not indicate any clear clustering, we decided to run 
the model with two latent factors (clusters; K = 2), as a conservative 
approach to control for any subtle pattern in allele frequencies. To also 
avoid any false positives caused by rare alleles, we used only SNPs 
with MAF >5%. For each K, we ran 10 repetitions with 100,000 itera‐
tions each, which were performed after discarding the initial 50,000 
steps as burnin. The median Z‐scores of the 10 runs were converted 
into p‐values and those adjusted for a false‐discovery rate threshold of 
1%. We further investigated the function of the top 25% SNPs signifi‐
cantly correlated with climatic variables. We utilized our scrub‐robin 
consensus sequence (built for bait design, details in Appendix S1) ob‐
tained using the Oenanthe oenanthe annotated genome as a reference, 
to extract and translate the coding regions containing the LFMM out‐
liers into amino acid sequences. And then used Blast2GO (Conesa et 
al., 2005) to retrieve functional annotations by comparison with birds 
sequences in the nr database (8,792 bird species). Only hits with an 
e‐value <1.0E‐5 and percent identity >80% were retained and used to 
assign GO categories to the matching coding regions.

2.5 | Phenotype‐genotype association

We defined an “adaptive genotype” by applying a PCA implemented 
in ngsTools (Fumagalli, Vieira, Linderoth, & Nielsen, 2014) on the gen‐
otype likelihood of SNPs significantly associated with climate (from 
LFMM) and extracting PC1 values (henceforth snpsPC1) for each bird. 
The snpsPC1 was then used as a predictor of energetic phenotypes 
(BMR and ME) in a GLM. Statistical analyses were performed in r 
v3.3.2 (R Core Team, 2018) using mass package and plots produced 
with ggplot2 package (Wickham, 2016). We accepted p ≤ .05 as a sig‐
nificant difference for all statistical tests.

3  | RESULTS

3.1 | Environmental variation: climate and primary 
productivity variation across the transect

We found a clear environmental heterogeneity across the transect. 
The first two principal component analysis axis, implemented with 14 
noncollinear climatic variables, explained 91.2% of the variation in the 
data (Figure 2a). While PC1 (climatePC1) explained 61.9% of varia‐
tion, PC2 (climatePC2) only explained 29.3%. Therefore, we retained 

F I G U R E  2  Environmental variation across the study transects. (a) Climatic variation using 14 noncolinear bioclimatic variables. (b) 
Variation in minimum temperature—Tmin (°C). (c) Seasonal change in primary productivity (NDVI) in the year of sampling [Colour figure can be 
viewed at wileyonlinelibrary.com]
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climatePC1 for further analyses because it is related to temperature. 
Mean minimum temperature in summer is similar in all populations, 
but decreases dramatically in winter to subzero values in the Inland re‐
gions and ~2°C in the Central area (Figure 2b). Regarding primary pro‐
ductivity, while there was a winter increase in the Coastal and Central 
regions, NDVI did not change much in the Inland region (Figure 2c).

3.2 | Energetic phenotype versus environment

Our analyses revealed the association of physiological phenotypes 
(BMR and ME) with environmental variables. Variation of BMR was as‐
sociated with NDVI and climate (Table S1). Overall, BMR was lower in 
winter than in summer (GLM; p < .001). Across regions, BMR was simi‐
lar in winter (ANCOVA, F = 0.337, p > .1), yet there were regional differ‐
ences in BMR in summer (Figure 3a; Table S2): both Coastal and Central 
populations had higher summer BMR than Inland birds (post‐hoc 
Tukey's HSD, pCoastal‐Central > .1, pCoastal‐Inland < .001, pCentral‐Inland < .001). 
Within‐region, BMR decreased in winter in Coastal and Central birds 
(ANCOVA; FCoastal: 39.070, p < .001; FCentral: 21.180, p < .001) but not in 
the Inland population (ANCOVA: FInland: 2.656, p = .118).

Metabolic expansibility varied with climatic variation and 
NDVI (Table S1). We found significant regional differences in ME 
(Figure 3b; Table S2): Central and Inland birds had greater ME than 
the Coastal population (GLM; p < .01). Across regions, ME increased 
in winter (GLM; p = .005). The post‐hoc comparisons revealed that 
in winter only Central populations significantly increased ME com‐
pared to Costal birds (post‐hoc Tukey's HSD, pCoastal‐Central  =  .001, 
pCoastal‐Inland  >  .1, pCentral‐Inland  >  .1). In addition, within region ME 
was only seasonally flexible for the Central population (ANCOVA: 
FCentral = 7.768, p = .014; FCoastal = 2.871, p > .1, FInland = 0.216, p > .1).

3.3 | Gut microbiome versus environment

The sequences obtained from 18 individual faecal samples targeting 
bacterial 16S rRNA gene allowed the identification 802 different op‐
erational taxonomic units (OTUs) representing 167 bacterial genera. 
The diversity of gut microbiota as measured with Shannon‐Wiener 
and Simpson indices was not significantly different across regions 
(FShannon‐Wiener = 0.153, p > .1; FSimpson = 0.325, p > .1; Figure S2a). In 
addition, the principal coordinate analysis revealed no apparent geo‐
graphical structure in gut microbiota diversity (Figure S2b).

We found no association between climate or NDVI with micro‐
biome dissimilarities, while controlling for the effect of geographic 
distances: MRM‐Climate, coefficient‐climate = −0.084 (p > .1) and 
coefficient‐geography  =  0.035 (p  >  .1); MRM‐NDVI: coefficient‐
NDVI  =  0.058 (p  >  .1) coefficient‐geography  =  −0.077 (p  >  .1). 
In fact, both climate and NDVI explained a very low portion of 
the overall variance in gut microbiome diversity (R2

climate
 = 0.003, 

R
2

NDVI
 = 0.003). Although we found birds from the three regions to 

have similarly diverse gut microbiota, when inspecting the taxo‐
nomic composition of the communities we found regional enrich‐
ment for some bacteria (Figure S3). Namely, while scrub‐robins 
from the Coastal population had highest proportions of gut bacte‐
ria from the genera Kocuria, Tepidimonas, Pseudomonas, Rhizobium 
and Anoxybacillus (Figure S3), the microbiota of Inland birds were 
enriched for several genera of the Order Rhizobiales, an unknown 
Coxiellaceae genus, and the genera Sphingomonas and Leucobacter 
(Figure S3).

3.4 | Genotype versus environment

Our sequence capture enrichment assay yielded genetic information 
for 98.2% ± 2.34 (mean ± SD) of the total 876,500 sites targeted. 
The median on‐target depth per sample was 68×. Overall, genetic 
diversity in the intergenic regions was two‐fold of that observed in 
coding‐regions—genetic diversity indexes are reported in Appendix 
S1, Results.

From the total of 1,211 SNPs identified in coding‐regions (consid‐
ering only SNPs with MAF >5% and present in at least 94 individuals), 
the LFMM analysis classified 94 SNPs, located in 63 genes, as puta‐
tively adaptive and associated with climatePC1 (heavily influenced by 
temperature seasonality; Figure 4a). The top 25% SNPs associated 
with climate where located in the following genes (Table S3): myosin 

F I G U R E  3  Phenotypic variation in energetic phenotypes across 
regions and between seasons. (a) Basal metabolic rate (BMR): 
Coastal and Central populations had larger summer BMR than 
Inland birds (post‐hoc Tukey's HSD, pCoastal‐Central > .1, pCoastal‐
Inland < .001, pCentral‐Inland < .001). Overall, BMR was lower in winter 
than in summer (GLM: twinter: –8.266, p < .001). (b) Metabolic 
expansibility (ME): Central and Inland birds had greater ME than the 
Coastal population (GLM: tCentral: 3.763, p < .001 and tInland: 3.244, 
p = .002) and ME increased in winter (GLM: twinter: 2.917, p = .005). 
Regional significant differences are annotated with asterisk [Colour 
figure can be viewed at wileyonlinelibrary.com]
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light chain and the troponin (part of the muscle contraction machin‐
ery), calcium voltage‐gated channel auxiliary subunit gamma 1 (plays 
a role in excitation‐contraction coupling process that initiates mus‐
cle contraction), 5′AMP‐activated kinase subunit gamma and alpha 
(metabolic switch by which cells sense changes in energy status), the 
ATP synthase subunit beta (catalytic core of complex V of OXPHOS 
pathway) and the catalase (protection from oxidative damage). Often, 
Coastal and Inland populations represent the extremes of SNP allele 
frequency (Figure 4b). In contrast, frequencies in Central populations 
were sometimes intermediate (e.g., 5′AMP activated kinase gamma) 
and in other instances similar to one of the extremes (e.g., Myosin light 
chain 1, Figure 4b).

3.5 | Phenotype versus genotype

The first principal component of a PCA on the genotype likelihood 
of SNPs (henceforth snpsPC1) significantly associated with climate 

(from LFMM) was a significant predictor of variation in BMR (GLM; 
p = .011; Figure 5a) as well as in ME (GLM; p = .006; Figure 5b), while 
including body condition and sex as covariates in the model.

4  | DISCUSSION

Our understanding of the physiological traits that contribute to tol‐
erance to arid conditions has improved greatly over the last decade 
(Sabat et al., 2006; Smit & McKechnie, 2010; Williams & Tieleman, 
2002). Nevertheless, knowledge on how those traits came to exist, 
and their role in enabling adaptation to local conditions in such harsh 
ecosystems is still poor. We, therefore, combined environmental, 
phenotypic, microbiome and genomic data to address this and re‐
vealed that: (a) energetic phenotypes were associated with envi‐
ronmental features, with scrub‐robins living in the most arid region 
having the lowest BMR and wider metabolic expansibility; (b) only 

F I G U R E  4  Adaptive variation across the gradient. (a) Genotypic variation for 94 candidate SNPs as identified by LFMM was summarized 
as snpsPC1. (b) Variation in allele frequency of the top 10% candidate SNPs across transects. SNP frequencies for each population were 
estimated using the allele in the reference genome to polarize the data. Absence of a column denotes the lack of the reference allele in the 
respective population [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


     |  3717RIBEIRO et al.

a few components of gut microbiota changed across the environ‐
mental transect; (c) a small list of genes (94 SNPs in 63 genes) are 
putative targets of natural selection despite overall low differentia‐
tion; and (d) variation in putatively adaptive SNPs genes explains the 
differences observed in energetic phenotypic traits suggesting a 
modular but simple basis for adaptation to arid conditions.

4.1 | Energetic metabolism

The intraspecific variation in the energy expended to maintain basic 
function (BMR) as well as in the energetic capacity to deal with cold 
stress (ME) supports the adaptive role of energetic metabolism. Scrub‐
robins living in the most arid region (lower NDVI, larger temperature 
amplitude) had a lower BMR, and this trait was not seasonally flexible, 
i.e., low phenotypic flexibility (Figure 3). These findings support pre‐
vious work that attributed selective advantages to low maintenance 
energy phenotypes (BMR) in birds living in arid environments (Williams 
& Tieleman, 2005). Although we strongly believe that our results were 
not affected by regional differences in life‐history traits such as breed‐
ing time, as we found no evidence of reproduction (e.g., active brood‐
patches in females, nesting or chick provisioning), we cannot fully 
reject the idea. It may be possible that the temporal proximity of our 
experiments (start: middle November) to the end of the energetically 
demanding breeding activity (end: late October–early November) had 
some carryover effects in the Coastal birds, and hence increased BMR.

When comparing the BMR values obtained here with the allome‐
tric expectations for an 18–20 g passerine (Londoño et al., 2014) the 
Inland population stayed below the expected values both in winter 
(68%) and summer (74%) as opposed to Coastal and Central pop‐
ulations which approached the above mentioned expected values 
(~95%). The selective advantages attributed to a reduced BMR in‐
clude a lower overall energy and water demands, and low endoge‐
nous heat production (Williams & Tieleman, 2005). Such traits may 
be favoured in the scrub‐robin populations living in the most arid re‐
gion (Inland) because a reduced metabolism not only decreases heat 
load and hence the risk of hyperthermia in summer, but also reduce 
overall energy demands, hence the need to obtain food in an area 
of low productivity. This pattern was also reported for bird species 
inhabiting the Kalahari desert (Smit & McKechnie, 2010), a region 
adjacent to the Karoo desert. BMR was revealed to be a flexible 
phenotype in the Coastal and Central populations. These short‐term 
changes in BMR are thought to arise from adjustments in the mass of 
metabolically active organs: mass of thermogenic muscles in winter 
(Zheng, Liu, & Swanson, 2014), and/or mass of reproductive organs in 
spring/summer of reproductive organs (Vézina, Salvante, & Williams, 
2003). Although the striking increase in BMR during summer in 
Coastal and Central populations cannot be explained by hypertro‐
phy of thermogenic muscles (Ribeiro, Prats, et al., 2018) we cannot 
rule out the possible effect of metabolic costs of maintaining repro‐
ductive organs. However, we find it unlikely, because the breeding 

F I G U R E  5  Phenotype‐genotype 
association: variation of energetic 
phenotype with different putatively 
adaptive genotypes as summarized 
by snpsPC1. (a) Association of BMR 
with adaptive genotypes (GLM, 
tsnpsPC1 = 2.604, p = .011) and (b) 
Association of Metabolic Expansibility 
with adaptive genotypes (GLM, 
tsnpsPC1 = −2.848, p = .006). Regression 
line fitting a GLM: Phenotype ~ Mb‐

scaled + Sex + snpsPC1 [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


3718  |     RIBEIRO et al.

season of subspecies cinerea (Coastal morph showing increase in 
summer BMR) typically occurs between September–October and 
we collected data from 11–18 November 2015. Moreover, we did 
not observe any sign of breeding activity (e.g., active brood patches) 
at the time of our study.

Metabolic expansibility reflects the capacity of an organism to 
rapidly adjust its metabolism to meet the energetic challenge of 
thermoregulation under cold conditions (measured as the ratio of 
maximum thermogenic capacity and basal metabolism). Given the 
absence of regional differences in maximum thermogenic capac‐
ity (Ribeiro, Prats, et al., 2018), the wider metabolic expansibility 
observed in populations experiencing lower winter temperatures 
(Central and Inland populations; mean minimum temperature in win‐
ter <2°C) inescapably stems from the lower BMR. Thus, as opposed 
to northern‐temperate climates, where highly variable climates se‐
lect for higher maximum thermogenic capacity (Swanson, Zhang, & 
King, 2014), subtropical and highly variable climates should select 
for lower BMR.

Living in arid environments poses energetic constraints because 
food is not only scarce, but unpredictable. In the southwestern arid‐
zone of Africa, insectivorous birds such as the Karoo scrub‐robin 
face dramatic spatial and temporal changes in food abundance as a 
consequence of unpredictable pulses of rainfall followed by dramatic 
droughts (Dean & Milton, 1999; Lloyd, 1999). Thus, maximizing en‐
ergy intake from food items is of utmost importance, and indeed the 
major role of the gut microbiome (Valdes, Walter, Segal, & Spector, 
2018). Our findings that a few bacterial genera were differentially 
enriched in different environments may indicate functional shifts 
associated with energetic demands. For instance, the gut microbiota 
of Inland birds was enriched for genera Sphingomonas, chemohet‐
erotrophic bacteria that can survive conditions of nutrient stress and 
metabolizes a wide variety of carbon sources (Balkwill, Fredrickson, 
& Romine, 2006), and several genera from the Order Rhizobiales, 
which include bacteria capable of nitrogen fixing. The presence of 
the latter bacteria may contribute to nitrogen budget as the Karoo 
scrub‐robin has been found to supplement its diet with plant items 
(Ribeiro, Smit, & Gilbert, 2018), which are low in nitrogen. Although 
our integrative approach would have benefited from larger sample 
sizes, we contend our results provide solid‐ground to further ex‐
plore whether the observed bacterial turnover have functional con‐
sequences, namely in energy homeostasis (e.g., Debebe et al., 2017).

4.2 | Energetic metabolism and local adaptation

Disentangling the effects of demography from local adaptation can 
be particularly challenging in systems where isolation by distance co‐
incides with the environmental gradient (Nadeau, Meirmans, Aitken, 
Ritland, & Isabel, 2016). Thus, to accurately detect signatures of local 
adaptation using genetic‐environment associations and reduce the 
risk of false positives it is fundamental to control for possible effects 
of demographic processes such as differential migration and thus 
gene flow. In our study, there was no sign of isolation by distance 
(see Appendix S1, Results), population structure was undetectable 

to shallow (pending on the use of hard genotypes or genotype likeli‐
hoods; Appendix S1, Results) and there was no indication of popu‐
lation demographic expansion as revealed by the site frequency 
spectrum (Figure S6) and Tajima's D values (Table S4). These find‐
ings were further corroborated in a species‐wide study (Ribeiro et 
al., 2011) where putatively neutral microsatellites and introns also 
revealed the lack of population structure and extensive gene flow. 
However, as a conservative approach, our association analysis incor‐
porated neutral population structure (k = 2). If anything, this would 
lead to an underestimation of putative adaptive SNPs. Thus, we con‐
tend that the signatures of genetic local adaptation were not con‐
founded with footprints of neutral processes.

Local adaptation emerges when a spatially heterogeneous en‐
vironment generates differential pressures, and depends on the 
balance among drift, selection and gene flow (Lenormand, 2002; 
Yeaman & Otto, 2011). While extensive gene flow has been thought 
to erase any locally adapted genotype/phenotype (Lenormand, 
2002), when considering temporal heterogeneity, intermediate 
levels of gene flow can have beneficial effects on local adapta‐
tion (Blanquart & Gandon, 2011; Blanquart, Gandon, & Nuismer, 
2012). Because temporal unpredictability is a well known feature 
of the arid Nama Karoo, where our Inland populations occur (Dean 
& Milton, 1999), it was not unexpected to uncover potential adap‐
tive‐loci in the presence of extensive gene flow as suggested by 
the lack of isolation by distance pattern, the low to undetectable 
population structure and low degree of genetic differentiation 
among populations.

Being aware that footprints of selection associated with spatial 
climatic variation do not necessarily imply causality, it is compel‐
ling that several of the putative adaptive SNPs (Table S3) localize 
in genes encoding machinery responsible for skeletal fibre twitch‐
ing (myosin, troponin and calcium channel) as this is the principal 
mechanism that birds use as a heat source in response to cold stress 
(shivering thermogenesis; Hohtola, 2004). This finding is simulta‐
neously surprising and fascinating, because Inland birds did not 
increase winter thermogenic capacity through shivering (Ribeiro, 
Prats, et al., 2018; measured as whole organism O2 consumption/
CO2 production under cold conditions), suggesting that natural se‐
lection may be favouring genotypes that have a high efficiency of 
fibre twitching without altering O2/CO2 rates. Furthermore, the 
potential role of 5′AMP activated kinase in allowing local adapta‐
tion is noticeable. This enzyme maintains the intracellular energy 
balance through decreasing energy demand by switching off ATP‐
consuming pathways, and increasing energy supply by switching 
on ATP‐generating pathways (Carling, 2004). Catalase is another 
enzyme that may be facilitating local adaptation, as it is essential 
to convert hydrogen peroxide, highly toxic reactive oxygen spe‐
cies which result from electron transport chain in mitochondria, 
into water and oxygen and thereby mitigates its toxic effects (Bai 
& Cederbaum, 2001). These reactive oxygen species increase in 
domestic chicken (Gallus gallus) during heat stress conditions and 
consequently affected mitochondria function by disrupting its 
membrane (Azad, Kikusato, Hoque, & Toyomizu, 2010).
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Although Janzen's perspective about the evolutionary effects 
of climatic variability on physiological tolerances (Janzen, 1967) was 
originally proposed to explain biodiversity patterns in the tropics, it 
also offers a useful conceptual corollary with which to understand 
intraspecific divergence in arid‐zones. If climatic variability deter‐
mines population physiological tolerances, and this in turn affects 
dispersal among populations, then adaptation to local conditions is 
facilitated. Our results at the intraspecific level support the idea that 
divergent selection between climatic environments is strong enough 
to maintain a nonrandom distribution of genotypes underlying key 
fitness‐associated traits (here energetic phenotype) in a genomic 
background of low differentiation (e.g., Schweizer et al., 2015). 
Yet, we contend that future work including a “common garden ex‐
periment” or “egg transplantation” is fundamental to test for geno‐
type‐by‐environment interactions while accounting for the possible 
effects of phenotypic plasticity.

Ultimately, our findings highlight the need for an intraspecific ap‐
proach when modelling species physiological responses to climate 
change or forecasting adaptive shifts, rather than assuming species‐
specific responses (e.g., Moran, Hartig, & Bell, 2016) and may provide 
an explanation to the high avian intraspecific divergence in harsh en‐
vironments (Botero, Dor, McCain, & Safran, 2013): local adaptation in 
energy maintenance‐related traits, at least in arid environments.

To conclude, we believe our study exemplifies how it is only within 
an integrative and detailed framework, that one can begin to pinpoint 
the factors underlying phenotypic adaptation, and provide candidates 
for further functional testing under controlled conditions.
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