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Global and regional ocean primary production estimates are highly dependent on

assumptions concerning the photosynthetic potential of the resident phytoplankton

communities. Little is known, however, about global patterns in the distribution

of photosynthetic potential and their causes. Here, we review existing literature

reporting photosynthetic characteristics of natural populations. From this, we formulate

hypotheses regarding abiotic and biotic factors of potential importance in determining

photosynthetic performance. These hypotheses are then tested using data we have

compiled from nearly all major ocean basins on the maximum rate of photosynthesis,

PB
max, and the slope of the photosynthesis vs. light curve, B

α (both parameters

normalized to chlorophyll) as well as standard environmental variables, size fractioned

chlorophyll, taxonomic data (to group), size, and biovolume data for pico-, nano-, and

micro-phytoplankton. In terms of abiotic variables, depth of sampling, temperature,

and nutrient availability all can be related to photosynthetic parameters. The most

important biotic variable influencing photosynthetic performance was found to be

community size distribution and the small component (i.e., the proportion of the

phytoplankton community passing through a 10 µm filter) is shown to have both

higher PB
max and B

α than the larger phytoplankton component. A simple model was

used to derive best fit values for PB
max (1.53/2.50 µgC l−1 h−1) and B

α (0.025/0.040)

for the large/small groups in the subset of the data where taxonomic data were

available (both surface and sub-surface samples) using fractioned chlorophyll data

and bulk community photosynthetic parameters. Non-metric multidimensional scaling

(NMDS) was used to relate the distribution of photosynthetic parameters and dominant

(by biovolume) phytoplankton groups. High PB
max was recorded in communities

dominated by dinoflagellates, small flagellates and in warmer waters, picoeukaryotes,

and Synecococcus. Diatom dominated communities exhibited lower PB
max and were

associated with high inorganic nutrients and colder temperatures. That photosynthetic

parameters appear closely related to community size distributions and taxonomic group

provides some hope for improving the parameterization of photosynthetic performance

in global ocean primary production estimates as both of these parameters can be made

from remotely sensed optical characteristics of surface waters.
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INTRODUCTION

Focus has in recent years increasingly been moving toward
developing a more complete understanding of the functioning of
the Earth System (ES) and how it may be changing in response to
human activities. Although there are numerous processes within
the ES where anthropogenic influence can be detected at the
global level (Steffen et al., 2015), climate change is an obvious
driver in the search for a better understanding of ES function. As
changes induced by human activities on the global carbon cycle
lie at the root of human-caused climate change, much scientific
focus is levied toward describing this cycle.

Processes occurring in the ocean are critical in the global
carbon cycle. Consequently, a better quantification of the fluxes
and transformations of carbon in the ocean currently lies at
the frontier of marine science. Both physically and biologically
mediated processes contribute to ocean carbon cycling. Although
the magnitudes of the contributions from physical processes are
better quantified than the biological, it is nevertheless believed
that changes in rates of biological processes can have profound
effects on ocean-atmosphere carbon flux (e.g., Sigman and Boyle,
2000; Segschneider and Bendtsen, 2013) and, thereby, global
climate conditions.

Photosynthesis, i.e., the biological transformation of dissolved
inorganic carbon (DIC) to particulate (POC) and dissolved
(DOC) organic carbon is arguably the most important biological
process contributing to the ocean carbon cycle. In order to
constrain the global ocean carbon cycle, it therefore becomes
necessary to obtain precise estimates of photosynthetic rates in
the global ocean. Estimates of global ocean photosynthesis, i.e.,
primary production (PP), are often generated from remotely
sensed optical characteristics of the surface ocean determined
with the help of satellite-mounted sensors. A number of different
algorithms have been developed to convert this surface ocean
data to estimates of PP. (Note, however, that all of these
algorithms address only the production of POC thus ignoring the
not insignificant production of DOC by phytoplankton).

Comparisons (Campbell et al., 2002; Carr et al., 2006)
examining how PP estimates generated by these different
algorithms compare to particulate PP estimates generated in

situ using the 14CO2 method originally described by Steemann
Nielsen (1951), as well as how the algorithms compare to one
another, demonstrate considerable variability between model
estimates, and that agreement between estimates from the “best
performing” (Campbell et al., 2002) algorithms and in situ
estimates is normally only within ±100%. Clearly, this level of
accuracy is not sufficient to detect subtle changes in ocean PP
that may occur (or be occurring) in response to changing ocean
conditions. There is, thus, a need to better constrain estimates of
global PP.

All of the algorithms used to estimate global ocean PP
today from data collected by remote sensing include a
component describing the photosynthetic potential of the
community (Behrenfeld and Falkowski, 1997a and several
studies e.g., Behrenfeld and Falkowski, 1997b; Carr et al., 2006)
have identified this model component as being particularly
important in driving model results. Thus, they have argued that

improvement in the estimation of ocean PP will require a better
understanding and parameterization of the factors influencing
photosynthetic potential.

The purpose of this study, therefore, was to examine empirical
physiological data (photosynthetic parameters) collected from
natural phytoplankton communities in relation to abiotic and
biotic variables in an effort to identify patterns in the distribution
of photosynthetic potential in the global ocean. The analyses
presented are carried out on a single dataset (see Materials
and Methods) comprised of data from all major ocean basins
and where sampling was carried out by a single research
group consisting of a small group of operators using the same
equipment and protocols. This is important as relatively large
variations between results obtained using different applications
of the 14CO2 method of estimating PP on the same water sample
have earlier been documented (Richardson, 1991).

In what is probably the most commonly applied
algorithm for estimating ocean PP from remotely sensed
surface optical characteristics, the Vertically Generalized
Production Model (Behrenfeld and Falkowski, 1997b),
phytoplankton photosynthetic potential, i.e., the maximum
rate of photosynthesis normalized to chlorophyll, PBmax

1, is
described as a function of temperature, where the relationship
to temperature is derived from empirical data collected in two
different geographic regions. Two observations regarding the
PBmax -temperature relationship employed in the VGPM are
worth noting: Firstly, there is considerable variability in this
relationship, i.e., temperature alone does not well describe
PBmax and secondly, the fact that PBmax varies as a function of
temperature does not necessarily imply a direct temperature
effect on PBmax as temperature co-varies with a number of
other ocean parameters, including nutrient availability and
phytoplankton community size distribution (Mousing et al.,
2014).

We, therefore, wanted to examine in more detail the
relationship between photosynthetic characteristics of naturally
occurring phytoplankton populations and environmental
conditions. Candidate abiotic and biotic variables for controlling
photosynthetic parameters were identified on the basis of a
literature survey of studies in which PBmax values have been
reported for naturally occurring phytoplankton communities
(Table 1). As this survey identified community size distribution
and taxonomic characteristics as being potentially important
biotic factors in controlling photosynthetic characteristics of
a given community, a particular focus of this study is on the
elaboration of the potential influence of these two parameters on
community photosynthetic characteristics.

MATERIALS AND METHODS

Dataset
The major part of the dataset used for this study is comprised
of samples taken on the globally circumventing Galathea 3

1In fact, Behrenfeld and Falkowski (1997b) use at photosynthesis parameter, PBopt,
which will be the equivalent of PBmax when sufficient light is available to support
maximal rates of photosynthesis.
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TABLE 1 | Literature survey of PB
max reported for natural phytoplankton populations.

Region Date Depth PB
max range PB

max mean Note References

STUDIES CARRIED OUT AT LATITUDES BETWEEN 0 AND 30◦

S. Pacific subtropical 26 Oct–10 Dec <5 BIOSOPE Huot et al., 2007

Tropical Pacific Feb–April 1968 Nitrogen poor: 3.15

Nitrogen rich: 4.95

Thomas, 1970

Baja California Summer

Autumn

6.14 ± 1.14

3.17 ± 0.37

Aguirre-Hernández

et al., 2004

Arabian Sea 1–11 Bouman et al., 2005

Equatorial Pacific (HNLC) 0.2–0.6 Lindley et al., 1995

East China Sea Surface (10m) Shelf: 4.90 ± 1.00

Kuroshio: 5.14 ± 1.47

N = 9

N = 11

Yoshikawa and Furuya,

2008

East China Sea DCM Shelf: 3.26 ± 1.03

Kuroshio: 3.85 ± 1.35

N = 9

N = 11

Yoshikawa and Furuya,

2008

Atlantic Ocean (also in 30–60

category)

April–May &

Oct–Nov

1–10

1–12

N = 150 Highest

values cover very

small area

Marañón and Holligan,

1999

Atlantic Meridional Transect

(AMT) UK—Falkland islands

(also in 30–60 category)

22 April–22 May

16 Sept–25 Oct

Surface

DCM

1–6

0.5–6

3–24

2.9–13

Behrenfeld et al., 2002

STUDIES CARRIED OUT AT LATITUDES BETWEEN 30 AND 60◦

Alaska 21 July–10 Aug >20µm: 0.9–4.9

<20µm: 3.0–12.9

N = 11 Strom et al., 2010

Azores front Surface 2.90 ± 2.47 Lorenzo et al., 2004

Azores front DCM 0.88 ± 0.60 Lorenzo et al., 2004

Scotian shelf Autumn

Spring

1.8–10.5

0.2–4.5

Bouman et al., 2005

NW Pacific 0.85–5.48 N = 244 Hameedi, 1977

Polar and temperate Most <4 but some up

to 16

N > 700 Harrison and Platt,

1986

Temperate coastal Aug

July

3.5–7

2–4

MacCaull and Platt,

1977

Kattegat-Belt Seas Entire season Surface Range mean <2–6.5 N = 1385

Highest Aug,

lowest Jan

Lyngsgaard et al., 2014

Kattegat-Belt Seas Entire season DCM Range mean

1.5–ca. 3

Highest Aug

Lowest April

Lyngsgaard et al., 2014

Colne Estuary, UK All values <1 Turbid estuary,

PBmax correlates

with light

attenuation

Kocum et al., 2002

North Atlantic Winter 1.69 ± 0.79 N = 118 Claustre et al., 2005

North Atlantic Spring 2.75 ± 1.10 N = 139 Claustre et al., 2005

North Atlantic summer 1.74 ± 1.11 N = 77 Claustre et al., 2005

Japan Sea Surface (10 m) Coastal 4.79 ± 2.22

Offshore 4.83 ± 1.5

N = 4

N = 8

Yoshikawa and Furuya,

2008

Japan Sea DCM Coastal 5.22 ± 0.55

Offshore 2.59 ± 1.1

N = 4

N = 8

Yoshikawa and Furuya,

2008

Central Chile Monthly 0.87–62.68 Henríquez et al., 2007

North West Atlantic 1 day July

1 day august

<1–7 Shows diurnal

and size class

differences

Prezelin et al., 1986

Northern Adriatic May 2009–July

2010

1–5 m:

0.6–4.73

DCM:

0.79–4.60

N = 21

N = 21

Talaber et al., 2014

(Continued)
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TABLE 1 | Continued

Region Date Depth PB
max range PB

max mean Note References

Atlantic Ocean April–May &

Oct–Nov

1–10

1–12

Highest values cover

very small area

N = 150 Marañón and Holligan,

1999

Western Irish Sea May–Aug 1972

May–June 1973

2.9–31.2 Savidge, 1979

Atlantic Meridional Transect

(AMT) UK–Falkland Islands

22 April–22 May

16 Sept–25 Oct

Surf

DCM

Surf

DCM

1–6

0.5–6

3–24

2.9–13

Behrenfeld et al., 2002

Bay of Biscay Monthly 2003 Surf

<2µm

>2µm

DCM

<2µm

>2µm

5.90 ± 1.27

4.94 ± 0.66

4.93 ± 0.88

2.30 ± 0.32

N = 11–12 Morán and Scharek,

2015

STUDIES CARRIED OUT AT LATITUDES >60◦

Barents Sea April–Aug Surface All <8 all but 10 < 4 N = 232 Rey, 1991

W. Norway 7–12 June 0.5 m

5 m

10m

0.85–4.62

1.1–3.6

1.36–3.58

2.26

2.22

2.36

Erga and Skjoldal,

1990

Polar and temperate Most <4 but some up

to 16

N = 700 Harrison and Platt,

1986

Gerlache and Branfield Straits,

Antarctica

Dec–Jan 1995 Surface 2.16 ± 1.09 N = 47 Lorenzo et al., 2002

Ross Sea Jan–Feb 1996 Surface 0.72–2.83 1.27 ± 0.39 N = 51 Saggiomo et al., 2002

Chukchi & Beaufort Seas June–July, 2010

and 2011

Surface

(3.0 ± 0.9 m)

0.95 ± 0.48 N = 113

Mean 5–6 when

NO3 > 10µg l−1

Palmer et al., 2013

Expedition (www.galathea3.dk) in August 2006–April 2007.
These data have been supplemented with data from two cruises
in the northern North Atlantic aboard the RV Dana (Technical
University of Denmark) in August, 2008 and September, 2012.
Sampling positions are shown in Figure 1. Identical methods
and instrumentation were employed on all three cruises.
Standard hydrographic profiles were made with a CTD (Seabird
Instruments 911) mounted in a rosette with 5 or 30 l Niskin
bottles. A profiling fluorometer (SCUFA or Dr. Hardt) and a
light meter (Biospherical Instruments) were mounted on the
rosette. Surface light was recorded (Biospherical Instruments) at
the top of the ship. Water for inorganic nutrient determinations
was tapped from the Niskin bottles and frozen until later
determination at the National Environmental Research Institute,
University of Aarhus, Denmark. Further detail on nutrient
and all other sampling procedures is given in Hilligsøe et al.
(2011).

Primary Production
Samples from the surface layer (5m at latitude >50◦; 10m at
latitude <50◦) and the depth of the deep chlorophyll maximum
(DCM) were incubated (2 h in artificial light incubators
mimicking the spectral distribution of daylight and adjusted to
ambient temperature for the two depths) following the addition
of 14CO2 at 12 different light intensities (∼5–750 µmol photons
m−2s−1). Two samples were incubated in darkness. When
no DCM was present, a second depth was arbitrarily chosen

for incubation (usually 20m). 14C incorporation in POC was
determined following filtration on a GFF filter and converted
to total DIC incorporation on the basis of alkalinity and pH
determinations or direct determination of pCO2 made at each
station. Curves were fitted to the photosynthesis vs. light (P vs.
E) relationships resulting from the incubations in order for find
Pmax (maxiumum hourly rate of photosynthesis) and the slope
of the P vs. E relationship when P < Pmax, i.e., alpha (α) (µg C
(µg Chl a h)−1

µmol−1 photons m2 s) Both Pmax and α were
normalized to the chlorophyll a content of the sample. Thus, PBmax
and α

B in the text refer to the chlorophyll normalized values of
Pmax (µg C fixed l−1 h−1) and α, respectively.

The complete primary production dataset (in all 209 samples
taken at 121 stations) comprises results obtained in the period ±

∼100 days from the summer solstice with determinations being
more or less evenly distributed in this period. No seasonal signal
was found in the data. Sampling was also carried out throughout
the day, although most sampling took place in daylight. All of
the highest values of PBmax and α

B were recorded between 0800
and 1600 (Figure 2). However, a full range (low to high) of
values was recorded in this time interval and the lowest values
for these photosynthetic parameters were also recorded within
this time frame. Even in the surface data, where the signal is
most pronounced, only ∼20 data points for PBmax, and many
fewer for α

B, are found to be higher than those found in the
remainder of the dataset. Thus, while the apparent diurnal signal
in photosynthetic parameters should be acknowledged, we argue
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FIGURE 1 | Stations from the Galathea 3 Expedition and the Dana cruises in 2008 (stations between Greenland and the Faeroe Islands along ∼62.5◦ N)

and 2012 (gray bullets along eastern Greenland) where photosynthetic parameters (PB
max, α

B) were determined at surface and DCM. Triangles denote

stations where phytoplankton size distribution and taxonomy were also determined. Background field of chlorophyll (µg l−1) was based on annual averaged MODIS

satellite fields in 2003. Units of PBmax and α
B are given by (µg C (µg Chl)−1 h−1) and (µg C (µg Chl)−1 h−1

µE−1 m2 s).

that it does not drive the relationships we discern between
these parameters and abiotic/biotic variables in the following
analyses.

Chlorophyll Determination
Samples from selected depths and filtered onto GFF to
determine total sample chlorophyll (which could be used both
in the analysis of fractionated chlorophyll and to calibrate
the profiling fluorometer mounted on the rosette) and 10µm
filters, respectively. These were extracted in 96% ethanol
and chlorophyll a fluorescence determined using a Turner
fluorometer following the US EPA method 445.0 as suggested by
Turner Designs.

Abundance and Biovolume—Micro and
Nano-Phytoplankon
At 59 stations on the Galathea 3 cruise, samples (90 in all)
for phytoplankton analysis were taken from Niskin bottles
closed at the surface (5 or 10m) and/or in the DCM. These
were preserved in acidified Lugol’s solution (approximately 2%
final concentration) and stored in darkness at ∼5◦C until later
analysis. Identification of organisms (> ∼3 µm) was made using
quantitative light microscopy following the protocol used in
the Danish National Water and Nature Monitoring Program
(Henriksen and Kaas, 2004) according to Utermöhl (1958). Axial
dimensions were measured from a subset of each taxon and used
to calculate cell biovolumes using appropriate geometric volume
formulas. Analyses were carried out by Orbicon A/S (Århus
Denmark).

Abundance and
Biovolume—Pico-Phytoplankton
At the same stations where micro and nano-phytoplankton
were determined on the Galathea cruise, pico-phytoplankton
were also quantified. Water from the CTD was stored in
darkness and cool until sampling could be performed (within
30min after collection). Samples of 4ml were preserved
in filter-sterilized glutaraldehyde to a final concentration
of 2% and stored darkness at 4◦C. Pico-phytoplankton
abundance was determined by flow cytometry (FACS Calibur,
Becton Dickinson) within 2 days of sampling. The flow
rate of samples through the FACS Calibur was determined
using BD Biosciences TruecountTM tubes. The gatings for
Prochlorococcus and Synechococcus, and pico-phytoplankton
were defined using cultures of Prochlorococcus, Synechococcus
and picophytoplankton (Phaeocystis spp., Rhodomonas
spp., Emiliana huxleyi, Pycnococcus spp., Pelagococcus
subviridis, Pelagococcus spp.), and were verified onboard by
comparison with microscopy counts. XY plots were used
with data from forward scatter, side scatter and fluorescence
signals. Several plots in different combination were used for
Prochlorococcus, Synechococcus, and pico-phytoplankton, to
ensure that there was no overlapping gating for any of the
gating groups.

The sizes of the pico-phytoplankton (Prochlorococcus,
Synechococcus and eukaryotic pico-phytoplankton) were
estimated in all samples from forward scatter and calibrated
against 8 cultures of Prochlorococcus, Synechococcus and
eukaryotic picophytoplankton (Micromonas pusilla strains
K-0024 and K-0023, Nannochloropsis oculata, Thalassiosira
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FIGURE 2 | (A) PBmax and (B) α
B from the upper 10m (bullets) and the DCM

(open circles) vs. the local time of the day. Data points originate from Galathea

3 and both Dana cruises. Units of (PBmax, α
B) as in Figure 1.

pseudonana) representing a cell diameter range from
0.6 to 3.1µm.

Chlorophyll a Content of Dominant
Phytoplankton Groups
The combined datasets on biovolume of nano + micro- and
pico-phytoplankton were assumed to represent the majority
of the phytoplankton community in each sample. Different
taxa were then grouped together based on their taxonomy
and size and their greatest axial linear dimension (GALD).
Thus, in the nano + micro-phytoplankton data set, taxa were
grouped as ciliates, diatoms < 50µm, diatoms > 50 µm,
dinoflagellates < 50µm, dinoflagellates > 50 µm and green
nanoflagellates. In the picophytoplankton data, set all taxa
were small and we only differentiated between taxa; i.e., the
cyanobacteria, Prochlorococcus and Synecococcus, and the pico-
eukaryotes. Assuming that cell volume is linearly related to
chlorophyll a content (seeMarañón et al., 2007), we calculated the
chlorophyll content of each group in each sample by multiplying
the chlorophyll a concentration by the relative contribution that
each group contributed to the total biovolume.

Size Dependence of Photosynthetic
Parameters
A simple model was developed on the basis of 142 samples
taken at the 86 stations where fractionated chlorophyll had been

determined to test for size-dependence of the photosynthetic
parameters, αB and PBmax. The model considered two discrete size
classes representing small (i.e., chlorophyll containing organisms
passing through a 10µmfilter) and large cells, respectively. Their
respective fractions, i.e., f(small) and f(large), were defined from the
observed concentration of chlorophyll a associated with the two
size classes: [0.7–10µm] and [> 10 µm]. Thus, the two fractions
were related as:

f(small) + f(large) = 1

Each size class was assumed to be characterized by a
photosynthetic parameter given by ϕ(small) or ϕ(large) where
ϕ represented the photosynthetic parameter, i.e., α

B or PBmax.
The bulk photosynthetic parameter of the sample was then
determined from:

ϕ = ϕ(small) ∗ f(small) + ϕ(large) ∗ f(large)

Best fit values of the two free parameters ϕ(small) and ϕ(large) were
then found by minimizing the residual defined by:

R = 6(ϕ − ϕ(obs))
2

where ϕ(obs) represented the photosynthetic parameters obtained
from the incubations described above and the summation
included all observations. Finally, a normalized residual (Rnorm)
was calculated by scaling R with the residual from the best fit
solution (Rmin):

Rnorm = R/Rmin

Best fit values for α
B and PBmax were searched for in the intervals

[0:0.15] and [0:5], respectively.

Statistics
All statistical analyses were performed in the open source
statistical software, R (R Core Team, 2016). In addition to the
core software, we used the R-package “vegan” (Oksanen et al.,
2016).

Patterns in the distribution of the dominant phytoplankton
groups in relation to PBmax, α

B and the environmental variables
(temperature, depth, nitrate, phosphate and silicate) were
investigated by performing a non-metric multidimensional
scaling analysis (Legendre and Legendre, 2012) on the
distribution of the group specific chlorophyll a content. The
underlying dissimilarity matrix was calculated using the Bray-
Curtis dissimilarity index and the analysis was runmultiple times
to avoid getting trapped in a local optimum. When the global
optimum had been estimated, we projected the distribution of
PBmax and α

B into the ordination space using thin plate regression
splines (Wood, 2003). In addition, the environmental variables
were fitted as linear vectors indicating the direction of the
association between the community composition and changes in
the environment.

As our data suggested an effect of both temperature and
depth of sampling, we split the data set into four groups: Group
1: depth > 10m and temperatures ≥ 15◦C; Group 2: depth
< 10m and temperatures ≥ 15◦C; Group 3: depth > 10m
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and temperatures ≤ 15◦C and; Group 3: depth ≤ 10m and
temperatures ≤ 15◦C. We then calculated the median values of
all the variables measured and assessed if the values in each group
could be considered to come from the same distribution using a
Kruskal-Wallis rank sum test.

RESULTS

Relationship between Photosynthetic
Parameters and Environmental Variables
Both PBmax and α

B are seen in the dataset to vary in relation
to temperature, the depth of sample collection (possibly a
proxy for light availability), ambient inorganic nutrient (nitrate
and phosphate) concentrations, and the size distribution of
the phytoplankton community (fractionated chlorophyll)
(Figures 3, 4A). Not all of the relationships appear to be linear
and all of these variables correlate to some degree with one
another. Thus, it is not possible to ascertain cause and effect in
these relationships or to rank these variables in order of their
potential importance in terms of controlling photosynthetic
performance. Nevertheless, some generalizations can be made
about the global distribution of PBmax when these relationships
are considered together. From Figure 4B, the generalization can
be made that the highest values of PBmax will be found in warm
(>∼15◦C) surface waters. Although communities dominated
by both large and small organisms can exhibit high PBmax,
communities dominated by small organisms appear particularly
likely in this data set to be associated with high PBmax. Relatively
high PBmax can be recorded down to ∼100m. Furthermore,
PBmax exhibits a negative relationship with the inorganic nutrient
concentrations (Figure 3C), where all of the highest values of
PBmax were recorded in waters where the ambient concentration
of nitrate was <5 µmol kg−1.

Patterns associated with the distribution of α
B (Figures 5, 6)

are less clear. Also this photosynthetic parameter can be related to
temperature (bell-shaped curve), the depth of sample collection
and nutrient availability. Although the highest values of α

B were
recorded in surface waters, the relationship between depth of
sampling and value of α

B is not as strong as is the case for
PBmax. Alpha was most clearly related to the size structure of the
community with the highest values recorded being associated
with communities dominated by small phytoplankton. Thus, the
overall patterns in the distribution of αB are less clear (Figure 6B)
than those found for PBmax.

That the association with α
B and the variables examined is

weaker than for PBmax is confirmed when the median values for
the two photosynthetic parameters and the variables shown to
be associated with them are compared (Table 2). The median
values of each of the parameters and variables at the depths of the
DCM and in surface samples in warm (≥15◦C) and cold (<15◦C)
waters are examined individually. In all cases, there is a significant
difference between the values when the four environment types,
i.e., warm and cold waters in surface and DCM, respectively,
are compared. However, the level of significance when α

B is
compared in the four different environments is less (p = 0.016)
than is the case for PBmax (p= 0.006).

Photosynthetic Parameters—Large and
Small Cells
When the entire dataset was considered, best fit solutions
were found for [αB(small) = 0.040, α

B(large) = 0.025] and
[PBmax(small) = 2.56, PBmax(large) = 1.53]. The resulting best
fit solutions of the bulk photosynthetic parameters were then
calculated to α

B = 0.038 µg C (µg Chl a h)−1 (µmol
photons)−1 m2 s and PBmax = 2.38 µg C (µg Chl a h)−1,
respectively (Figure 7). When data collected from surface
and DCM samples were considered separately, the differences
between photosynthetic performance of the large and small cells
were even more pronounced (Table 3). In the depth separated
analysis, PBmax(small) was calculated to be nearly twice as high in
surface (≤10m) waters than in deeper waters while PBmax(large)
was lower in surface than in deeper waters. For both size groups,
α
B increased with depth, as would be expected in response

to adaptation of the photosynthetic apparatus to low light
(Richardson et al., 1983).

Community Taxonomic Structure and
Photosynthetic Parameters
Results of the NMDS ordinations relating the dominant (by
biovolume) phytoplankton group in the community to the
measured photosynthetic parameters of the total community
are shown in Figure 8 (PBmax) and 9 (αB). The highest PBmax
determinations were associated with communities dominated
by dinoflagellates, small (<10 µm) unidentified flagellates,
Synecococcus and pico-eucaryotes. Of the large phytoplankton,
only dinoflagellate dominated communities in warm water are
associated with high PBmax. The large dinoflagellate dominated
communities also are associated with the highest values of α

B

recorded (Figure 9).
Large and small diatom dominated communities occupy

similar positions (intermediate both with respect to PBmax
and α

B) in the NMDS ordinations of both photosynthetic
parameters. Diatom dominated communities are associated with
colder waters and high inorganic nutrient concentrations. The
“ciliates” recorded in the NMDS ordinations are primarily
comprised by Mesodinium rubrum. These are associated in
this dataset with relatively warm waters and again, exhibit
intermediate values for both of the photosynthetic parameters
examined. Prochlorococcus is associated with deep waters and
with low values for both photosynthetic parameters. This genus
dominated in samples taken in the Sargasso Sea where the DCM
is found at depths >100m and this likely explains the placement
of this genus in the ordinations.

DISCUSSION

As background for this study, we surveyed the literature
for reports of PBmax determined on natural phytoplankton
communities (Table 1). All of the studies found in the survey
described conditions in a limited geographic region. A number
of the studies found had identified specific abiotic and/or biotic
variables as being correlated with photosynthetic performance
and we examine here all of the variables identified in these studies
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FIGURE 3 | (A) PBmax vs. sea surface temperature, (B) in situ depth of sampling and (C) in situ nitrate concentration at sampling depth. PBmax varied qualitatively

similarly to phosphate as to nitrate (data not shown). The parameterisation of PBopt (= PBmax when photosynthesis is light saturated) as applied in the VGPM-model

(Behrenfeld and Falkowski, 1997b) is shown in (A) (solid line). Values are shown from the upper 10m (bullets) and the DCM (open circles). Data points originate from

Galathea 3 and both Dana cruises. Units of PBmax as in Figure 1.

FIGURE 4 | (A) PBmax vs. the fraction of small phytoplankton (i.e., proportion of total chlorophyll passing through a 10 µm filter). (B) PBmax vs. depth of the sample and

temperature. The size of the rings represents the value of PBmax and the color represents the size distribution. Red color shows samples where more than 90% of the

chlorophyll originated from phytoplankton smaller than 10 µm. Data originate from Galathea 3 and the Dana cruise in 2008. Units of PBmax as in Figure 1.

FIGURE 5 | (A) α
B vs. sea surface temperature, (B) in situ depth, and (C) in situ nitrate concentration. Values are shown from the upper 10m (bullets) and the DCM

(open circles). Data points originate from Galathea 3 and both Dana cruises. Units of αB as in Figure 1.

as potentially being related to photosynthetic characteristics (i.e.,
light, temperature, ambient nutrient concentration, size structure
of the phytoplankton community and taxonomic group) in
relation to characteristics of the P vs. E curves constructed from
incubations of samples from the surface and the deep chlorophyll
maximum in samples collected from nearly all major ocean
basins. Although the northern Pacific is not represented in our

dataset, the literature survey includes reports of many studies
carried out in the Pacific. On the basis of those reports, we see no
reason to suspect that the general patterns in the distribution of
photosynthetic characteristics demonstrated here would not also
be applicable to phytoplankton in the Pacific.

While it would have been possible, for some of
the environmental variables examined, to combine our
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FIGURE 6 | (A) α
B vs. the fraction of small phytoplankton (i.e., proportion of total chlorophyll passing through a 10 µm filter). (B) α

B vs. depth of the sample and

temperature. The size of the rings represents the value of αB and the color represents the size distribution. Red color shows samples where more than 90% of the

chlorophyll originated from phytoplankton smaller than 10 µm. Data originate from Galathea 3 and the Dana cruise in 2008. Units of αB as in Figure 1.

TABLE 2 | Median values of all variables at different temperatures and depths.

High temp; Sub-Surface High temp; Surface Low temp; sub-Surface Low temp; Surface Chi2 d.f. p-value

PBmax 1.451 2.746 1.412 1.534 12.3 3 0.006

α
B 0.042 0.023 0.035 0.035 10.5 3 0.015

Chloropyll a 0.523 0.213 1.368 1.501 25.8 3 <0.001

Fraction <10 µm 0.96 0.95 0.83 0.84 19.6 3 <0.001

Nitrate 0.30 0.20 16.86 14.32 40.0 3 <0.001

Phosphate 0.13 0.12 1.36 1.04 37.5 3 <0.001

Silicate 0.83 0.74 3.45 3.16 27.2 3 <0.001

Temperature 21.4 22.5 5.5 6.3 – – –

Depth 75 10 47 5 – – –

High and low temperatures are above and below 15◦C. Surface is above or equal to 10m and sub-surface is below 10m. The test statistics refers to a Kruskal-Wallis rank sum test.

observations with data for PBmax reported in the literature
in an attempt to better constrain the relationship between
PBmax and these variables, we refrained from doing so
because comparisons (Richardson, 1991) of results obtained
by different workers/protocols on similar samples have
demonstrated considerable variability. By limiting our analysis
to photosynthetic data we had collected ourselves using the
same equipment and protocols, we could minimize the error
introduced into the analyses from operator differences.

The range (up to ∼8) we found in our PBmax determinations
agrees well with PBmax reported for natural populations in the
literature (Table 1). However, some studies report (usually a
small number of) PBmax values that are considerably higher (up to
>60). Further study is needed to ascertain whether these outliers
actually represent regions of extreme efficiency in photosynthetic
performance or data artifacts.

As noted in the introduction, one of the most commonly
employed algorithms used to estimate water column primary
production from remotely sensed surface ocean data is the
VGPM model (Behrenfeld and Falkowski, 1997b). This model
parameterizes photosynthetic performance as a function of sea
surface temperature. We note that, while the VGMP estimates
of the maximum rate of photosynthesis lie within the range of

PBmax estimates reported in the literature, they lie at the upper
end of the range of the PBmax values that we find (Figure 3A)
and of the averages reported by other workers (Table 1). We
have no basis upon which to argue which estimates of PBmax are
the most “correct” but note simply the fact that the estimates
used in VGPM appear to be on the high end of the range most
often reported. Thus, there is the possibility that VGPM may be
overestimating global ocean POC production.

Photosynthetic Performance in Relation to
Abiotic Variables
Sea surface temperature (SST) is readily estimated from remotely
sensed surface ocean characteristics. Therefore, photosynthetic
performance is often parameterized in relation to SST. The
analysis presented here indeed demonstrates a relationship
between temperature and both PBmax and α

B (Figures 3, 5). In the
case of both parameters, vs. temperature, the relationships appear
to be non-linear.

As noted earlier, the fact that photosynthetic parameters
appear to relate to temperature does not necessarily imply
a direct temperature effect on these parameters. PBmax and
α
B are also shown here to vary as a function of ambient

nutrient concentration and depth of sampling. Both of these
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FIGURE 7 | Residual (Rnorm) of model solution for (A) PBmax and (B) α
B and the corresponding model derived bulk photosynthetic parameters of (C) PBmax and

(D) α
B. Best fit solutions are indicated by dashed lines and bullets. The models have been fitted using data from Galathea 3 and the Dana cruise in 2008. Units of

(PBmax, α
B) as in Figure 1.

environmental variables can be predicted to vary as a function
of temperature. Thus, all of these environmental variables are
correlated, making cause, and effect in the relationships identified
difficult to identify. It is interesting, however, to note that
both photosynthetic parameters are, in our dataset negatively
correlated with ambient nutrient concentration (Figures 3C,
5C), i.e., all of the highest values were recorded when nitrate
concentrations were <5 µmol kg−1. This result contrasts with
the findings of Palmer et al. (2013) who found the highest
values of PBmax in environments with nitrate concentrations over
10 µmol kg−1 in a study of Arctic waters, thus raising the
interesting question of a possible influence of an interaction
between temperature and nutrient availability on photosynthetic
parameters.

Photosynthetic Performance in Relation to
Size Structure of the Phytoplankton
Community
Size structure of the phytoplankton community also correlates
with both temperature and ambient nutrient concentrations
(Hilligsøe et al., 2011; Mousing et al., 2014) and both PBmax and α

B

are here shown to be clearly correlated with phytoplankton size

TABLE 3 | Modeled best fit values for photosynthetic parameters for the

large and small components of the phytoplankton community.

Small Large

PBmax α
B PBmax α

B

All data 2.50 0.040 1.53 0.025

Depth ≤ 10 m 3.37 0.033 0.85 0.019

Depth > 10 m 1.68 0.049 2.16 0.033

Large, proportion of total chlorophyll retained on a 10 µm filter; Small, the proportion

passing through a 10 µm filter.

structure, i.e., the relative proportion of total chlorophyll retained
on a 10 µm filter (Figures 4, 6). Model fits describing median
values of best fit values for photosynthetic parameters (Figure 7,
Table 3) indicate that smaller organisms exhibit higher values of
both PBmax and α

B. Recent field studies (Strom et al., 2010; Morán
and Scharek, 2015) have also reported higher PBmax for small than
for large cells.

When the surface and DCM data are considered separately,
the best fit model suggests a lower PBmax for large cells in the
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FIGURE 8 | Non-parametric multidimensional scaling (NMDS)

ordination plot showing the relative distribution of the chlorophyll of

dominant phytoplankton groups in relation to the distribution of PB
max

(purple contour lines) as well as temperature, depth, and

macronutrients (blue arrows). Phytoplantkon group abbreviations: Cil,

Mixotrophic ciliates; Dia < 50, Diatoms < 50 µm; Dia > 50, Diatoms > 50

µm; Dino < 50, Dinoflagellates < 50µm; Dino > 50, Dinoflagellates > 50µm;

Flag < 10, Green nanoflagellates < 10 µm; Peuk, Picoeukariots; Pro,

Prochlorococcus; Syn, Synecococcus. Units of PBmax as in Figure 1. The

NMDS is based on a subset of 90 samples from the Galathea 3 Expedition,

i.e., where both taxonomic data and photosynthetic parameters were

collected.

surface layer than at the DCM.While this result was not expected,
earlier studies (From et al., 2014) suggest that photoinhibition
may be more common in the surface layer than normally
assumed. For both the large and small components of the
phytoplankton community, α

B increases with depth (Table 3).
This result would be expected as a universal adaptation to low
light is believed to be an increase in alpha (Richardson et al.,
1983).

The model results show that the residuals are narrower
in the direction of smaller cells than in the direction of
large cells (Figures 7A,B) and this implies that both PBmax
and α

B are better constrained for small cell sizes. We can
suggest two reasons for why this might be the case. Firstly,
the size range of the “small” phytoplankton in this study
is well defined as being those organisms not retained on a
10 µm filter. This, presumably, would mean organisms with
an axial length of <10 µm. Within this size range, the
morphological shape of organisms is usually relatively simple
(round or oblong). The “large” organisms in this study would
be all those retained on a 10 µm filter, i.e., no maximum
size. The variety of morphological forms found in these larger
organisms is, everything being equal, greater than for the smaller
organisms. One possibility is that that this greater variety
of cell forms in the larger phytoplankton might result in a
greater variability in light absorption capability and thereby,
photosynthetic parameters in the larger phytoplankton than in
the smaller.

FIGURE 9 | Non-parametric multidimensional scaling (NMDS)

ordination plot showing the relative distribution of the chlorophyll of

dominant phytoplankton groups in relation to the distribution of α
B

(purple contour lines) as well as temperature, depth and

macronutrients (blue arrows). Phytoplantkon group abbreviations: Cil,

Mixotrophic ciliates; Dia < 50, Diatoms < 50µm; Dia > 50, Diatoms > 50 µm;

Dino < 50, Dinoflagellates < 50 µm; Dino > 50, Dinoflagellates > 50µm; Flag

< 10, Green nanoflagellates < 10µm; Peuk, Picoeukariots; Pro,

Prochlorococcus; Syn, Synecococcus. Units of αB as in Figure 1. The NMDS

is based on a subset of 90 samples from the Galathea 3 Expedition where

both taxonomic data and photosynthetic parameters were collected.

Photosynthetic Performance in Relation to
Dominate Taxonomic Group
Phytoplankton size is also, at least to some degree, related
to taxonomy. For the stations where we had taxonomic
data, we, therefore, attempted to relate the dominant (by
biovolume) taxonomic group to photosynthetic characteristics.
Here, it should be noted that we have a relatively limited
number of samples (90) with taxonomic data. Furthermore,
the preservation method we used for phytoplankton samples
(acidified Lugol fixation) would not preserve all phytoplankton
groups (coccolithophorids are, for example, missing). Therefore,
we cannot use the relationships we find here as being universal
and diagnostic for the global ocean. Nevertheless, the NMDS
ordinations (Figures 8, 9) relating dominant phytoplankton
group and the two photosynthetic parameters reveal some
interesting patterns that can be used to develop a more nuanced
understanding of the general pattern of higher PBmax and α

B being
associated with the smaller phytoplankton.

With respect to PBmax (Figure 8), the ordination identifies
high values to be associated with dinoflagellates of all
sizes, flagellates, and in warmer waters, pico-eukaryotes and
Synecococcus. We were surprised to find the dinoflagellates
here, i.e., associated with a higher PBmax than diatoms, as
earlier studies (e.g., Chan, 1980) have suggested that the two
groups may perform similarly when their photosynthesis is
compared on a per chlorophyll basis. A possible explanation
for this finding is that dinoflagellates in our dataset often occur
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in communities with a relatively large proportion of pico-
plankton. In such cases, the biovolume of a small number
of large dinoflagellates could provide the dominate biovolume
in the community, while the photosynthetic profile of the
community is determined by the smaller organisms. Another
possibility, of course, is that dinoflagellates under natural
conditions may be more efficient photosynthesizers than usually
assumed.

Prochlorococcus dominated communities show a relatively low
PBmax in our dataset and are associated here with deep, warm
waters. This fits well with the fact that we found them primarily in
the DCM samples in the Sargasso Sea, where the DCM is located
at>100m. Diatom dominated communities were associated with
cold waters and high nutrient concentrations and exhibited an
intermediate PBmax.

The patterns emerging from the NMDS ordination for
α
B, are less clear than for PBmax (Figure 9). This, however, is

not surprising given that the relationships between α
B and

environmental variables are shown here to be less clear than
for PBmax. Also here, the highest values for α

B were found
to be associated with communities where large dinoflagellates
dominated the biovolume. In the case of α

B, diatom dominated
communities appear to be characterized by relatively high values.
Thus, a picture emerges of diatom dominated communities being
well adapted to utilize low light levels but not among the most
efficient in terms of PBmax. Such a photosynthetic strategy would
make diatoms well adapted to the kinds of conditions where they
are known to dominate (i.e., spring bloom in temperate waters).

As noted above, we do not mean to imply that the taxonomic
patterns we find in relation to the data on photosynthetic
parameters that we present here are diagnostic for the global
ocean under all conditions. However, we do believe that the
strong relationship we find in this study between phytoplankton
community size structure and photosynthetic performance of the
community, as well as the fact that nuances in this relationship

can be discerned from study of the taxonomic composition
of the community, to be of great potential interest in terms
of improving the parameterization of photosynthetic potential
when collection of physiological data is not possible, i.e., when
estimating ocean primary production from remotely sensed
surface data.

Estimation of both the size distribution of phytoplankton
and to some extent, the taxonomic groupings represented in
surface waters is possible using remote sensing techniques to
quantify surface optical characteristics (e.g., Le Quere et al.,
2005; Chust et al., 2013; Boyce et al., 2015; Cetinić et al.,
2015). Thus, a prospective avenue to follow in the pursuit of
a better parameterization of the photosynthetic potential of
natural phytoplankton population could be to further explore the
relationship between community size (and taxonomic) structure
and photosynthetic performance.
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