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ABSTRACT
Barnacles and their allies (Thecostraca) are a biologically diverse, monophyletic
crustacean group, which includes both intensely studied taxa, such as the acorn and
stalked barnacles, as well as cryptic taxa, for example, Facetotecta. Recent efforts have
clarified phylogenetic relationships in many different parts of the barnacle tree,
but the outcomes of these phylogenetic studies have not yet been combined into a
single hypothesis for all barnacles. In the present study, we applied a new “synthesis”
tree approach to estimate the first working Barnacle Tree of Life. Using this
approach, we integrated phylogenetic hypotheses from 27 studies, which did not
necessarily include the same taxa or used the same characters, with hierarchical
taxonomic information for all recognized species. This first synthesis tree contains
2,070 barnacle species and subspecies, including 239 barnacle species with
phylogenetic information and 198 undescribed or unidentified species. The tree had
442 bifurcating nodes, indicating that 79.3% of all nodes are still unresolved.
We found that the acorn and stalked barnacles, the Thoracica, and the parasitic
Rhizocephala have the largest amount of published phylogenetic information. About
half of the thecostracan families for which phylogenetic information was available
were polyphyletic. We queried publicly available geographic occurrence databases
for the group, gaining a sense of geographic gaps and hotspots in our phylogenetic
knowledge. Phylogenetic information is especially lacking for deep sea and
Arctic taxa, but even coastal species are not fully incorporated into phylogenetic
studies.
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INTRODUCTION
The Thecostraca, which include not only the barnacles (Cirripedia), but also the
Facetotecta, Ascothoracida, and possibly the Tantulocarida (Petrunina et al., 2014), is a
highly variable crustacean group in terms of both morphology and biology (Ruppert,
Fox & Barnes, 2003; Høeg & Møller, 2006) (Fig. 1). This makes them prime models for
studying evolutionary adaptations in diverse fields including morphology, ontogeny, and
reproductive systems (Charnov, 1987; Høeg et al., 2009; Yusa et al., 2012; Lin et al., 2015).
In fact, the specializations in adult morphology, growth, feeding biology, and sexual
systems prompted Darwin (1851a, 1851b, 1854, 1855) to study barnacles, resulting in one
of the first “model organisms” of evolutionary adaptation. Recent work has assessed
phylogenetic relationships among the barnacles at both the higher (Buckeridge, 1996; Korn,
1995; Harris et al., 2000; Pérez-Losada et al., 2002, 2008; Pérez-Losada, Høeg & Crandall,
2004; Glenner & Hebsgaard, 2006; Mallatt & Giribet, 2006; Høeg et al., 2009) and lower
(Mokady et al., 1999; Simon-Blecher, Huchon & Achituv, 2007; Shemesh et al., 2009;
Brickner, Simon-Blecher & Achituv, 2010; Pérez-Losada et al., 2014; Lin et al., 2015; Gale,
2018; Lin, Kobasov & Chan, 2016) taxonomic ranks. These studies have provided great
insight into barnacle evolution, confirming morphological patterns in some cases, and
highlighting substantial convergence in others. For example, genetic data revealed a case of
deep convergence in the metamorphosing stages of Rhizocephala and Facetotecta
(Pérez-Losada, Høeg & Crandall, 2009), with morphologically very similar slug-shaped
stages. In another case, the basal position of Ibliformes within the acorn and stalked
barnacles (Thoracica) was confirmed both by the presence of several plesiomorph shell
characters and molecular phylogenetics (Høeg et al., 2009; Pérez-Losada et al., 2008).
Within the monophyletic Thoracica, the Sessilia (acorn barnacles) are nested within
the Pedunculata (stalked barnacles), and the stalk has been lost more than once
(e.g., Neoverrucca), rendering Pedunculata polyphyletic (Pérez-Losada et al., 2008).
Genetic studies confirmed the morphologically suggested sister relationship between
Balanomorpha and Verruccomorpha (Pérez-Losada et al., 2008). The often-hypothesized
gradual increase of shell plate numbers during the evolution of Thoracica, on the other
hand, could not be confirmed (Pérez-Losada et al., 2008). As a consequence of the diverse
phylogenetic efforts, few studies have included enough of the same taxa or used the
same characters to allow an estimate of the Barnacle Tree of Life up to now.

The inability to combine studies into a single phylogenetic tree for all barnacles is
primarily because studies did not include the same species, which is required by supertree
methodology, or did not use the same characters (genes or morphology), which is
required by supermatrix approaches. Supertree approaches code phylogenies and their
represented relationships in a new matrix to be analyzed by phylogenetic methods, and
they typically require that a significant number of the same taxa are present in each
study to effectively integrate multiple phylogenies into a single tree (for a review see
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Bininda-Emonds, 2004). Supermatrix approaches, on the other hand, require the same
character sets (e.g., nucleotides, proteins, morphological characters, etc.) to be used by
each study, and usually contain large amounts of missing data (Driskell et al., 2004;
Ciccarelli et al., 2006; McMahon & Sanderson, 2006). This is especially problematic with
morphological characters as very different characters have been used at the higher
taxonomic ranks compared to lower ranks, and in some groups (e.g., parasitic barnacles) it
is impossible to determine character homology. Within Thecostraca, larval characters are
the only ones that can be compared across all taxa, but compiling and coding such
information is cumbersome and time consuming, especially for rare and hard to sample
species (e.g., Yorisue et al., 2016). Similarly, genetic data sets are also hard to combine since
experts tend to use different (sometimes completely different) sets of genetic markers.
Given the relative lack of matching data across barnacle studies, we have decided to apply
a new “synthesis” tree approach (Hinchliff et al., 2015) in an attempt to estimate the
first working Barnacle Tree of Life. The synthesis tree approach (Hinchliff et al., 2015;
Redelings & Holder, 2017) maps phylogenetic hypotheses onto underlying hierarchical
taxonomic information (Rees & Cranston, 2017). This results in an integration of
both phylogenetic and taxonomic information onto a single phylogenetic tree that
combines phylogenetic relatedness and taxonomic knowledge. This approach also readily
highlights those areas of the taxonomy that lack previously published phylogenetic

Figure 1 Morphological diversity of Thecostraca mapped onto the phylogenetic hypothesis
presented by Pérez-Losada, Høeg & Crandall (2009). The Ibliformes are highlighted as the most
basal Thoracican order with several potentially plesiomorphic features. Photographs taken by Benny K.K.
Chan. Full-size DOI: 10.7717/peerj.7387/fig-1
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information. Because the phylogenetic information is incorporated as is (i.e., there is no
“supermatrix” construction and no re-estimation), any phylogenetic hypothesis can be
incorporated regardless of its data basis, hence morphological and/or molecular trees can
be integrated without a need for congruent character sets or gene regions.

Given the recent and diverse phylogenetic and genomic efforts across the barnacles, we
felt that now was a particularly opportune time to summarize the barnacle phylogeny
efforts using phylogenetic synthesis. Indeed, reasonably detailed molecular based trees are
now available for most of the major thecostracan groups (Rhizocephala: Glenner &
Hebsgaard, 2006; Glenner et al., 2010; Thoracica: Pérez-Losada et al., 2008, 2014; Lin et al.,
2015; Chan et al., 2017; Acrothoracica: Lin, Kobasov & Chan, 2016), and several studies
have dealt with lower taxonomic ranks (e.g., coral barnacles: Mokady et al., 1999;
Simon-Blecher, Huchon & Achituv, 2007; Brickner, Simon-Blecher & Achituv, 2010; Chen,
2012; Tsang et al., 2014; Simon-Blecher et al., 2016). Our goal is to summarize all previously
published barnacle phylogenies to highlight areas for future systematic research effort
by quickly identifying areas of the taxonomy that lack phylogenetic information as well as
areas where there are (1) conflicting phylogenetic hypotheses and/or (2) conflicting
phylogenetic and taxonomic information (i.e., non-monophyletic taxa). Additionally, a
synthesis tree can also couple taxonomic/systematic information with geographic
information and taxa distributions and thereby quickly pinpoint geographic areas for
future collecting efforts to add genetic or morphological data to the leaves of the Barnacle
Tree of Life that are only represented by taxonomy. Thus, our study demonstrates both
the utility of the phylogenetic synthesis approach for obtaining a comprehensive
understanding of the state of phylogenetic knowledge for a particular group, and the utility
of taxonomy to add geographic information to dark parts of the tree to identify areas for
future collecting efforts to complement existing phylogenetic information. Ultimately,
this phylogeny serves as the first step to building a comprehensive Barnacle Tree of Life,
so hypotheses regarding molecular and morphological barnacle evolution can be
further tested.

MATERIALS AND METHODS
Synthesis approach
The two key components in a synthesis phylogeny are first a comprehensive taxonomy of
the group in question and second a set of phylogenetic estimates to be integrated with
that taxonomy. First, we curated published barnacle phylogenies in the Open Tree of Life
online curator (https://tree.opentreeoflife.org/curator) and mapped phylogeny terminals
to the underlying taxonomy. We used the open tree taxonomy (OTT) ott2.9 (Rees &
Cranston, 2017). The OTT is mainly based on the NCBI Taxonomy from the US National
Center on Biotechnology Information (http://www.ncbi.nlm.nih.gov) reference taxonomy,
but this taxonomy only includes taxa for which there are molecular data in GenBank.
Therefore, to get as complete a taxonomic representation as possible, the NCBI taxonomy
has been supplemented with the Backbone Taxonomy from the Global Biodiversity
Information facility (www.gbif.org), the World Registry of Marine Species (WoRMS)
(http://www.marinespecies.org/) taxonomy, and the Interim Register of Marine and
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Nonmarine Genera from CSIRO (http://www.cmar.csiro.au/). These taxonomies follow, for
the most part,Martin &Davis (2001) for the higher-level classification of the Thecostraca. The
backbone taxonomy includes old as well as misspelled species names. These names inflate the
number of species (i.e., binomials). We identified these invalid species by matching the tips of
the synthesis phylogeny against the well-curated taxonomy of WoRMS and then removed
invalid species from the synthesis phylogeny. We did not remove species that could only be
identified to the genus level, as these potentially represent valid undescribed species.

If published phylogenies were not available in the Open Tree of Life git-based
phylesystem repository (McTavish et al., 2015), we surveyed other public repositories and
literature for phylogenetic studies on barnacles. For all studies of interest, we searched
Supplemental Material, TreeBase (www.treebase.org), DataDryad (www.datadryad.org)
and FigShare (https://www.figshare.com/) for files of phylogenetic trees in a re-usable text
format (e.g., nexus, newick, phylip, etc.). Unfortunately, the systematics community on
average does not treat phylogenetic estimates as digital information to be deposited in an
electronic repository (Drew et al., 2013). Therefore, if re-usable tree files were not
available, we contacted the authors. If the authors were not able to provide tree files,
we manually reconstructed newick trees in Mesquite v.3.40 (Maddison & Maddison, 2018)
based on the phylogenetic tree presented in the respective study. These trees do not have
meaningful branch lengths. This is acceptable as input for synthesis tree reconstruction
because branch length information is not used in the tree synthesis process.

One requirement of phylogenetic synthesis is to rank input phylogenies with the
phylogeny that will carry the most weight first and the phylogeny that will carry the least
weight last. This means the phylogeny ranked first will have its bifurcations favored over all
others ranked below it in the final synthesis phylogeny. Due to this weighting scheme,
we ranked the barnacle taxonomy last because we wanted all molecular or morphological
input trees ranked ahead of the taxonomy and not taxa or branches represented by
molecular or morphological data were represented by taxonomy. For the synthesis tree
construction, we ranked molecular and morphological studies by three criteria:

1. Scope: studies with a narrow phylogenetic scope, for example, focused on one or a few
genera, were ranked higher than studies with a broad scope. The rationale is that studies
focusing on lower taxonomic ranks have a better resolution at the shallow nodes, while
broader studies that contain a diversity of higher taxonomic ranks typically add little
phylogenetic information at shallow nodes. Giving studies with narrow scope a higher rank
means that in case of a conflict, those studies take precedence over the lower-ranked trees.

2. Number of markers: if studies aimed to reconstruct the same most recent common
ancestor (mrca), for example, five studies attempting to resolve relationships within the
Thoracica (Table 1), we ranked studies with more molecular markers higher. Here, we
assume that including more markers leads to better phylogenetic reconstructions,
depicting evolutionary relationships more realistically. They are less likely to reconstruct
gene trees, and more likely to reconstruct the “true” species tree.

3. Number of taxa: if rankings could not be resolved based on the previous two criteria, we
ranked studies including more genera or more species higher. This practice follows the
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idea that missing taxa can hamper the reconstruction of accurate species relationships
(Zwickl & Hillis, 2002).

In addition to requiring ranked barnacle studies, additional software and information is
needed to generate a synthesis tree. The synthesis tree was generated using propinquity
(https://github.com/OpenTreeOfLife/propinquity) (Redelings & Holder, 2017), which
requires the following software: otcetera v0.0.01 (https://github.com/OpenTreeOfLife/otcetera)
and peyotl v0.1.4 (https://github.com/OpenTreeOfLife/otcetera). Taxa not represented
in the published phylogenies are represented by taxonomy only in the synthesis tree,
allowing for identification of conflict between these sources of information and identifying
taxa for which phylogenetic information is totally lacking. In the case of conflict between
phylogenies and backbone taxonomy, the synthesis tree reflects the phylogeny
rankings, not the taxonomy. We used OTT v3.0 (/home/bredelings/Devel/OpenTree/
ott-3.0) taxonomy, while setting the root taxon to ott580064. The root taxon corresponds
to mrca of the barnacles according to the taxonomy. Lastly, the ranked order of the
barnacle studies (Supplemental File), paths to software and taxonomy, and the root taxon
were entered into the propinquity configuration file and executed using the commands
make and make check.

Geographic information
For all thecostracan species, we searched for occurrence data using currently accepted
taxonomic names as well as their synonyms. For synonyms, we followed WoRMS (Walter
& Boxshall, 2016) and Integrated Taxonomic Information System (www.itis.gov/).
We extracted occurrence data from the Global Biodiversity Information Facility (GBIF:
http://www.gbif.org/, consulted May 2016).

RESULTS
Synthesis phylogeny estimation
We identified a total of 36 phylogenetic studies on barnacle evolution. We excluded nine
studies for which a subsequent study investigated the same species with more markers
and/or additional species (often subsequent studies from the same authors) for a final set of
27 studies (Table 1). For 16 studies, we received the tree files from the authors. Herrera,
Watanabe & Shank (2015) had deposited their tree file in DataDryad, Lin et al. (2015) in
TreeBase, andHayashi et al. (2013) provided their tree file as Supplemental Information. For
the remaining eight studies, we reconstructed the tree manually in Mesquite based on
published figures. All trees are available in the “barnacles tree collection” of the Open Tree of
Life online curator (https://tree.opentreeoflife.org/curator/collections/kcranston/barnacles).

The initial synthesis tree of barnacles (Thecostraca) contained a total of 2,272 tip
labels (terminals), of which 202 tip labels were invalid species names (e.g., synonyms or
misspellings) that were removed from the synthesis tree. Of the remaining species,
1,872 were described species or subspecies, and 198 were undescribed or unidentified
species for a total of 2,070 tree tips. This synthesis tree is available in the supplement of this
publication. Phylogenetic information was available for 239 described species (11.5% of all
barnacle species). This information was not evenly distributed among barnacle orders
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(Fig. 2). The order Sessilia had the highest absolute coverage, with 127 of 883 species
(14.4%) being represented in phylogenetic studies. The small order Ibliformes had the
highest relative coverage (25%) with two out of eight species (Fig. 2). The other two orders
of Thoracica, the Lepadiformes (203 species) and Scalpelliformes (450 species), were
represented in phylogenetic studies by 27 and 34 species, respectively. The two orders
of Rhizocephala (311 species), the Akentrogonida (43 species) and Kentrogonida

Table 1 Information on the phylogenetic studies used to synthesize the Barnacle Tree of Life.

Rank Study Focal taxon Scope Markers # species # genera Tree inference
method

1 Chan, Chen & Lin (2013a) Galkinia Genus 12S, COI 8 1 ML

2 Van Syoc et al. (2010) Pollicipes Genus COI, H3, 16S 4 1 BI

3 Wares et al. (2009) Chthamalus Genus 16S, NKA, EF1a 18 2 BI, MP, NJ

4 Carrison-Stone et al. (2013) Conopea Genus COI, H3 4 1 BI

5 Glenner et al. (2008) Heterosaccus Genus 16S, 18S 4 1 BI

6 Glenner, Lützen & Takahashi (2003) Polysacus Genus 18S, COI 7 1 MP

7 Van Syoc & Newman (2010) Bryozobiinae Subfamily morphology 5 5 MP

8 Mokady et al. (1999) Pyrgomatinae Subfamily 12S 5 2 ML, NJ, MP

9 Malay & Michonneau (2014) Pyrgomatidae Family COI, 16S, 12S, 18S, H3,
morphology

22 15 BI, ML

10 Tsang et al. (2014) Pyrgomatidae Family 12S, 16S, EF1a, H3, RPII 26 11 BI, ML

11 Simon-Blecher, Huchon &
Achituv (2007)

Pyrgomatidae Family 12S, 16S, 18S 27 20 BI, ML

12 Tsang et al. (2015) Tetraclitidae Family 12S, 16S, 18S, COI, EF1,
H3, RPII

30 8 BI, ML

13 Hayashi et al. (2013) Coronuloidea Superfamily 12S, 16S, 18S, 28S, H3 27 19 BI, ML

14 Pérez-Losada et al. (2014) Balanomorpha Suborder 12S, 16S, 18S, 28S, COI 124 65 BI, ML

15 Chan et al. (2013b) Lithoglyptida Order 16S, COI 5 5 ML, NJ

16 Glenner et al. (2010) Akentrogonida Order 18S, 28S 15 11 BI

17 Linse et al. (2013) Scalpelliformes Order 18S, 28S, COI 10 6 BI

18 Lin, Kobasov & Chan (2016) Acrothoracica Superorder 16S, 18S, COI, H3 22 8 BI

19 Høeg et al. (2019) Rhizocephala Superorder 16S, 18S, 28S 27 16 BI, ML

20 Glenner & Hebsgaard (2006) Rhizocephala Superorder 18S 22 16 BI, ML

21 Lin et al. (2015) Thoracica Superorder 12S, 18S, COI, H3 78 36 BI

22 Rees et al. (2014) Thoracica Superorder 16S, 18S, 28S 98 59 BI

23 Herrera, Watanabe & Shank (2015) Thoracica Superorder 28S, COI, H3 100 52 ML

24 Pérez-Losada et al. (2008) Thoracica Superorder 18S, 28S, H3 76 43 BI, ML

25 Yusa et al. (2012) Thoracica Superorder 18S 48 27 BI, ML

26 Pérez-Losada, Høeg &
Crandall (2009)

Thecostraca Subclass 18S, 28S, H3, morphology 79 66 BI, ML

27 Petrunina et al. (2014) Thecostraca Subclass 18S 8 8 BI

Note:
Rank refers to the order in which a tree of the respective phylogenetic study was included into the synthesis approach. Focal taxon denotes the focal taxonomic unit of the
publication. Scope refers to the taxonomic rank of the focal taxon. Markers are the markers used to reconstruct the phylogeny. Morphology refers to any number of
morphological characters. All other markers refer to molecular DNA sequences, which amplified a gene or RNA fragment of the mitochondrial or nuclear genome. The
mitochondrial markers were either 16S rRNA, and cytochrome oxidase subunit 1 (COI). The nuclear markers were 12S rRNA, 18S rRNA, 28S rRNA, histone 3 gene (H3),
Na-K-ATPase (NKA), eukaryotic elongation factor 1a (EF1a), and RNA polymerase subunit II (RPII). In most cases, only a fragment of the RNA or gene was amplified.
Tree inference methods: BI, Bayesian inference; ML, maximum likelihood; MP, maximum parsimony; NJ, neighbor-joining.
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(268 species), were relatively well represented in phylogenetic studies with 10 and
19 species, respectively. The Acrothoracica (71 species) are overall species-poor; its orders
Cryptophialida (21 species) and Lithoglyptida (50 species) were represented in phylogenetic
studies with two and 11 species, respectively. The two orders of Ascothoracida
(106 species), the Dendrogastrida (50 species) and Laurida (56 species), are also
relatively small, and only five ascothoracidan species were used in phylogenetic studies to
understand the position of Ascothoracida at large. The enigmatic Facetotecta and
Tantulocarida were represented by one and two species, respectively.

A completely resolved (bifurcating) tree would have 2,135 nodes, but the synthesis tree
has only 442 bifurcating nodes, indicating that 79.3% of all nodes are unresolved.
This is also apparent in the visualization of the synthesis tree (Fig. 3), where most nodes
are polytomous. The tree visualization with its annotations (including the later described
node support values) can be reconstructed via the interactive Tree of Life website
(https://itol.embl.de/) (Letunic & Bork, 2019). We provide the synthetic tree and text files
containing the tree annotations as Supplemental Material. After creating an iTOL account
and uploading the tree to the website, the annotation files can be dragged and dropped
onto the tree image. Polytomies are caused by missing phylogenetic information and
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Figure 2 Distribution of phylogenetic and geographic information available across the main
thecostracan orders. Bars represent the number of species, with different shades of gray denoting the
number of species for which phylogenetic, geographic or both information are available. The asterisk
indicates that no orders are defined for the infraclass Facetotecta.

Full-size DOI: 10.7717/peerj.7387/fig-2
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indicates that the node is supported by taxonomic information alone. Our source trees
provide phylogenetic information for 220 internal nodes. Of the 220 nodes, 191 have more
support than conflict, 18 have more conflict than support, and 11 have equal number
of supporting and conflicting source phylogenies (Fig. 3). The most conflicted node is
the mrca of a clade containing e.g., Amphibalanus improvisus and Tetraclita japonica
formosana, which contains 41 genera and 419 terminal taxa. Amphibalanus improvisus
and Tetraclita japonica formosana are taken as representatives of this clade, but have not

Figure 3 Synthesis phylogeny of all thecostracan species. Species with phylogenetic information have a black dot adjacent to their names. Higher
thecostracan taxonomy is colored and labeled accordingly (matching the taxonomic units presented in Fig. 1). Branch support/conflict values are
plotted onto the branches. The first number indicates the number of input trees that support the branch, and the second number indicates the
number of trees that conflict with the tree synthesis. Full-size DOI: 10.7717/peerj.7387/fig-3

Ewers-Saucedo et al. (2019), PeerJ, DOI 10.7717/peerj.7387 9/21

http://dx.doi.org/10.7717/peerj.7387/fig-3
http://dx.doi.org/10.7717/peerj.7387
https://peerj.com/


been used in phylogenetic reconstructions. For the node in question, there are eight
phylogenies in conflict and four phylogenies that support the relationships in Fig. 3.
The largest number of source phylogenies supporting an internal node is five and there are
16 nodes in the synthesis tree with five source trees supporting a node.

Phylogenetic information on more than one species was lacking for 19 out of 56
families, so we were unable to assess the monophyly of those taxa (Table 2). Of 38 families
with phylogenetic information, 18 were monophyletic. All orders but the small Ibliformes
were polyphyletic. Polyphylies are also prevalent at the lower taxonomic ranks, such as
the genus level. These polyphyletic genera caused a large number of thecostracan barnacle
species to be placed basally with regard to their congeners. Those species were not included
into phylogenetic studies, but some of their congeners were. Those congeners revealed
that the genus or higher taxonomy in question were not monophyletic, thus making it
impossible to place the remaining congeners solely based on taxonomy. The genera
Trianguloscalpellum and Arcoscalpellum, for example, are polyphyletic, leading to an
accumulation of species of those two genera at the base of the Scalpellidae (Fig. 3). This
broken taxonomy can only be fixed by taxonomic revisions that are congruent with current
phylogenetic results. Only monophyletic taxa allow the placement of all members of a
genus (or higher taxonomy) into the same branch, as is the case for the genus Scalpellum.

Geographic analysis
Geographic information system (GIS) occurrence information was available for 596
species (Supplemental Table). Of those, 111 species were represented in phylogenetic
studies, many of which belonged to the most frequently geo-referenced species. Species
with few geo-references, on the other hand, were less often represented in phylogenetic
studies. Exceptions are represented in Table 3. Comparing the distribution of taxa with and
without geographic information reveals that the coasts of the USA, Europe and Australia
have the highest density of records, both of species with and without phylogenetic
information (Fig. 4). The deep sea and Antarctica, on the other hand, have very few
records. Europe has the highest number of geo-referenced species that have also been
sampled for phylogenetic studies (Fig. 4A), while species not yet included into
phylogenetic studies are found along all coasts (Fig. 4B).

DISCUSSION
Barnacles were one of the first model systems used in evolutionary biology (Darwin, 1851a,
1851b, 1854, 1855), and have remained important in evolutionary (Charnov, 1987;
Høeg & Møller, 2006; Høeg et al., 2009; Kelly & Sanford, 2010; Yusa et al., 2012),
developmental (Mouchel-Vielh et al., 1998; Høeg, Chan & Semmler, 2015; C Ewers-Saucedo
& P Pappalardo, 2017, unpublished data), and ecological studies (Dayton, 1971; Grosberg,
1982; Shinen & Navarrete, 2010; Lamb, Leslie & Shinen, 2014). All these fields can benefit
from phylogenetic information to account for the non-independence of species, and to
unveil macroevolutionary patterns (Høeg, 1995; Pérez-Losada, Høeg & Crandall, 2009;
Glenner et al., 2010; Rees et al., 2014; Lin et al., 2015; C Ewers-Saucedo & P Pappalardo, 2017,
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Table 2 Number of species in each family and the number and proportion (in parentheses) of species
for which phylogenetic data or geographic information is available.

Family Higher taxa Total number
of species

Phylogenetic
data

Geographic
information

Anelasmatidae Thoracica 1 1 (1.00) 1 (1.00)

Archaeobalanidae Thoracica 161 8 (0.05) 29 (0.18)

Ascothoracidae Ascothoracida 9 0 (0.00) 3 (0.33)

Austrobalanidae Thoracica 18 4 (0.28) 8 (0.44)

Balanidae Thoracica 202 14 (0.10) 82 (0.41)

Calanticidae Thoracica 61 7 (0.15) 22 (0.36)

Catophragmidae Thoracica 3 2 (0.67) 1 (0.33)

Chelonibiidae Thoracica 9 5 (0.44) 5 (0.56)

Chionelasmatidae Thoracica 3 0 (0.00) 1 (0.33)

Chthamalidae Thoracica 67 33 (0.48) 24 (0.36)

Chthamalophilidae Rhizocephala 4 2 (0.75) 3 (0.75)

Clistosaccidae Rhizocephala 2 1 (0.50) 2 (1.0)

Coronulidae Thoracica 13 2 (0.31) 4 (0.31)

Cryptophialidae Acrothoracica 21 1 (0.10) 6 (0.29)

Ctenosculidae Ascothoracida 3 0 (0.00) 3 (1.00)

Dendrogastridae Ascothoracida 38 3 (0.08) 12 (0.32)

Duplorbidae Rhizocephala 5 0 (0.00) 2 (0.40)

Eolepadidae Thoracica 53 5 (0.08) 3 (0.06)

Heteralepadidae Thoracica 57 5 (0.09) 13 (0.23)

Iblidae Thoracica 3 2 (0.67) 2 (0.67)

Idioiblidae Thoracica 5 0 (0.00) 2 (0.40)

Koleolepadidae Thoracica 4 1 (0.25) 1 (0.25)

Lauridae Ascothoracida 18 1 (0.06) 3 (0.17)

Lepadidae Thoracica 27 8 (0.30) 11 (0.41)

Lernaeodiscidae Rhizocephala 17 1 (0.06) 6 (0.35)

Lithoglyptidae Acrothoracica 33 9 (0.03) 13 (0.39)

Lithotryidae Thoracica 6 3 (0.50) 2 (0.33)

Malacolepadidae Thoracica 1 0 (0.00) 0 (0.00)

Microlepadidae Thoracica 3 0 (0.00) 0 (0.00)

Mycetomorphidae Rhizocephala 2 1 (0.00) 1 (0.50)

Neoverrucidae Thoracica 30 3 (0.10) 0 (0.00)

Oxynaspididae Thoracica 29 2 (0.07) 4 (0.14)

Pachylasmatidae Thoracica 52 3 (0.06) 8 (0.15)

Parthenopeidae Rhizocephala 2 1 (0.50) 1 (0.50)

Peltogastridae Rhizocephala 45 4 (0.09) 12 (0.27)

Petrarcidae Ascothoracida 11 1 (0.09) 8 (0.73)

Platylepadidae Thoracica 24 9 (0.38) 8 (0.33)

Poecilasmatidae Thoracica 70 10 (0.16) 30 (0.43)

Pollicipedidae Thoracica 7 3 (0.43) 4 (0.57)

Polysaccidae Rhizocephala 2 1 (0.50) 0 (0.00)

(Continued)
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unpublished data). In the present study, we curated the available phylogenetic and
taxonomic information for barnacles and reconstructed a complete synthesis phylogeny.

Recent phylogenetic efforts have investigated all major groups in the thecostracan tree.
A total of 20 of the 27 studies we included focused on the Thoracica, the acorn and stalked
barnacles (Table 1). This is not surprising, as these predominantly free-living barnacles
are omnipresent in marine habitats, ecologically important and economically-costly
fouling organisms. Rhizocephala are also relatively well-represented in phylogenetic
studies. These specialized parasites of crabs and other economically-important crustaceans
provide interesting model systems for development and host manipulation (Kobayashi
et al., 2018). Fewer studies have considered the placement of the enigmatic Facetotecta, of
which only the larvae are known, the Ascothoracida, ectoparasites of cnidarians and
echinoderms (Pérez-Losada, Høeg & Crandall, 2009), and the shell-boring Acrothoracica
(Lin, Kobasov & Chan, 2016). The number of species in a taxon and its phylogenetic
coverage appear to be linked—that is, less well-studied taxa contain fewer species.
We hypothesize that these taxa contain much cryptic diversity, which has remained hidden
to date. This hypothesis is supported by the findings of the first comprehensive molecular
phylogeny of Acrothoracica (Lin, Kobasov & Chan, 2016), which included 11 described
species, and identified an additional 12 cryptic operational taxonomic units. This suggests
that species diversity in the Acrothoracica could be twice as high as current species
numbers indicate.

An unexpected result of our study is that even in geographic regions with a long history
of marine research, such as the coasts of Europe, the United States and Australia, not all
barnacle species have been included in phylogenetic analyses, and some of the most
common species are lacking phylogenetic information, e.g., Amphibalanus improvisus
(see Table 3 for more examples). Less surprising is the fact that remote regions, such as the
open ocean and the Arctic coast, are under-sampled for many taxa, both with regard to
phylogenetic and geographic information. While it should be relatively easy to include
all barnacle species from marine biology hotspots into future phylogenetic studies, the
under-sampling issue requires larger effort. However, remote regions potentially contain

Table 2 (continued).

Family Higher taxa Total number
of species

Phylogenetic
data

Geographic
information

Pyrgomatidae Thoracica 119 21 (0.13) 17 (0.14)

Rhizolepadidae Thoracica 2 0 (0.00) 0 (0.00)

Sacculinidae Rhizocephala 196 13 (0.07) 34 (0.17)

Scalpellidae Thoracica 310 16 (0.07) 89 (0.29)

Synagogidae Ascothoracida 27 0 (0.00) 18 (0.67)

Tetraclitidae Thoracica 50 19 (0.26) 24 (0.48)

Thompsoniidae Rhizocephala 25 5 (0.12) 1 (0.04)

Trypetesidae Acrothoracica 7 2 (0.00) 4 (0.57)

Verrucidae Thoracica 81 7 (0.10) 36 (0.44)
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much of the existing phylogenetic diversity (Newman & Ross, 1971) and could provide
novel insights into the evolution of barnacles.

Our comparison of phylogenetic and taxonomic hypotheses revealed that many families
were polyphyletic. These polyphylies lead to the accumulation of species from polyphyletic
taxa at the base of the barnacle tree: all species that belong to polyphyletic taxa but
have not themselves been included into phylogenetic studies can only be placed at the
next higher taxonomic rank. The most extreme case of this “broken taxonomy” are the
genera Pseudoacasta, Zulloana,Hexacreusia, Eoatria,Multatria,Microporatria, Bryozobia,
Poratria, andMembranobalanus. These genera are placed at the very base of the Thoracica,
next to the “real” sister taxon to the remaining Thoracica, the Ibliformes. They are, by
no means, basal genera of the Thoracica, and their placement is an artefact of the tree
synthesis. All of these genera belong to the Archaeobalanidae, a taxon that is highly
polyphyletic. This disparity between phylogeny and taxonomy is likely caused by the
use of morphological character sets to define taxonomy vs. molecular characters used to
estimate phylogeny. Furthermore, many barnacle taxa are still defined based on
symplesiomorphic similarity or their classification relies on characters highly prone to

Table 3 Species with more than 30 geographic occurrence records (downloaded from www.gbif.org)
but without phylogenetic data.

Species GBIF records

Amphibalanus improvisus 1,035

Arcoscalpellum michelottianum 131

Striatobalanus amaryllis 119

Balanus rostratus 86

Trypetesa spinulosa 74

Meroscalpellum bifurcatum 72

Octolasmis orthogonia 69

Tesseropora rosea 66

Pollicipes elegans 63

Capitulum mitella 56

Neoscalpellum debile 53

Austrobalanus imperator 50

Arcoscalpellum portoricanum 47

Trypetesa lateralis 42

Acasta spongites 38

Anguloscalpellum pedunculatum 33

Acasta cyathus 32

Balanus laevis 32

Chionelasmus darwini 32

Notomegabalanus algicola 32

Armatobalanus quadrivittatus 31

Peltogaster paguri 31

Striatobalanus tenuis 31
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homoplasy (Pérez-Losada et al., 2014; Gale, 2018). While there has been a robust debate on
the relative merits of molecular vs. morphological characters for estimating phylogenies,
molecular characters have been especially useful to solve barnacle systematics. Within a
morphologically-diverse taxon such as the barnacles, morphological characters may not be
homologous, which further complicates the use of morphological data (Gale, 2016).
Additionally, larval characters are the only morphological datasets that can be compared
across all thecostracan taxa, but compiling them is difficult and time consuming
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-50 -100 -50 0 50 100 150

-5
0

0
50

1 5 10 15 20
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A Distribution of species with phylogenetic information

Distribution of species without phylogenetic information

Figure 4 Geographic occurrence of thecostracan species with (A) and without (B) phylogenetic
information, based on publicly available geographic occurrence records (Global Biodiversity
Information Facility, www.gbif.org). Full-size DOI: 10.7717/peerj.7387/fig-4
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(Høeg et al., 2009). To address the discrepancies between taxonomy and phylogenies,
a thorough revision of the barnacle taxonomy is in order. To improve taxonomic
assessments in the absence of molecular data, morphological synapomorphies that are
congruent with molecular phylogenetic reconstructions should be identified (e.g., Høeg
et al., 2009; Lin et al., 2015; Gale, 2018 and references therein). These characters may then
be applied to taxa for which molecular data cannot be obtained at present, especially
rare species, and species from remote areas of the world, such as the deep sea and arctic
regions. Extending the molecular-based trees using morphology is also crucial for
integrating fossil information, which in barnacles offers an extensive and well-preserved
set of taxa and characters (Pérez-Losada et al., 2008; Gale, 2018). It is also promising to see
that larval characters studied at the ultrastructural level almost always match closely with
molecular phylogenies (Høeg & Kolbasov, 2002; Glenner et al., 2010).

Although we now have a working rendition of the Barnacle Tree of Life, much work
is needed to confirm relationships among higher taxa and lower ranks. For example, the
Superorder relationships have been supported by molecular and morphological data,
but the barnacle phylogeny would benefit from a phylogeny of higher taxa based on
genomic data. While currently there are 58 thecostracan transcriptomes on NCBI SRA
database (last accessed March 13, 2018), no phylogenomic phylogenetic estimate has been
generated yet. The taxonomic coverage of the available transcriptomes primarily covers
Orders within Thoracica (Sessilia and Pedunculata), while one transcriptome is available
for the Superorder Rhizocephala (Order Kentrogonida). A phylogenomic estimate for
the Thecostraca would require obtaining additional samples for representatives in the
Superorder Acrothoracica, Ascothoracida, Facetotecta, and Tantulocarida (whose
taxonomic position is still questionable). It should further be noted that no barnacle
genomes are available despite their relatively small genome sizes of 0.67–2.60 C-value
(Gregory, 2018).

Lastly, we would like to highlight the benefits of making phylogenetic trees available for
further systematic research. The OTL project provides a user-friendly interface to
upload trees and metadata to the OTL workflow (https://tree.opentreeoflife.org/curator).
As we have done here, uploaded trees can be combined into a larger phylogenetic
framework. This can help answer taxonomic questions, guide future phylogenetic efforts
and allow the inclusion of a large number of species into comparative studies. To date,
comparative studies have often been limited by the availability of phylogenetic information.
Lin et al. (2015), for example, reconstructed a phylogeny for 77 barnacle species with various
sexual systems, and mapped the evolution of sexes onto this tree. C Ewers-Saucedo &
P Pappalardo (unpublished data), on the other hand, utilized the Barnacle Tree of Life to
map all available larval trait data onto the thoracican tree, which allowed the inclusion of
170 thoracican species and did not require the collection of additional phylogenetic
information.

CONCLUSIONS
This study provides the first working Barnacle Tree of Life, based on the phylogenetic
information of 27 studies and a comprehensive taxonomic backbone. This tree highlights
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large gaps in our knowledge of barnacle phylogenetics, both with regard to taxonomy as
well as geographic sampling. Nonetheless, this tree is a first working hypothesis for all
barnacle species and provides therefore a valuable resource for comparative studies.
The iterative nature of the OTL project allows—and is fueled by—the inclusion of future
phylogenetic studies, which will continuously expand and improve the Barnacle Tree of Life.
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