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Biotic interactions are the glue that connects species within 
ecological communities1–3. When climate change forces a 
species to emigrate from a local community, the remaining 

species may lose fitness due to the accompanying loss of biotic inter-
actions4–7. Particularly in communities consisting of mutualistic 
dependent species, such as plants and animal pollinators, the loss 
of biotic interactions could ultimately cause local secondary extinc-
tions8,9. Thereby, climate-induced range shifts in individual species 
could have cascading impacts on the entire community10–13.

Several studies have simulated disruptions of plant–pollinator 
interaction networks with theoretical expectations for how second-
ary extinctions could spread between species14–17. Recent examples 
further combined network simulations with climate niche models 
to investigate local extinctions under future climate change8,9. These 
studies differentiated between species loss as a direct consequence 
of climate change (climate-driven extinctions) and species loss due 
to the extinction of their mutualistic partners (coextinctions). By 
combining these two extinction processes, mutualistic communities 
become more vulnerable to climate change than anticipated when 
only considering climate-driven extinctions9. Nevertheless, these 
simulations ignored that communities may also gain new species 
by colonization as they track climate change18. If such colonization 
events balance out local extinctions, mutualistic communities could 
maintain their structural integrity. Thus, ignoring colonizations 

from regional source pools may overestimate the detrimental effect 
of climate change on ecological communities.

Here, we use future climate scenarios to simulate climate-driven 
extinction, coextinction and colonization processes in 84 plant–hum-
mingbird pollination networks sampled across the American main-
land. Plant–hummingbird interactions constitute an ideal model 
system because our analytical framework requires high-resolution 
occurrence data and biotic interactions sampled across a large geo-
graphical extent. The plant–hummingbird system meets both of 
these criteria as the hummingbird’s geographic distributions are well 
known19,20 and their interactions with plants were recently supported 
by a comprehensive database21. Our simulations run in a four-step 
procedure. First, we combined geographical presence–absence data 
with altitudinal range limits to predict the hummingbirds’ distribu-
tions onto a digital terrain model (Fig. 1a). From these distributions, 
we extracted four contemporary climate variables and used them to 
determine each species’ occupied climate volume.

In the second stage, we calculate the climate-driven extinction 
rate for a given hummingbird species i in a focal community j  
(Fig. 1b). Here, we calculate the standardized distance (z-score) 
from the centroid of a species’ climate volume to current and 
future climate conditions in the community—dij and d′ij, respec-
tively. Using these z-scores, we calculate the proportion of the ith 
species’ climate volume that takes values within (d′ij – dij) and d′ij 
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standard deviations from the climate volume’s centroid. These z 
scores give, respectively, the ‘climate change impact’ and the ‘future 
climate mismatch’. We multiplied these two proportions to obtain a 
species’ climate-driven extinction risk. As such, the climate-driven 
extinctions depend on the amount of climate change and how well 
the future climate is represented in species’ contemporary ranges. 
When dij exceeded d′ij, we assumed the extinction risk to be zero.

In the third stage, we simulate coextinctions with probabili-
ties given by the proportion of interactions lost by each species 
(Fig. 1c). Coextinction cascades were initiated by climate-driven 
extinctions of hummingbirds but could subsequently result from 
other coextinctions, due to loss of interactions. Our first coextinc-
tion simulations assumed strict dependence between mutualistic 
partners, corresponding to a ‘worst case’ coextinction scenario. 
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Fig. 1 | Conceptual figure illustrating our simulations of climate-driven extinctions, coextinctions and colonizations. a, Species distributions and 
communities: beginning with the information on hummingbird geographical distributions, exemplified by a hummingbird species from the High Andes 
Coeligena lutetiae. The red point marks the location of a network in which the species was recorded. The yellow grid shows the species’ breeding 
distribution at 60 arcmin resolution. We then projected the species’ distribution onto a digital terrain model in 10 arcmin resolution (344 km2 at Equator) 
and removed grid cells falling outside the species elevational range limits (black grids). b, Simulating climate-driven extinctions: from the black coordinates 
in a, we extracted the variables that were used to characterize the species’ climate volume (grey points). The large black dot marks the centroid of the 
species’ estimated climate volume, based on its breeding distribution. The ellipses mark one and two standard deviation distances from that climate 
centroid. The large red dots represent the climate conditions in the focal network j. The solid red line shows the standardized distance (z-score) to the 
network’s current climate conditions (dij) and the dashed red line shows the standardized distance to the network’s future climate conditions (d′ij). With 
these z-scores, we calculate the proportion of the ith species’ climate volume that takes values within (d′ij – dij) and d′ij standard deviations from the climate 
volume’s centroid. These proportional values give the ‘climate change impact’ and the ‘future climate mismatch’, respectively. These two probabilities were 
multiplied to obtain a species’ climate-driven extinction risk. If d′ij < dij, we assumed the extinction probability to be zero. c, Simulating coextinctions: the 
local climate-driven extinction of the species can cause cascades of coextinctions within plant–hummingbird interaction networks. The network illustrates 
interacting hummingbirds (circles) and plants (squares) over two simulation iterations. At the first iteration (t = 1), climate change causes the loss of 
one hummingbird species and the probability of plant partner coextinctions is modelled as proportional to the fraction of lost interactions. At the second 
iteration (t = 2), the coextinction cascade reaches the hummingbirds. The coextinction cascade stops when an iteration t produces no coextinction events. 
d, Simulating colonizations: lastly, we simulate colonization from a regional source pool. The pool of potential colonists consists of all hummingbird species 
occurring within a given buffer radius around the focal network. We simulated colonization probability of a source pool species i as the proportion of its 
climate volume falling beyond d′ij standard deviations from the climate volume’s centroid. Therefore, the colonization probability was not influenced by the 
extinction events and vice versa.
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Subsequently, we repeated the coextinction simulations by allow-
ing species to relocate 50% of their lost interactions with remaining 
partners in the network, following the ‘constrained rewiring model’ 
in Schleuning et al.8.

Lastly, we simulate hummingbird colonizations by sampling spe-
cies from a 100 km buffer zone, reflecting species dispersal distances 
at the temporal scale of decades (Fig. 1d). The 100 km radius could 
overestimate the local source pools if intersecting topographic dis-
persal barriers. Hence, we repeated the colonization analyses using 
a more conservative dispersal distance of 10 km. We calculated the 
colonization probability of a source pool species as the proportion 
of its climate volume falling beyond d′ij standard deviations from 
the climate volume’s centroid (see Methods for more details regard-
ing each simulated process).

We use the simulated patterns of climate-driven extinctions, coex-
tinctions and colonizations to pinpoint regions where communities 
are most vulnerable to future climate changes. We expect that the 
Andean communities are least vulnerable to future climate change 
because the topographically heterogeneous landscape has a buffering 
effect on climate-driven dynamics in species’ ranges22,23. Moreover, 
the Andean ecoregion has a large pool of potential colonists, which 
could balance against local extinctions24. Consequently, we expect 
Andean communities to have low climate-driven extinction and 
coextinction rates but high colonization rates. By contrast, the low-
land parts of South America are predicted to experience drastic cli-
mate changes in the future25–27, more so than they experienced during 
the Last Glacial Maximum22. Therefore, we expected communities 
in lowland South America to be most vulnerable to climate-driven 
extinctions followed by North American communities.

The geographical pattern of coextinctions depends primarily on 
the climate-driven extinction rate: the more species and interactions 
that disappear by climate-driven extinctions, the more coextinc-
tions could impact the community’s remaining species. However, 
we also expected coextinction rates to depend on intrinsic proper-
ties related to network configuration. Firstly, there could be a bias in 
climate-driven extinctions towards specific network roles—notably, 
if climate-driven extinctions remove generalized species with many 
interactions, coextinctions could spread throughout the network28,29. 
Here, we use each species’ ‘effective number of partners’ to measure 
how generalized species are in the networks8,30. Specifically, we trace 
the cumulative effective partner number lost by each climate-driven 
extinction simulation.

While losing generalized species to climate-driven extinctions 
increases the initial coextinctions, the network’s overall structure 
may affect the degree to which coextinctions spread to other spe-
cies17,31–33. For instance, specialized network structures may be 
robust against coextinctions as there is little overlap between the 
species’ foraging niches. In a specialized network, a pollinator may 
be vulnerable to losing its mutualistic partners but it should be 
little affected by the loss of other species’ partners32,34. Therefore, 
increased specialization within communities may reduce the cas-
cading spread of coextinctions. Here, we measure community-level 
specialization by two indices: complementary specialization35 and 
modularity36. Complementary specialization measures the parti-
tioning of interactions among pollinators and plants relative to a 
null model that assumes that species interact randomly accord-
ing to partner availability. The modularity index measures the 
extent to which pairwise interactions are clustered into modules of  
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Fig. 2 | The geographic patterns of local climate-driven extinction and coextinction across the Americas.  a,b, Biogeographical variation in 
climate-driven extinctions (a) and coextinctions (b), measured as the average proportion of hummingbirds in our simulations that disappeared from the 
networks. Point types represent the three biogeographical regions: North America (squares), Andes (triangles) and lowland South America (circles). 
Point sizes are proportional to the number of hummingbird species in each network. Some points have been slightly moved for visualization purposes. 
The F-statistics derive from one-way ANOVA testing for regional differences in climate-driven extinctions (F = 12.33, P < 0.001, n = 84) and coextinctions 
(F = 12.14, P < 0.001, n = 84). Both extinction variables were scaled on logarithmic axes. The lower-case letters represent the statistical difference 
according to Tukey multiple comparisons with Bonferroni-adjusted P values (P < 0.05). The box borders mark the interquartile range (IQR; quartiles 
1 to 3); horizontal lines inside boxes mark the medians; vertical lines mark ±1.5× IQR; circles mark data outliers. The results derive from the RCP 4.5 
‘mid-range’ scenario for the year 2070.
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mutualistic partners. Thereby, the two indices represent two con-
ceptually different approaches to quantifying resource partitioning 
in mutualistic networks, although they might be correlated. The 
literature also highlights nestedness as a structure contributing to 
network robustness through a large overlap in interactions31,37. The 
nested structure characterizes a core of interacting generalists, while 
the specialized species’ interactions nest within generalized part-
ners. Removing a specialist from such a network will impact only 
a small proportion of the generalized species’ interactions, which 
minimizes the chance for coextinction to spread throughout the 
network31,37. Therefore, after running the simulations, we examine 
(1) if there is a bias in climate-driven extinctions towards general-
ized network roles and (2) if specific network structures (that is, 
complementary specialization, modularity and nestedness) influ-
ence the geographical patterns of coextinctions.

Results
The geographic patterns of local extinction (Fig. 2) and coloni-
zation (Fig. 3) showed marked differences across the Americas. 
Notably, North American and lowland South American commu-
nities experienced more climate-driven extinctions than Andean 
communities (Fig. 2a). On the other hand, coextinction rates were 
significantly more frequent in the South American lowlands than 
in both the Andes and North America (Fig. 2b). While Andean 
communities experienced few extinctions overall, they received 
more colonists than the other regions (Supplementary Fig. 5), 
making Andean communities more robust to climate change 
than the rest of the mainland Americas. The Andes’ large num-
ber of colonists in Supplementary Fig. 5 reflected a high total 
species richness within a 100 km source pool radius around each  

community (Fig. 3a). However, the robustness of Andean com-
munities was confirmed when reducing the colonization radius to 
10 km. Here, Andean communities had the highest colonization 
rates relative to the local source pool’s species richness (Fig. 3b). 
These results were simulated according to the representative con-
centration pathway RCP 4.5 ‘mid-range’ future climate scenario 
and were consistent in the RCP 8.5 ‘worst case’ future climate sce-
nario (Extended Data Figs. 1–4).

In both RCP scenarios, we found a reduced spread of coextinc-
tions in North American networks, considering the number of spe-
cies lost to climate-driven extinctions (Fig. 4a). This pattern reflected 
a bias in climate-driven extinctions against species with generalized 
network roles (Fig. 4b). Relative to the proportion of climate-driven 
extinctions, North American communities lost fewer generalized 
species than communities in the Andes and lowland South America 
(examples in Fig. 5). To relax the assumption of complete depen-
dency between hummingbird and plant species, we repeated our 
coextinction simulations by allowing species to relocate 50% of their 
lost interactions with remaining partners. While the interaction 
rewiring reduced the overall coextinction rate, the biogeographical 
patterns remained robust (Extended Data Figs. 5–7): the coextinc-
tion rates were higher in lowland South America compared to the 
Andes and North America (Extended data Fig. 5). Moreover, coex-
tinctions spread slowest in North America, considering the propor-
tion of climate-driven extinction (Extended Data Fig. 6).

As expected the degree of complementary specialization and 
modularity were strongly correlated (Pearson’s r = 0.78, P < 0.001, 
n = 84). Both metrics were indistinguishable between regions 
(Extended Data Fig. 8) and, thus, did not explain the regional dif-
ferences in coextinction. Nevertheless, complementary specialized 
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and modular network structures reduced the effects of coextinc-
tions among all networks (Fig. 6). Relative to the proportion of 
climate-driven extinctions, we found few coextinctions in the most 
complementary specialized and modular networks (Fig. 6a,b).  

By contrast, the level of nestedness did not affect coextinction 
spread (Fig. 6c).

These results were consistent within regions except the Andes, 
where the low climate-driven extinction rates were too low to detect 
the buffering effect of complementary specialized and modular 
network structures (Supplementary Table 3). Moreover, the results 
were consistent when including interaction rewiring into the coex-
tinction simulations (Extended Data Fig. 7). Our simulations of 
climate-driven extinctions and colonizations were based on climates 
extracted from the hummingbirds’ breeding distributions. For this 
reason, we excluded boreal migrants from tropical networks located 
outside the species’ breeding ranges (Supplementary Table 2). This 
operation made the networks smaller than initially sampled, which 
also affected network structure. Nevertheless, the results were simi-
lar when excluding (Fig. 6) or including (Supplementary Fig. 6) 
boreal hummingbird migrants when calculating network structure.

Discussion
Our simulations showed strong geographic patterns in the commu-
nities’ vulnerability to local extinctions (Fig. 2) and rates of coloni-
zations (Fig. 3). High colonization rates did not equally compensate 
for high extinction rates across biogeographical regions. Instead, 
colonizations from regional source pools were highest in Andean 
communities that were already least vulnerable to local extinctions. 
On the other hand, communities from the South American lowland 
experienced many climate-driven extinctions and coextinctions 
but few colonizations. Thus, colonizations from the regional source 
pools may not adequately compensate for species loss in the South 
American lowland, the most vulnerable region.

In alignment with our initial expectations, the communities 
with the lowest climate-driven extinctions occurred in the Andes 
(Fig. 2a). The Andean mountains combine climate stability with 
topographic complexity, enabling species to track optimal climate 
conditions by dispersing short distances along the slope22,23. In such 
environments, future climate changes may have limited effects on 
the species range dynamics, increasing the chance for communities 
to maintain their structural integrity. By contrast, lowland South 
America may experience the most drastic future climate change 
among the Neotropical biomes25–27. The area’s homogeneous topog-
raphy, compared to the Andes, entails that species must disperse 
longer distances to conserve their climate niches23. In the process, 
local communities may experience high turnover in species compo-
sition and disruption of interspecific interactions, as species track 
climates with different speeds12.

Andean communities received the highest number of colonists 
from a radius of 100 km (Supplementary Fig. 5), although this pat-
tern disappeared when standardizing for the source pool’s species 
richness (Fig. 3a). Due to topographic barriers and diverse climate 
zones38–40, the species’ dispersal could happen over much smaller 
distances. Thus, we repeated the analysis with a more conserva-
tive colonization radius of 10 km and found Andean communi-
ties had the highest colonization rates relative to the source pool’s 
species richness (Fig. 3b). This result suggests that high coloniza-
tion rates in Andean communities were not solely derived from 
their species-rich source pools. Instead, Andean communities may 
receive more colonists as a consequence of future climate suitability. 
Both the extinction and colonization simulations include contem-
porary and future climate data but had otherwise no impact on each 
other. Hence, the simulations contain two lines of evidence suggest-
ing that Andean communities are most resilient to future climate 
changes. Nevertheless, high colonization rates in the Andes do not 
imply overcompensation for extinctions. Apart from climate suit-
ability, actual species establishments depend on several local factors 
and processes that we cannot account for in the simulations, such 
as resource availability and interspecific competition. Moreover, 
interspecific variation in dispersal abilities may impact species’ 
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The results depicted here derive from the RCP 4.5 ‘mid-range’ scenario for 
the year 2070.
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occupancy of climatically suitable communities. Accounting for 
dispersal differences is challenging for simulation studies as disper-
sal is one of the biological processes we know least about—particu-
larly for the tropical avifauna41. As such, the simulated colonization 
process should be viewed as a colonization potential rather than 
species establishing in the community.

Although North American communities experienced similar 
rates of climate-driven extinction as communities from the South 
American lowland, they had disproportionally fewer coextinctions 
(Fig. 4a). The reason was that climate-driven extinctions impacted 
few generalized species in North American networks (Fig. 4b). 
When climate-driven extinctions mainly impact species in the 
network’s periphery, it will result in few coextinctions28 (Fig. 5b). 

However, coextinction spread increases when communities lose 
generalized species, as these have many mutualistic partners dis-
tributed throughout the network (Fig. 5c). These results illustrate 
the importance of network roles when assessing climate change 
pressures on ecological communities. Notably, the generalized spe-
cies with interactions connected throughout the network could be 
considered keystones for a community’s resilience against climate 
change28. These species appeared less impacted by climate-driven 
extinctions in North America; hence, the networks maintained 
most of their structural integrity. Why climate-driven extinction 
impacts peripheral network roles in North American communities 
remains an open question. North American hummingbird com-
munities are dominated by one hummingbird group, the so-called 
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‘Bees’, which is a recently derived and rapidly diversifying lineage 
with generalized foraging niches21,42. Moreover, the lineage repre-
sents the hummingbird’s only successful colonization of the tem-
perate North Americas. Consequently, the Bees may have more 
adaptable climate niches compared to the older tropical lineages. 
Hence, the North American networks may have a core of general-
ized hummingbirds with broad climate niches that persist under 
climate change.

While the species’ network roles affected the initiation of coextinc-
tions, the spreading of coextinctions to other species was influenced 
by network-level complementary specialization and modularity32,34. 
Since species are more isolated in specialized and modular networks, 
they should be less affected by other species’ lost interactions—
although they are more vulnerable to losing their own mutualistic 
partners. Therefore, a high degree of specialization and modularity 
at the network level could prevent the spreading of coextinctions32,34. 
Accordingly, we found that networks with more specialized and 
modular structures suffered fewer coextinctions than generalized 
networks (Fig. 6a,b). By contrast, we found no effect of nestedness on 
the networks’ resilience to coextinction (Fig. 6c). In general, nested 
networks are highly cohesive, lowering the risk of species becom-
ing isolated in the network after perturbations31,37. However, when 
climate-driven extinctions remove the core of generalized species, 
coextinctions can spread quickly throughout the network. Thus, in 
line with previous theoretical work29, the stabilizing role of nested-
ness depends on which species are driven to extinction. Suppose 
climate-driven extinctions primarily impact species with generalized 
network roles. In that case, nestedness could theoretically decrease 
network resilience29. Opposite, the isolation of interactions in spe-
cialized and modular structures should buffer against perturbations 
even if generalized and centrally connected species disappear.

The results from our simulations contribute to the recent lit-
erature joining climate niche modelling and biotic interactions8,9. 
As for similar simulation-based studies, there are obvious caveats 
worth mentioning. Firstly, species could be absent from climatically 
suitable habitats due to dispersal limitations and barriers. Thus, 
the climate volume estimated from the species’ distributions may 
constitute only a subset of the fundamental niche. Moreover, some 
hummingbird–pollinated plants attract other types of pollinators, 
notably insects or bats43. Such generalist plants may not disappear 
from a community if their hummingbird pollinators go extinct17. 
These caveats imply that simulations are likely to overestimate spe-
cies loss and that the extinction patterns may not necessarily reflect 
real extinctions but rather loss in species fitness17. Nevertheless, 
our simulations solely rely on climate conditions while ignoring 
land-use change and climate-driven extinctions in the plant com-
munity. Consequently, we may not have depicted a worst-case 
scenario in local extinctions (or fitness loss). To improve the simu-
lations, one would need better data on tropical plant distributions 
and estimated future land-use changes.

Taken together, we have combined biotic interactions and species 
climate volumes to predict how biological communities respond to 
climate change across biogeographical regions. The interdepen-
dency between species that defines biological communities offers an 
additional angle for climate changes to impact species. As such, the 
coextinction concept implies that species in mutualistic networks 
would be more vulnerable to climate changes than anticipated by cli-
mate niche models9. At the same time, colonizations from regional 
source pools may contribute to a community’s resilience by com-
pensating for local extinctions. Hence, local climate-driven extinc-
tions, coextinctions and colonizations represent distinct processes 
affecting biological communities under climate change. Our study 
contributes by integrating these processes into the same analytical 
framework. Notably, the increased realism of the models achieved 
by considering biotic interactions generates novel biogeographical 
patterns that would otherwise remain hidden. These unique pat-
terns in the communities’ vulnerability to interaction loss should 
inspire future research avenues provided by the increased availabil-
ity of ecological network data.

Methods
Plant–hummingbird interaction networks. We used 84 weighted hummingbird–
plant interaction networks published in Dalsgaard et al.21. The networks contain 
field observations of hummingbirds visiting flowering plants within localities 
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Fig. 6 | The influence of three network structures on the logarithmic 
association between climate-driven extinctions and coextinctions 
(n = 83). a–c, The three network structures are complementary 
specialization (H2′; a), modularity (ΔQ; b) and nestedness (ΔWNODF; c). 
Trend lines and standardized coefficients derive from weighted multiple 
linear regressions. In each regression model, we added an interaction term 
between the proportion of climate-driven extinctions and the network 
metric. The weights were given by the number of hummingbird species 
sampled in each network. All results depicted here derive from the RCP 4.5 
‘mid-range’ scenario for the year 2070.
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distributed across the American mainland (39° N–32° S). Each network is presented 
as P (number of plant species) × H (number of hummingbird species) matrices 
with quantitative entries that indicate the interaction frequencies between each 
hummingbird and flowering plant species. The networks sampled only mutualistic 
interactions in which the hummingbird extracted nectar while touching the 
reproductive structures. In total, the database sampled 169 hummingbird species 
and 1,201 plant species on the mainland Americas. Compared to the published 
database, we excluded nine Caribbean island networks (11 hummingbird species 
and 55 plant species). On islands, area and isolation strongly influence species 
assembly, making the extinction–colonization dynamics non-analogous to the 
mainland44–46. Moreover, island species usually have small ranges constrained by 
the sea rather than climate, which complicates climate niche modelling47.

Quantifying network structures. We calculated the following three network 
metrics: complementary specialization35, quantitative modularity36 and weighted 
nestedness48. All three structures have properties hypothesized to influence 
network stability8,31,49,50. Complementary specialization (H2′) quantifies the 
partitioning of interactions among pollinators and plants relative to a null model 
that assumes species interact randomly according to partner availability, thus 
reflecting the degree of resource partitioning between species. The modularity 
index Q quantifies the extent to which networks are clustered into modules of 
preferentially interacting species. Q was calculated for each network using the 
DIRTLPA + algorithm, which is specifically designed to search for modules within 
quantitative bipartite networks51. Weighted nestedness (WNODF), characterizes 
a structure with a core of interacting generalists, while the specialized species’ 
interactions are nested within generalized partners. All three metrics range 
between 0 and 1, where larger values indicate, respectively, high degree of 
complementary specialization (plants have many interactions with hummingbirds 
that are not shared with other species in the guild), high degree of modularity 
(strong tendency of species to form subgroups within the network) and a high 
degree of nestedness (strong tendency of specialized species to interact with more 
generalized partners).

Because networks vary in species richness and sampling effort, measurements 
of network structure are often not directly comparable37. To account for these 
confounding effects, we applied null models, which calculate each network metric 
after a random shuffling of interactions. Following Sonne et al.52, who evaluated 
different null models, we used Patefield’s algorithm, which constraints the total 
interaction frequency of each species53. We then subtracted the empirical network 
structure from the null model’s mean obtained from 1,000 randomizations (that 
is, Δ transformation, following ref. 54). Because the raw values of H2′ are already 
corrected for the marginal totals of the network, we only applied the null model 
correction to Q and WNODF. All network analyses were conducted in R using the 
‘bipartite’ package v.2.11 (ref. 55).

Hummingbird geographical distributions. Information on the hummingbird’s 
geographical breeding range consisted of 60 arcmin resolution presence–
absence maps for the 339 extant mainland species, following the International 
Ornithological Committee World List (IOC v.10.1; www.worldbirdnames.org). 
The data are an updated version of the database presented initially in Rahbek 
and Graves19,20—see supplementary material in Holt et al.56. These distributional 
data were supplemented with information on global recorded minimum and 
maximum elevations for each hummingbird species (Supplementary Sources). We 
combined the geographical distribution and the altitude range limits to predict the 
hummingbirds’ distributions onto a digital terrain model in 2 arcmin resolution 
National Geophysical Data Center57. A hummingbird species was considered 
present in a 2 arcmin grid cell if it overlapped with both its distribution at the 
60 arcmin scale and its altitudinal range limit (Fig. 1a). Particularly for High 
Andean species, this operation determined range sizes to be notably smaller than 
the projection at 60 arcmin resolution. Finally, to minimize omission errors (when 
a species is falsely thought to be absent), we aggregat the species’ distribution at 
2 arcmin resolution to 10 arcmin resolution (344 km2 at the Equator).

Estimating hummingbird climate volumes. To simulate local climate-driven 
extinctions and colonizations (see below), first, we estimated the occupied climate 
volume of all 356 extant hummingbird species. We based the climate volume 
on four bioclimatic variables relevant for bird distributions19,20,58–61. Low climate 
seasonality is one of the most important characteristics of tropical latitudes and 
has also been associated with high avian species richness59,61. Thus, we included 
commonly used measures of annual climate seasonality in temperature (standard 
deviation × 100) and precipitation (coefficient of variation). Also relevant for bird 
distributions are the broadly accepted correlations between global richness patterns 
and water–energy-related climate variables19,20,58,60. To capture these variables, we 
included mean annual temperature and annual precipitation. All climate variables 
were extracted from the CHELSA climate database in 10 arcmin resolution62 
(https://chelsa-climate.org). The four climate variables were combined into 
major orthogonal axes using principal component analysis. We kept the first two 
principal components (PCs), which captured 86% of the climate variation across 
the entire Americas (PC1 = 56%, PC2 = 30%). We characterized each hummingbird 
species’ occupied climate volume by the mean and standard deviation of PC1–2 

extracted from the species’ breeding range (Fig. 1b). To avoid issues with poor 
model reliability at small sample sizes63, we excluded species represented by less 
than ten climate samples at the 10 arcmin resolution (six species, none of which 
were in the networks).

Simulating climate-driven extinctions and coextinctions. We simulated 
local hummingbird extinctions as a two-stage stochastic process, following the 
procedure proposed by Bascompte et al.9 (Fig. 1c). At the first stage, we simulated 
the risk of local extinctions of all hummingbird species due to future climate 
changes. At the second stage, we simulated the potential coextinction cascades that 
followed the climate-driven extinction events.

To simulate the local extinction risk of hummingbird species as a direct 
consequence of future climate changes, we used the conceptual framework in 
Blonder et al.64. First, the algorithm defines a species’ current climate mismatch 
(dij) as the standardized distance (z-score) between the current climate extracted 
network i’s locality and the centroid of species j’s climate volume. Then, the 
algorithm compares a species’ climate volume with the network’s future climate. 
For this purpose, we compiled the future climate at each network location as 
predicted by a broad range of general circulation models (Supplementary Table 
1). We considered two RCPs: a worst-case scenario, which assumes a continuous 
rise in greenhouse gas emissions throughout the twenty-first century (RCP 8.5) 
and a more optimistic scenario, which assumes a stabilization in greenhouse 
emissions after the year 2070 (RCP 4.5). With these data, we defined the future 
climate mismatch (d′ij), as the number of standard deviations separating the future 
climate of network i from the centroid of the species j’s climate volume. Subtracting 
d′ij from dij gives the climate change within a network locality relative to the 
climate volume of species j—that is, the ‘future climate impact’. The ‘future climate 
mismatch’ and ‘future climate impact‘ were converted to probabilities by taking the 
proportion of the climate volume that takes values within (d′ij – dij) and d′ij standard 
deviations from the climate volume’s centroid (Supplementary Figs. 1–4).

Regardless of climate change, species may persist if the local climate remains 
engulfed by their occupied climate volume. Hence, we modelled the climate-driven 
extinction risk of hummingbird j in network i as the product between the 
‘future climate mismatch’ and ‘future climate impact‘. In this way, climate-driven 
extinctions depend on the amount of climate change and how well the future 
climate is represented in species’ contemporary ranges—Supplementary Figs. 1–4 
provide a more detailed description. In cases where dij exceeded d′ij, we assumed 
the climate-driven extinction risk to be zero. Since we estimate climate-driven 
extinction risks based on the species’ breeding distributions, we excluded boreal 
migrants from networks located outside their breeding ranges (Supplementary 
Table 2). This operation made the networks smaller than initially sampled, which 
also affected network structure. Therefore, we calculated the three network 
structures (H2′, Q and WNODF) before and after excluding the boreal migrants.

During the climate-driven extinction simulations, we tracked the species 
names and generalization levels of the lost hummingbirds. If the lost species have 
generalized network roles, there is an increased risk for the remaining species 
to be impacted by coextinctions28. To quantify the species’ network roles, we 
calculated the species’ effective number of partners following Schleuning et al.8. 
This metric describes species’ generalization level as a measure of niche breadth 
(based on Shannon’s H), corresponding to the actual partner number if each edge 
were observed equally frequently30. Losing a generalized species with high partner 
diversity could result in a rapid spread of coextinctions throughout the network. 
Thus, we calculate the loss of species generalization level as the total effective 
partner number lost after each simulation replicate. The generalization measure was 
calculated using the ‘species level’ function from the ‘bipartite’ package v.2.11 (ref. 55).

Proceeding to our simulations’ second stage, we define the coextinction 
risk by the proportion of interactions lost by each species. In our simulations, 
coextinctions are first triggered by climate-driven extinctions of hummingbirds 
in a focal network. The coextinctions then spread stepwise at each iteration 
t. At iteration t = 1, plants’ coextinction probability is proportional to the 
fraction of interactions lost by hummingbird climate-driven extinctions. At 
t = 2, hummingbird coextinction probability is proportional to the fraction of 
interactions lost by plant coextinction at t = 1. Thereby, for a given network, the 
coextinction probability of species z (hummingbird or plant) at iteration t is given 
by czt = 1 − (Izt /Izt−1), where Izt  is the remaining interaction frequency of species z 
at iteration t and Izt−1 states the interaction frequency of species z at the beginning 
of t − 1 (ref. 9). The algorithm stops after the first time it samples zero coextinct 
species. The simulation ran over 1,000 replicates for each network (n = 84), RCP 
climate scenario (n = 2) and general circulation models (n = 32). For each group of 
1,000 replicates, we calculated the mean proportion of locally extinct hummingbird 
species at stage one (climate-driven extinctions) and stage two (coextinctions). 
The simulations were conducted only for the networks’ hummingbirds. Although 
the simulations would also be relevant for plants17, there is no equally detailed and 
up-to-date information on plant geographic ranges.

So far, the coextinction simulations rely on a crude assumption of strict 
mutual dependencies, that is a species disappears from a network if it loses all 
its interactions. We tested the sensitivity to this assumption by subsequently 
allowing species to relocate 50% of their lost interactions, in each extinction step, 
to their remaining partners in the network. This model follows the ‘constrained 
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rewiring’ from Schleuning et al.8. We acknowledge that climate-driven disruption 
of interactions may also force species to find new mutualistic partners and thereby 
avoid coextinction17,65. As such, our simulated coextinctions may not reflect 
real extinctions but rather reductions in the species’ fitness. Thus, the network 
simulations are an appropriate tool for assessing the communities’ vulnerability to 
mutualistic partner loss16,17 and may illustrate the worst-case scenario of species’ 
response to climate change.

Simulating regional colonization. We simulated hummingbird colonizations 
independently of the extinction simulations. Given the short time frame between 
the current and future climate projections, we assumed dispersal to occur 
exclusively at the regional scale. Specifically, we defined the source pool of a focal 
network as the species with breeding distributions within a radius of 100 km (Fig. 
1d). We repeated the analyses for a 10 km buffer radius, corresponding to a more 
conservative source pool definition.

We defined the colonization probability of hummingbird j into network i as 
the proportion of j’s climate volume falling beyond d′ij standard deviations from 
the climate volume’s centroid. The simulation was repeated 1,000 times for each 
network (n = 84), RCP climate scenario (n = 2) and general circulation models 
(n = 32). Thus, we analysed a total of 1,000 replicates for each 32 general circulation 
model giving 32,000 simulations for each network. On the basis of the 1,000 
simulated replicates, we calculated the mean number of colonizing hummingbird 
species relative to the richness of hummingbirds in the network and relative to the 
source pools’ species richness.

Statistical analyses. The 32 general circulation models generate different results 
of climate-driven extinction, coextinction and colonization. Thus, we calculated 
the mean across the 32 values of climate-driven extinction, coextinction and 
colonization rates for each network. Following Dalsgaard et al.21, the mainland 
networks were grouped into three biogeographical regions: the Andes (n = 21), 
South American lowlands (n = 41) and North America (n = 22). The Andean region 
includes all networks within the tropical High Andes and its foothills according to 
the mountains polygons published in Rahbek et al.66. The North American region 
includes all mainland networks north of the Panamanian Isthmus. The South 
American lowland includes the remaining continental networks in South America. 
Before statistical analyses, we log-transformed both the rates of climate-driven 
extinction and coextinction to improve normality. We tested for biogeographical 
variability in climate-driven extinction, coextinction and colonization by 
weighted analysis of variance (ANOVA). The weights were given by the number 
of hummingbird species sampled in each network, assuming that estimates from 
species-rich networks are more reliable than estimates from species-poor networks. 
We subsequently conducted Tukey multiple comparisons with Bonferroni-adjusted 
P values to determine which regions were most distinct in terms of climate-driven 
extinction, coextinction and colonization. The post hoc analyses were performed 
in R by the general linear hypotheses function glht from the ‘multcomp’ package 
v.1.4.16 (ref. 67). We then tested if the correlation between climate-driven 
extinction and coextinction differed between biogeographical regions. To do so, we 
regressed the proportion of coextinctions against the proportion of climate-driven 
extinctions. We then fitted a second model, including biogeographical region 
as a character state predictor variable. The two models, with and without the 
biogeographical predictor, were then compared statistically using an F-test.

We then assessed if the three network metrics correlated with the spread of 
coextinction events when considering the proportion of climate-driven extinctions. 
The logarithmic relationship between climate-driven extinction and coextinction 
was refitted with a network metric and interaction term added as predictor 
variables. As previously, the regression weights were given by the networks’ 
richness of hummingbird species. A regional bias in vulnerable network roles 
could interfere with coextinction’s dependency on network structure. Hence we 
also fitted the regressions individually for each region. Moreover, we repeated the 
analysis keeping boreal migratory hummingbirds in the networks when calculating 
H2′, ΔQ and ΔWNODF. One network from North America experienced no 
climate-driven extinctions (and consequently coextinctions) across all simulations. 
Hence, it was excluded when analysing the factors influencing coextinction spread.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data used to conduct the analysis are provided at the figshare repository:  
https://doi.org/10.6084/m9.figshare.19071752.v2

Code availability
The Methods contains a detailed description of our analytical framework. R codes 
in the simulations are provided at the figshare repository: https://doi.org/10.6084/ 
m9.figshare.19071752.v2
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Extended Data Fig. 1 | Regional variability in climate-driven extinction (a) and coextinction (b) under the RCP 8.5 ‘worst case’ scenario. Both extinction 
variables were scaled on logarithmic axes. We applied one-way ANOVA to test for regional differences in climate-driven extinctions and coextinctions 
(Climate-driven extinction: F = 11.39, p < 0.001, n = 84; Coextinction: F = 10.63, p < 0.001, n = 84). Lower case letters represent the statistical difference 
according to Tukey multiple comparisons with Bonferroni adjusted p values (p < 0.05). The boxes’ border marks the interquartile range (IQR; quartile 1 to 
3); horizontal lines inside boxes mark the medians; vertical lines mark ±1.5 × (IQR); the circles mark data outliers. The results depicted here derive from 
the RCP 8.5 “worst case” scenario for the year 2070.
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Extended Data Fig. 2 | Biogeographical variability in colonization rates under the RCP 8.5 ‘worst case’ scenario. Colonization rates are measured as the 
average number of colonizing from a radius of 10 km (F = 64.31, p < 0.001, n = 84) and 100 km (F = 75.33, p < 0.001, n = 84) surrounding each network (a). 
Panel b depicts the number of colonists relative to the richness of hummingbirds within the source pool radius (10 km radius: F = 9.01, p < 0.001, n = 84; 
10 km radius: F = 2.15, p = 0.120, n = 84). We applied one-way ANOVA to test for differences in colonization rate between biogeographical regions. The 
boxes’ border marks the interquartile range (IQR; quartile 1 to 3); horizontal lines inside boxes mark the medians; vertical lines mark ±1.5 × (IQR); the 
circles mark data outliers. Lower-case letters represent statistical difference according to Tukey multiple comparisons with Bonferroni-adjusted p values 
(p < 0.05). The results depicted derive from the RCP 8.5 ‘worst case’ scenario for the year 2070.
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Extended Data Fig. 3 | Biogeographical variability in the communities’ vulnerability to coextinctions after accounting for climate-driven extinctions 
under the RCP 8.5 ‘worst case’ scenario. Coextinctions spread slower in North America compared to other regions (a, F = 5.17, p < 0.001, n = 83), which 
coincide with a regional bias in climate-driven extinctions against species with generalized network roles (b, F = 12.01, p < 0.001, n = 83). The species-level 
generalism was described by the effective number of partners. The F-test in each panel compares two linear regression models, of which one contains the 
biogeographical region as a character state predictor variable. The solid lines represent the linear relationships within each region (with shaded 95% 
confidence intervals). The y axes measure the cumulative lost partner number averaged across the simulations. The results depicted here derive from the 
RCP 8.5 ‘worst case’ scenario for the year 2070.
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Extended Data Fig. 4 | The influence of three network structures on the logarithmic association between climate-driven extinctions and coextinctions 
(n = 83) under the RCP 8.5 ‘worst case’ scenario. The three network structures are Complementary specialization (H2‘), Modularity (ΔQ) and nestedness 
(ΔWNODF). Trend lines and standardized coefficients derive from weighted multiple linear regressions. In each regression model, we added an interaction 
term between the proportion of climate-driven extinctions and the network metric. The weights were given by the number of hummingbird species 
sampled in each network. The results derive from the RCP 8.5 ‘worst case’ scenario for the year 2070.
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Extended Data Fig. 5 | Geographical variation in coextinctions, measured as the average proportion of hummingbirds in our simulations that 
disappeared from the networks while accounting for interaction rewiring. In this analysis, we allowed species to relocate 50 % of their lost interactions 
with remaining partners in the network (that is constrained rewiring). The F-statistics derive from one-way ANOVA testing for regional differences in 
coextinctions (RCP 4.5: F = 10.31, p < 0.001, n = 84; RCP 8.5: F = 11.36, p < 0.001, n = 84; note the logarithmic axes). Lower-case letters represent the 
statistical difference according to Tukey multiple comparisons with Bonferroni-adjusted p values s (p < 0.05). The boxes’ border marks the interquartile 
range (IQR; quartile 1 to 3); horizontal lines inside boxes mark the medians; vertical lines mark ±1.5 × (IQR); the circles mark data outliers. The results are 
replicated for the RCP 4.5 ‘mid-range’ scenario (a) and the RCP 8.5 ‘worst case” scenario for the year 2070 (b).
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Extended Data Fig. 6 | Biogeographical variability in the communities’ vulnerability to coextinctions after accounting for climate-driven extinctions and 
interaction rewiring. The analyses are similar to those depicted in Fig. 4a, although, here, we allowed species to relocate 50 % of their lost interactions with 
remaining partners in the network (that is constrained rewiring). The F-test in each panel compares two linear regression models, of which one contains 
the biogeographical region as a character state predictor variable. The solid lines represent the linear relationships within each region (with shaded 95% 
confidence intervals). The results are replicated for the RCP 4.5 ‘mid-range’ scenario (a) and the RCP 8.5 ‘worst case’ scenario for the year 2070 (b).
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Extended Data Fig. 7 | The influence of three network structures on the logarithmic association between climate-driven extinctions and coextinctions 
(n = 83) while accounting for interaction rewiring. Here, we allowed species to relocate 50% of their lost interactions with remaining partners in the 
network (i.e. constrained rewiring). The three network structures are Complementary specialization (H2´), Modularity (ΔQ) and nestedness (ΔWNODF). 
Trend lines and standardized coefficients derive from weighted multiple linear regressions. In each regression model, we added an interaction term 
between the proportion of climate-driven extinctions and the network metric. The weights were given by the number of hummingbird species sampled in 
each network. The results are replicated for the RCP 4.5 ‘mid-range’ scenario (a-c) and the RCP 8.5 ‘worst case’ scenario for the year 2070 (d-f).
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Extended Data Fig. 8 | Boxplots showing the regional variability in three network structures. Complementary specialization (a, F = 0.96, p = 0.387, n 
= 84), modularity (b, F = 1.67, p = 0.196, n = 84), and nestedness (c, F = 7.31, p = 0.001, n = 84). Δ signs indicate corrections by Patefield’s null model 
4. To test for variability in each network structure between the three biogeographical regions, we applied one-way ANOVA. The boxes’ border marks the 
interquartile range (IQR; quartile 1 to 3); horizontal lines inside boxes mark the medians; vertical lines mark ±1.5 × (IQR); the circles mark data outliers. 
Lower case letters represent the statistical difference according to Tukey multiple comparisons with Bonferroni adjusted p values s (p < 0.05). Before 
calculations, we removed boreal hummingbird migrants from the networks to match our extinction simulations.
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All studies must disclose on these points even when the disclosure is negative.

Sample size The sample dataset comprise all 84 mainland hummingbird-plant networks published in Dalsgaard et al. 2021. These comprise 169 
hummingbird species and 1201 plant species on the mainland Americas. The complete sample dataset consists of networks from the 
Temperate North America to Southern Brazil. Hence, it is appropriate for large-scale analyses

Data exclusions Compared to the published database, we excluded nine Caribbean island networks (11 hummingbird species and 55 plant species). On islands, 
area and isolation strongly influence species assembly, making the extinction-colonization dynamics non-analogous to the mainland. 
Moreover, island species usually have small ranges constrained by the sea rather than climate, which complicates climate niche modeling. 

Replication The processes of climate-driven extinction, coextinction and colonization were simulated 1000 times for two different climate scenarios: 
Representative Concentration Pathway (RCP) 4.5 “mid-range” scenario and RCP 8.5 “worst-case” scenario for the year 2070. Moreover, we 
replicated the coextinction simulations by allowing species to relocate 50% of their lost interactions with remaining partners in the network. 
This replication was done to test the assumption of strict mutual dependencies between species. Our results were robust to the variability 
between future climate scenarios and the species’ adaptability to mutualistic partner loss

Randomization The processes of climate-driven extinction, coextinction and colonization were simulated as stochastic processes. We did not use 
experiamental groups. Hence, random allocation of groups is not relevant here

Blinding This study is based on observational field studies of hummingbird-plant interactions collected over decades. This observational data type does 
not involve experimental treatments (which would be impossible given the scale of the analyses). Hence, blinding procedures were not 
applicable.    
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