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The immense concentrations of vertebrate species in tropical mountains
remain a prominent but unexplained pattern in biogeography. A long-stand-
ing hypothesis suggests that montane biodiversity hotspots result from
endemic species aggregating within ecologically stable localities. Here, the
persistence of ancient lineages coincides with frequent speciation events,
making such areas both ‘cradles’ (where new species arise) and ‘museums’
(where old species survive). Although this hypothesis refers to processes
operating at the scale of valleys, it remains supported primarily by patterns
generated from coarse-scale distribution data. Using high-resolution occur-
rence and phylogenetic data on Andean hummingbirds, we find that old
and young endemic species are not spatially aggregated. The young endemic
species tend to have non-overlapping distributions scattered along the
Andean treeline, a long and narrow habitat where populations easily
become fragmented. By contrast, the old endemic species have more aggre-
gated distributions, but mainly within pockets of cloud forests at lower
elevations than the young endemic species. These findings contradict the
premise that biogeographical cradles and museums should overlap in
valley systems where pockets of stable climate persist through periods of cli-
mate change. Instead, Andean biodiversity hotspots may derive from large-
scale fluctuating climate complexity in conjunction with local-scale variabil-
ity in available area and habitat connectivity.

1. Introduction

The majority of Earth’s vertebrate diversity concentrates within tropical moun-
tains, with the Andes standing out as the most species-rich region [1-5]. The
overall high diversity of the Andes derives from numerous local hotspots
with immense concentrations of endemic (small-ranging) species [6-8]. A clas-
sic explanation is that high speciation rates combine with the long-term
persistence of local populations [6], making the endemism hotspots both
cradles for young (recently derived) species and museums for old (early-
divergent) species [6,9-12]. The premise of this explanation is that the expected
species distribution patterns are conserved at the scale of valleys where the rel-
evant speciation-extinction processes occur [1,6,10,13-16]. Analyses of broad-
scale patterns in species distributions confirmed that young and old lineages
tend to aggregate within tropical mountains [9-12,17,18]. Moreover, recent
advances in process-based models revealed that the tropical Andes are optimal
for speciation and species persistence through recurring periods of climate fluc-
tuations [19]. However, previous investigations typically used species
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distributions mapped at coarse spatial resolutions, as those
are the data available at continental and global scales [9-
11,17,18,20,21]. Although the patterns obtained at coarse
spatial resolutions may statistically accord with the hypothe-
sis’s predictions, the results may not scale down to valley
systems where the hypothesized speciation—extinction
dynamics operate [6]. These processes can operate on either
side of a deep valley, such as the Marafion valley [22], or
between small adjacent valleys such as those found in the
Colombian east Andes [16]. Thus, valley systems provide a
suitable reference scale for gaining new insight into the antici-
pated aggregation of young and old endemic species.

The role of the Andes as a biodiversity cradle has been
linked to the fluctuating climates of the Quaternary [23-25].
Topographic complexity combined with climate fluctuations
over time (termed fluctuating climatic complexity [19]) may
have caused cyclical phases of connectivity and fragmentation
of highland habitats [26,27], causing local species populations
to become isolated and eventually diverge in allopatry
[9,27-29]. In addition to Quaternary climate fluctuations,
high rates of speciation in Andean forests may result from
stochastic events. Graves [13,14] noted the phenotypic dis-
parity among congeneric birds peaks in elevational zones
around the treeline. In this narrow and elongated habitat
band, demographic and environmental stochasticity may
cause the fragmentation of local populations [13,14]. Accord-
ingly, previous studies find the highest speciation rates in the
Andean highlands [16,23,24,28]. Demographic fluctuations in
population sizes or extreme weather events can also wipe out
small and isolated populations, implicating that stochastic
mechanisms may also result in extinction. In his classical
work, Fjeldsa [6] proposed that the persistence of new species
depends on habitats with locally stable climates. Such stable cli-
mates occur at the scale of valleys where cloud forests flank
warm intermountain basins, or atmospheric inversions create
permanent mist zones that maintain humidity [7]. As such,
Andean hotpots of endemism are hypothesized to form within
so-called ‘extremely ecologically stable areas’ [6] where the
distribution of old and young endemic species overlap [6,9,10].

We investigate this now-classic hypothesis using all
Andean hummingbirds (1 =229 species) as a model taxon
representing a species-rich mountain clade. Our analytical
approach is not focused on generalized correlations with
environmental data. That is because current data on historical
climate stability over the past 100000 yrs to 1 Myr is at a
coarse spatial resolution compared to the scale of valleys
where the hypothesized processes operate. Acknowledging
the historical climate data’s limitations in scale of resolution,
we instead tested the hypothesis’s underlying premise, i.e.
the pattern where hotspots of young endemic species are
spatially congruent with hotspots of old endemic species.
Hummingbirds (Trochilidae) are suitable for testing this
hypothesis for several reasons: (i) their taxonomy is well
resolved [30]; (ii) their geographical ranges are well known;
(i) their systematic relationships are supported by a phylo-
geny comprising the majority of species [31]; and (iv)
hummingbirds reach their greatest diversity in the Andes
region, representing the number one hotspot for birds in
the world [1]. We use high-resolution distributions at the
0.25° scale (see Methods). We defined a hummingbird
within the first range size quartile as ‘endemic’ (1 =58;
figure 1a; [1,33]), which corresponds to a geographical
range size of less than 97 000 km?. We then use the phylogeny

to divide endemic species into two age classes: young species [ 2 |

(the 25% fraction of endemic species with the shortest terminal
branches; 1 =15) and old species (the 25% fraction of endemic
species with the longest terminal branches; 1 = 15; figure 1b,c).
Using this quartile method allows us to map the geographical
overlap between specific subsets of the total species assemblage
(i.e. young versus old endemic species), as is required for
testing Fjeldsa’s classic hypothesis [6].

2. Results and discussion

Contrary to a priori expectations, we found that young and
old endemic species were geographically segregated—not
aggregated (figure 2; y3=156.53, p<0.001; electronic sup-
plementary material, table Sla and figure S1b). Several old
endemic species aggregated in the northern Andes, whereas
the young endemic species dominated the Santa Marta
Mountains in Colombia and Cordillera Carpish in central
Peru. In the remaining parts of the study region, young and
old endemic species had segregated distributions, although
within close geographical proximity of each other. The only
localities where we found a high standardized richness of
both young and old endemic species were in the Colombian
east Andes and the Cuzco region of Peru. Both areas have
complex topographies with deep valleys intersecting tall
mountain ridges within close proximity. Hence, the land-
scape is a mosaic of different habitat types, causing overlap
between young and old endemic species. Notably, the east
Colombian Andes proved suitable for studying speciation
processes under fluctuating climate complexity [16,27].

To quantify the range overlap between the two age
classes, we applied a biogeographical null model that stan-
dardized endemic species richness by a grid cell’s total
species richness (see Methods). These analyses revealed that
young and old endemic species contributed differently to
local diversity hotspots. We found that young endemic
species had scattered distributions with low range overlap,
whereas old endemic species occurred in aggregated hotspots
with higher range overlap (figure 3). At the 0.25° scale, the
richness of young endemic species rarely exceeded two,
whereas old endemic species were represented in grid cells
with up to five species. This result indicates that local hot-
spots of endemism consist mostly of old species. Moreover,
the high replacement of young endemic species throughout
the mountain range could suggest that the recently derived
species have still not expanded their ranges into secondary
contact zones. This pattern is well illustrated in the genus
Metallura, where five young endemic species distribute
along the Andean Cordilleras with little or no geographical
overlap ([24]; electronic supplementary material, figure S2).
A similar vicariant mode of speciation is also found in
other bird groups, including spinetails Cranioleuca, brush
finches Atlapetes, canasteros Asthenes, flowerpiercers Diglossa,
and tapaculos Scytalopus [13,14,34]. Whether species in these
groups will maintain their segregated distributions over time
remains an open question. Under a neutral model of range
dynamics, recently derived sister species should eventually
transition to secondary sympatry [35], but the rate may
depend on several different processes. Among Furnariidae
birds in South America, the transition to secondary sympatry
following a speciation event is initially slow, which coincides
with expectations of interspecific competition limiting range
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Figure 1. Regional richness pattern of young and old endemic species. (a) The richness of endemic hummingbirds is defined as the 25% fraction of species in the
north and central Andes (grey shade; [32]) with the smallest geographical ranges. (b) The richness of young endemic species, i.e. the 25% fraction of endemic
hummingbirds with the shortest terminal branch lengths. (c) The richness of old endemic species, i.e. the 25% fraction of endemic hummingbirds with the longest
terminal branch lengths. The pie diagrams show the differences in the species’ habitat preferences. The inner circles represent the frequency distribution of hum-
mingbird species occurring in one or several habitats. The outer diagram shows the fractions of hummingbirds that are restricted to one single habitat. (Online

version in colour.)

overlap between recently derived lineages [36]. Alternatively,
a slow initial rate of secondary sympatry could reflect young
highland species dispersing vertically to lower elevations,
instead of horizontally [37], following the increased avail-
ability of surface area and habitat connectivity downslope
[13,14,37], or cyclic phases of glaciation and inter-glaciation
periods [16,27].

The overall dynamic environment characterizing Andean
highlands is probably unsuitable for maintaining old ende-
mic species. Whether these species’ ranges have always
been small or have contracted into relictual patches remains
an open question. The old endemic species’ tendency to
aggregate may reflect historical range contractions into refu-
gia [37,38]. In accordance with this idea, we found that
young and old and endemic species had distinct habitat pre-
ferences (figure 1; Fisher’s exact, p=0.026; electronic
supplementary material, table S3). Old endemic species are
generally found at lower elevations than young endemic
species (figure 4a) and mostly in the lower parts of the mon-
tane evergreen forest (cloud forest zone; figure 1). By contrast,
young endemic species associate more with humid highland

vegetations, such as the mosaics of stunted elfin forests
(figure 1). Their distributions peak slightly above 3000 m,
approximating the Andean treeline ecotone (figure 4a). The
elevational distributions of young and old endemic species
were similar when using different approaches to adding
missing species to the phylogeny (electronic supplementary
material, figure S10f). Moreover, their distributions did not
merely reflect a mid-domain effect (as a stand-alone hypoth-
esis): the young endemic species are more species-rich at
approximately 3000 m than what the mid-domain null
model predicts. Vice versa, the old endemic species are
more species-rich at approximately 1500 m than expected
(electronic supplementary material, figure S7). Nevertheless,
the mid-domain effect could still influence the asymmetric rich-
ness-elevation patterns of species richness in interaction with
other factors such as contemporary and historical changes in
environmental conditions [39]. In our data, the habitat mosaic
of the treeline ecotone appears to aggregate young endemic
species, whereas the cloud forest aggregates old endemic
species at lower elevations. As additional support for this
pattern, we find that the average terminal branch lengths
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Figure 2. Disjunct distributions of young and old endemic species. Colours highlight grid cells with more young or old endemic species than expected from a
biogeographical null model. The grey-shaded area marks the central and northern Andes [32], constituting the biogeographical source pool. The paintings (by
Jon Fjeldsd) show representatives of young and old endemic species from different regions in the Andes. (Online version in colour.)

for all endemic species vary significantly across elevations
(figure 4b), where species at mid-elevations (1500-2000 m)
had the longest terminal branch lengths (Kruskal-Wallis 3 =
15.07, p=0.032). This pattern in terminal branch lengths
shows that the elevational segregation of young and old
endemic species is also visible at the species assemblage level.

Our results support previous suggestions that the patchy
treeline ecotone is a centre for recent speciation in the Andes
[13]. This idea appears analogous to previous work in Africa
highlighting the distinct forest-savannah ecotones, which is a
hotspot for new species [6,40-44]. The treeline zone com-
prises a small, fragmented surface area (electronic
supplementary material, figure S4) that could stimulate
population fragmentation. Small and fragmented popu-
lations are susceptible to demographic and environmental
stochasticity; hence this environment may provide few
opportunities for maintaining old endemic species [19,24].
The cloud forest at lower elevations covers a broad range of
elevations (electronic supplementary material, figure S5)
and thus may have retained high connectivity during the

Quaternary [45]. Accordingly, species at mid-elevation tend
to have broader elevational range limits than species in the
lowlands and highlands (electronic supplementary material,
figure S6). Moreover, the cloud forest is ecologically distinct
from lowland habitats because it has a cooler climate and a
stable condensation zone [10]. We find that lowland species
typically have narrower elevational range limits but larger
geographical ranges (electronic supplementary material,
figure S6) following the geographical configuration of
humid lowland vegetations [46]. Thus, while the elevational
range limits are broadest around 2000 m, the geographical
range size decreases systematically with elevation.

The combination of unique ecological conditions and
habitat connectivity could explain why the Andean cloud for-
ests preserve endemic phylogenetically early-divergent
species (i.e. the old species). This idea does not preclude
that young endemic species should be absent from the low-
lands entirely and that old species should be absent from
the highlands. For instance, a young lowland species would
not be expected to have the same elevational range as
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Figure 3. Richness-frequency distribution of young and old endemic species.
The plot comprises the subset of grid cells with a standardized richness of
young or old endemic species exceeding 0.5 (highlighted in black on the
map). The threshold of 0.5 indicates that grid cells contain more of either
age class than sampled by the majority of null model iterations. (Online ver-
sion in colour.)
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Figure 4. Segregations in elevations between young and old endemic species.
(@) The richness of young endemic species peaks at higher elevations than old
endemic species. Adding missing species to the phylogeny caused slight uncer-
tainty in the composition of young and old endemic species (electronic
supplementary material, table S10e). This uncertainty produces the figure’s
95% confidence intervals (shaded areas). (b) Elevational variation in terminal
branch lengths in million years (Myr). Here, missing species were added to
the phylogeny using the median branch length for 1000 phylogenetic trees
(electronic supplementary material, table S10a). The dashed lines represent
the quartile boundaries used for selecting young (blue) and old (red) ende-
mic species. (Online version in colour.)

young highland species. Accordingly, we find that species [ 5 |

with narrow and wide elevational ranges have similar term-
inal branch lengths (electronic supplementary material,
figure S8, panel A). However, our explanation for our
observed patterns does predict that the broad cloud forest
zone at mid-elevation should lack species with narrow eleva-
tional ranges, assuming the species range limits follow the
altitudinal configuration of vegetation. That is also what we
observed, namely, the fewest species with narrow elevational
ranges at 1500-2000 m (electronic supplementary material,
figure S8, panel B).

A potential caveat concerning our analysis is that young and
old endemic species may cluster into different lineages in the
phylogeny (electronic supplementary material, figure S11).
However, we found that both classes of endemic species were
broadly distributed in the phylogeny: neither young nor old
endemic species were significantly more clustered in the phylo-
geny than random assemblies of endemic species (old endemic
species, net relatedness index (NRI)=-0.32, p=0.31; young
endemic species, NRI =1.84, p =0.06). Thus, the geographical
segregation of young and old endemic species appears not to
have emerged from niche conservatism or borders separating
biogeographical regions. Another caveat is the high proportion
of endemic species added to the existing phylogeny (26.67% for
young endemic species; 46.67% for old endemic species; elec-
tronic supplementary material, table S10c), as is a feature of
most so-called complete phylogenies for larger clades. Thus,
the branch length of each added species has an uncertainty,
which introduces minor variations in the age classes” species
composition (electronic supplementary material, table S10e).
This variation in species composition causes the confidence
intervals in figure 4a. Thus, the segregation between old and
young endemic species is robust to the placement of unsampled
species in the phylogeny. Thirdly, the division of endemic
species into quartiles results in a small sample size that may
limit statistical power (1 =2 x 15). Henceforth, we investigated
the elevational segregation of young and old lineages using
the terminal branch length of all endemic species (1 =>58;
figure 4b). Regardless of the variability in sample size, the
elevational patterns remain robust (figure 4).

Hummingbirds exemplify one of the many taxonomic
groups that are highly species-rich in the Andes relative to
the Amazonian lowlands. Therefore, the clade contributes
to the general richness patterns that characterize the Andes
as a global biodiversity hotspot [1,6,9,10,19,33,47]. The
area’s high concentration of endemic species has traditionally
been explained by rapid allopatric speciation coinciding with
low extinction rates through climate change periods
[6,9,10,12]. The result becomes a local aggregation of endemic
species with both early-divergent and recently derived ori-
gins [6,9,10]. Broad-scale geographical patterns support this
idea [9,10,17,19], although a recent phylogenomic assessment
on New World Suboscines challenged the view that tropical
regions are hotspots for recent speciation [21]. The study
found the highest speciation rates in temperate latitudes,
leaving the tropics as a museum of primarily early-diverging
lineages. The tendency for speciation to peak outside the tro-
pics is also true for hummingbirds, given that the most recent
and rapidly diverging clade (the so-called ‘bees’) represents
the only successful invasion of North America [31]. However,
such broad-scale evolutionary patterns struggle to capture
speciation events over elevational gradients, where speciation
processes operate at local spatial resolutions constrained by
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Figure 5. Hypothesized scale-dependency of speciation and extinction processes within a tropical mountain system, represented by the east Andean Cordillera
(illustration by Jon Fjeldsa). The grey bars’ thickness indicates the levels of the factors, processes and patterns at different elevational zones. At the regional—con-
tinental scale of extent (), historical climate dynamics in conjunction with topographic complexity (termed ‘fluctuating climatic complexity’; [19]) promotes
speciation and lowers extinction rates. The result is young and old endemic species aggregating in tropical mountains [9,10,19]. At the scale of valleys within
mountains (b), surface area and habitat connectivity become more important determinants of the speciation and extinction processes. The narrow treeline
zone with patchy vegetation promotes speciation at high altitudes, resulting in a scattered distribution of young endemic species [13,14]. Above the treeline ecotone,
the surface area and habitat connectivity increase if the highlands reach a plateau. The habitats’ width and connectivity increase towards the cloud forest at mid-
elevation, providing more optimal conditions (i.e. low extinction) for the persistence of old endemic species. (Online version in colour.)

topography and local environmental conditions [6,13,14]. At
this scale, the distribution of young endemic species suggests
extensive allopatric speciation in Andean highlands (figures 3
and 4). However, local centres of speciation may be segre-
gated from stable localities with low extinction rates when
building up diversity at the regional-continental scale.

The idea of endemism hotspots forming within climati-
cally stable areas builds on the premise that young and old

endemic species overlap at local-landscape spatial resolutions
[6]. Our results contradict this premise by showing that
young and old endemic species segregate between valleys
and elevational zones. Instead, our results coincide with fluc-
tuating climate complexity, not climate stability, causing high
speciation in conjunction with low extinction [19] (figure 5a).
At the scale of valleys, these processes seem to operate in seg-
regated locations, not because of climate differences but
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owing to the variability in surface area and habitat connec-
tivity (figure 5b). The wide-extending cloud forest zone
rarely becomes fragmented under climate fluctuations and
thereby constitutes stable habitats required for the long-
term persistence of populations. By contrast, the narrow
and patchy treeline ecotone contributes to high speciation,
as populations easily become fragmented by climate fluctu-
ations or stochastic events. This proposed idea unites
classical literature on population connectivity [13,14] with
the recent literature on fluctuating climate complexity
[16,19,27]. Moreover, the idea explains the observed patterns
of old and young endemic species and why their co-occur-
rence patterns are not spatial-scale invariant. It also
explains why global biodiversity hotspots are often found
in mountain regions and why mountain regions are extra-
ordinarily species-rich, especially at the regional scale,
compared with adjacent lowlands.

3. Material and methods

(a) Species distributions

The geographical distributions of hummingbirds were retrieved
from an updated version of the bird distribution dataset
mapped from primary-level sources at the scale of 1°x 1° grid
cells ([30,48]; see Holt et al. [49] for methods and data sources).
The extracted data comprised all extant hummingbird species
that were found in the central and northern Andes (1 =229;
using the International Ornithological Community taxonomy
v. 10.1; [50]). The exact boundaries of this region were defined
by the mountain polygons presented by Rahbek et al. [32].
From the literature, we also compiled information on the species’
minimum and maximum elevations [51] (see the electronic sup-
plementary material, table S9a for additional references). We
combined the species’ geographical distributions with their
elevational range limits into range maps at the 2 arc-minute
resolution [52]. A species was considered present in 2 arc-
minute grid cells that overlapped both with its distribution at
the 1°x1° scale and its elevational range limit. One newly
described species (Oreotrochilus cyanolaemus) was sampled with
the same minimum and maximum elevation. To avoid over-fil-
tering its distribution, we added a 50 m buffer on both sides of
its elevational range. Finally, the species’ distributions were
aggregated to 0.25°x 0.25° resolution. The range size of each
hummingbird was calculated as the number of occupied
0.25° x 0.25° grid cells, cf. Rahbek [53]. The process of clipping
the species 1° ranges removed commission errors, reducing the
range size by up to 77% (electronic supplementary material,
table S9¢). We then defined endemic species as those belonging
to the first range size quartile (i.e. 25% of the species with the
smallest global ranges; 1 = 58; [54-57]). Processing of the species’
geographical ranges was done in R [58] using the geographical
packages’ raster’ [59] and ‘maptools’ [60].

(b) Phylogenetic relationships

Estimates of the phylogenetic relationships among 189 species
were retrieved from McGuire et al.’s time-calibrated tree [31].
The 26 of the 58 endemic species missing in the phylogeny
were added based on prior taxonomic information (electronic
supplementary material, table S10c). The remaining 14 species
not included in the analysis remained unsampled in the phylo-
geny. We assigned branch lengths to the 26 added lineages
(million years) based on the relatedness of sister species that
were sampled in the phylogeny. For each sister species pair
that was also represented by terminal branches in the phylogeny,
we calculated the proportion of the branch length that separated

the two species from the stem leading to the speciation event
(electronic supplementary material, table S10a). Subtracting this
ratio from one gives the terminal branch length ratio (R), which
is directly proportional to the terminal branch length of a missing
species in the phylogeny. To determine the terminal branch
length of an added species, we multiplied a randomly selected
R-value with the terminal branch length of the sampled sister
lineage. The procedure was repeated to generate 1000 trees, for
which we listed the 25% fraction of the endemic species with
the shortest terminal branches. The species most frequently fall-
ing into the first branch length quartile were identified as
young (i.e. recently derived; n=15; electronic supplementary
material, table S10c). Similarly, we identified old endemic species
(i.e. early divergent; n=15) that most frequently felt into the
fourth branch length quartile. To explore the consequences of
different species compositions for our results, we ran sensitivity
analyses using (i) a ‘late-burst model’ by adding species towards
the tip of the sampled sister lineage, and (ii) an ‘early burst
model’ by adding species towards the base of the sampled
sister lineage (electronic supplementary material, table S10e).
For this procedure, we repeated the existing protocol by subset-
ting R values to the 75% quantile (late-burst: 0.73 <R <0.97)
and the 25% quantile (early-burst: 0.05 < R < 0.24; in theelectronic
supplementary material, table S10a). The processing of the phy-
logeny was done in the R [58] programming language using the
packages’ ape’ [61] and ‘phytools’ [62].

Using quartiles to define young and old endemic species
accords with previous analyses on the topic [1,10], while others pre-
ferred using phylogenetic summary statistics, such as phylogenetic
endemism [17,63]. Phylogenetic endemism contains information
about deep phylogenetic patterns for all species in an assemblage.
By contrast, the classical hypothesis explains the distributions for a
specific subset of species with the smallest geographical ranges, not
average statistics of all species [6]. Moreover, the proposed effect of
climate stability on the aggregation of young and old species oper-
ates in the phylogeny’s periphery. Lineages may belong to an old
phylogenetic branch while having a high recent speciation rate,
as for Oreotrochilus and Oxypogon. Thus, we avoided phyloge-
netic summary statistics to obtain biogeographical patterns
matching the original formulation in Fjeldsa’s hypothesis [6].

(c) Using biogeographical null models to identify
biodiversity hotspots

The richness of endemic species is expected to be a function of
total species richness. Thus, we applied a biogeographical null
model to disentangle the pattern in endemic species from the
underlying pattern of total richness. The null model compares
the empirical richness of young and old endemic species to a
random sample of all the species in the dataset. For a grid cell
with species richness 1, the algorithm randomly samples grid
cells in a stepwise fashion, from which a species is randomly
selected. The algorithm terminates when #n unique species have
been sampled. In this way, the null model preserves the total
species richness while accounting for large-ranging species’
potential for being sampled in more grid cells than small-ranging
species. After running the null model 1000 times, we determined
the standardized richness of young and old endemic species as the
proportion of null model iterations that sampled fewer of a given
age class than observed. The young and old endemic species
were classified as over-represented in a grid cell when the majority
of null model iterations sampled fewer of each respective age class
than observed (standardized richness exceeding 0.5).

(d) Elevational analyses
We investigated the distribution of young and old endemic species
along the elevational gradient using each species’s minimum and
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maximum elevational range limits. The analysis computes the
richness of each age category in 10 m bands from 0 to 5000 m.
Adding species to the phylogeny based on randomly sampled
R-values caused slight uncertainty in the composition of young
and old endemic species. Hence, we calculated the richness pat-
tern for 1000 phylogenetic trees and extracted the 95% richness
confidence interval. The same analysis was repeated for different
approaches to adding missing species to the phylogeny: the
‘early-burst’” and the ‘late-burst’ models. We also investigated if
the elevational pattern coincided with a mid-domain effect. We
modelled the mid-domain effect by randomly shuffling young
and old endemic species along the gradient while maintaining
their elevational range coherency and using the empirical range
frequency distribution following the guidelines by Colwell et al.
[64]. After repeating the mid-domain model 1000 times, we com-
pared the expected and empirical richness patterns. We used the
‘ns’” function from the ‘splines” R package to present the results.

(e) Phylogenetic analyses

The evolutionary history of hummingbirds is characterized by per-
sistently high diversification rates [31]. Old subfamilies (hermits
and topazes) date back to the early Miocene (approx. 20 Ma),
whereas the youngest subfamily (bees) diversified as late as the
Pliocene (approx. 5 Ma). The vast age differences between subfami-
lies imply that the distribution of young and old endemic species
could be explained purely by lineage-specific biogeographical his-
tories, that is, hotspots of young endemic species consisting of
recently derived subfamilies and old endemic species consisting
of early-divergent subfamilies. Therefore, we tested whether
young and old endemic species were associated with different
lineages in the hummingbird phylogeny (electronic supplementary
material, figure S11). Individually for young and old endemic
species, we compared the mean pairwise distance in the phylogeny
(mpdobserved) to a null model that randomly swaps age categories
among the 58 endemic hummingbirds (mpd,un). Mpdopservea Was
calculated as an average across the populations of trees. mpd,un
was calculated for a randomly selected tree in the population.
After running the null model 1000 times, we calculated: (i) the
NRI as (mpdgpservea — mean(mpdy,n))/sdmpd,,m) [65]; and (i) a
p-value giving the proportion null models that sample a lower
mpd,,; than observed. The phylogenetic analyses were done in
R [58] using the ‘mpd’ function from the “picante’ package [66].
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