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Thermal reactionomes reveal divergent
responses to thermal extremes in warm
and cool-climate ant species
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Abstract

Background: The distributions of species and their responses to climate change are in part determined by their
thermal tolerances. However, little is known about how thermal tolerance evolves. To test whether evolutionary
extension of thermal limits is accomplished through enhanced cellular stress response (enhanced response),
constitutively elevated expression of protective genes (genetic assimilation) or a shift from damage resistance to
passive mechanisms of thermal stability (tolerance), we conducted an analysis of the reactionome: the reaction norm
for all genes in an organism’s transcriptome measured across an experimental gradient. We characterized thermal
reactionomes of two common ant species in the eastern U.S, the northern cool-climate Aphaenogaster picea and
the southern warm-climate Aphaenogaster carolinensis, across 12 temperatures that spanned their entire thermal
breadth.

Results: We found that at least 2 % of all genes changed expression with temperature. The majority of
upregulation was specific to exposure to low temperatures. The cool-adapted A. picea induced expression of more
genes in response to extreme temperatures than did A. carolinensis, consistent with the enhanced response
hypothesis. In contrast, under high temperatures the warm-adapted A. carolinensis downregulated many of the
genes upregulated in A. picea, and required more extreme temperatures to induce down-regulation in gene
expression, consistent with the tolerance hypothesis. We found no evidence for a trade-off between constitutive
and inducible gene expression as predicted by the genetic assimilation hypothesis.

Conclusions: These results suggest that increases in upper thermal limits may require an evolutionary shift in
response mechanism away from damage repair toward tolerance and prevention.
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Background
Temperature regulates biological activity and shapes di-
versity from molecular to macroecological scales [1, 2].
Many species, especially small-bodied arthropods, live at
temperatures close to their thermal limits and are at risk
from current increases in temperature [3–5]. Thermal
tolerance, the ability of individuals to maintain function
and survive thermal extremes, depends on a complex
interplay between the structural integrity of cellular

components and activation of physiological response
mechanisms to prevent and/or repair damage [6, 7].
Thermal defense strategies are shaped by the environ-
mental regime organisms experience [8] and thermal
limits vary considerably among species and populations
[3, 4, 9, 10]. These differences in thermal tolerance are
largely genetic [11, 12] with a highly polygenic basis
[13–16]. Outside of candidate genes [13], little is known
about the evolution of thermal tolerance or the link be-
tween short-term physiological acclimation and longer-
term adaptation to novel temperature regimes. This in-
formation is critical for understanding the adaptive po-
tential of species to future climates [17].
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To address this gap of knowledge, we need informa-
tion on the extent to which selection has acted upon the
diversity and plasticity of genes involved in thermal tol-
erance [17, 18]. In recent years, whole-organism gene
expression approaches (e.g. transcriptomics) using high-
throughput RNA sequencing (RNAseq) technology have
been widely applied to identify genes involved in thermal
tolerance [19–22] and other traits. Such studies typically
use an ANOVA-type experimental or sampling design,
with only a few environmental levels, and often find only
a few dozen to hundred genes with differential expres-
sion in different thermal regimes. However, temperature
and other environmental factors vary continuously in
nature. As a result, such categorical comparisons (e.g.
high vs. low temperatures) are likely to miss key differ-
ences that are due not just to whether it is hot, but ra-
ther how hot it is. Continuous variation is better
characterized with a reaction norm approach, which de-
scribes variation in the phenotype of a single genotype
across an environmental gradient [23]. Reaction norms
differ not only in mean values, but also in their shapes
[10, 24], and differences in the shape of reaction norms
are often larger than differences in mean values at both
the species and the population level [24].
In this study, we extend the reaction norm approach to

RNAseq analysis and introduce the reactionome, which
we define as a characterization of the reaction norm for all
genes in an organism’s transcriptome across an environ-
mental gradient. Although temporal patterns of transcrip-
tional activity (e.g. fast- vs. slow- responding genes) are
also important components of an organism’s transcrip-
tional response to environmental conditions [25], we focus
here on the response of transcripts across conditions at
the same time point.
We use the reactionome method to identify genes that

are thermally responsive in two closely-related eastern
North American ant species, Aphaenogaster carolinensis
and A. picea [26, 27]. Aphaenogaster are some of the most
common ants in eastern North America [28] where they
are keystone seed dispersers [29–31]. Ants, and ecotherms
in general, have little or no thermal safety margin [5] and
thus are highly susceptible to climate change [4, 32], put-
ting at risk important ecosystem services [33]. Growth
chamber studies have demonstrated that reproduction
of Aphaenogaster will be compromised by increased tem-
peratures [34], while field studies [32] and simulations
[35] indicate that ant species persistence will depend on
combinations of physiology and species interactions.
Aphaenogaster carolinensis experiences a higher mean an-
nual temperature (MAT) (14.6 °C) and less seasonal
temperature variation (temperature seasonality = 7678°)
than does A. picea (MAT = 4.6 °C, seasonality = 10,008°;
[36]) at their respective collection sites. In controlled la-
boratory experiments, these warm- and cold-climate

species exhibit corresponding differences in their critical
maximum (44.7 °C for A. carolinensis versus 41.3 °C for A.
picea; see Methods) and minimum temperatures (6.1 °C
for A. carolinensis versus −0.1 °C for A. picea). These dif-
ferences between species in their thermal environments
and physiological tolerances allowed us to investigate
adaptation to both lower and upper thermal extremes in
this system.
To characterize the thermal reactionome, we measured

the reaction norm for each gene using a regression-based
statistical approach to identify temperature-dependent pat-
terns of change in gene expression. We used these response
patterns to quantitatively test three mechanistic hypotheses
of thermal adaptation. First, the enhanced response hypoth-
esis [37–39] proposes that species extend their thermal
limits through a stronger induced response to provide
greater protection from more frequently encountered
stressors. This hypothesis would predict that the cool-
adapted A. picea would activate more genes, and induce
them more strongly, in response to low temperatures than
would the warm-adapted A. carolinensis, which would
show greater induction in response to high temperatures.
Second, the tolerance hypothesis [9, 40] proposes that

existing inducible stress responses become insufficient
or prohibitively costly as environmental stressors in-
crease in frequency, resulting in a shift away from in-
duced response in favor of structural changes [41] or
behavioral adaptations [5, 42]. This hypothesis predicts
adaptation to stress should be associated with lower
transcriptional responsiveness and less sensitivity to
temperature perturbation, as well as a shift to an alter-
nate suite of tolerance genes and pathways [43, 44].
Finally, the genetic assimilation hypothesis [45, 46]

proposes that exposure to more extreme stressors selects
for a shift from inducible to constitutive expression of
stress-response genes. This hypothesis predicts that
transcripts responsive to high temperatures in A. picea
will have higher constitutive expression in A. carolinen-
sis, whereas transcripts responsive to low temperatures
in A. carolinensis will have higher constitutive expression
in A. picea. Of course, these hypotheses are not mutually
exclusive. By taking a reactionome approach, we can
quantify if, and under what conditions, these mecha-
nisms contribute to thermal adaptation.
To summarise, in this project we generated the tran-

scriptomes of two closely-related temperate ant species,
and quantified their gene expression across a wide range
of thermal conditions. We then evaluated three non-
mutually exclusive hypotheses (enhanced response, tol-
erance and genetic assimilation) of the evolution of ther-
mal adaptation by comparing the number and
expression patterns of transcripts between species in re-
sponse to extreme low and extreme high temperatures.
Finally, we used gene ontology information to determine
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which gene products and pathways are involved in ther-
mal adaptation in the two species.

Results
Reaction norms of thermally-responsive transcripts
The combined Aphaenogaster transcriptome assembly
contained 99,861 transcripts. About half of these (51,246)
transcripts had a signficant BLAST hit, of which 50 %
(25,797) had a top hit to Insecta and 37 % (18,854) had a
top hit to Formicidae. We performed a BUSCO analysis
[47] to assess the quality of the transcriptome assembly
against the arthropod Benchmarking Universal Single-
Copy Orthologs (BUSCOs). This analysis revealed that the
transcriptome is largely complete, as we recovered 1,426
complete single-copy BUSCOs (62%) and an additional
435 fragmented BUSCOs (16%), which is in line with the
results of Simao et al [47] for transcriptomes of other
non-model species. Moreover, only 8% of the BUSCOs
were found to be duplicated in the combined transcrip-
tome, which indicates that the steps (see Methods) we
took to collapse homologs between the two species in the
transcriptome assembly were successful.
We quantified gene expression using the program Sail-

fish [48], and fitted polynomial regression models to the

expression values of each transcript to identify those that
had a linear or quadratic relationship. To account for
multiple tests, we both applied a False Discovery Rate
(FDR) correction, and performed a resampling analysis
to determine the number of transcripts that would be
expected to have a significant relationshp by chance
alone. We retained the 2509 (2.5 % of total) true positive
transcripts that exceeded null expectation from the re-
sampling analysis for further analysis (Additional file 1:
Table S1). Of these transcripts, 75 % (1553) had a non-
linear relationship with temperature that would likely
have been missed with a standard differential expression
experiment (e.g. high vs. low temperature). The propor-
tion of responsive transcripts is similar if we focus only
on those transcript with a BLAST hit (725 significant
transcripts out of 51,246). However, as with all de novo
transcriptome assemblies, this assembly is fragmented
due to partial contigs and alternative transcripts [49] so
this estimate is likely a lower bound for the true propor-
tion of transcripts that are thermally responsive.
We used the predicted transcript expression levels to

partition transcripts for each species into five expression
categories (Fig. 1) which were defined a priori to allow
us to test predictions derived from three thermal
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Fig. 1 Illustrations of the pattern in relation to temperature for each of the four expression categories; Bimodal, High, Intermediate and Low. The
fifth category of Not Responsive (a flat line) is not shown
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adaptation hypotheses of relative response severity in the
two species: High transcripts had greatest expression at
temperatures > 31 °C, Low transcripts had greatest ex-
pression at temperatures < 10 °C, Intermediate tran-
scripts had greatest expression between 10 to 30 °C,
Bimodal transcripts had increased expression at both
high and low temperatures, while NotResp transcripts
were those that were not thermally responsive in the
focal species but did respond in the other.

Expression response to thermal extremes differs between
species
Although the total number of thermally-responsive tran-
scripts did not differ between species (χ21 = 0.08, P = 0.77),
the two species differed in the number of transcripts in
each expression category (Table 1, χ24 = 302.896, P < 0.001).
Aphaenogaster picea induced significantly more tran-
scripts in response to both temperature extremes (Bi-
modal transcripts in Table 1; χ21 = 71.617, P < 0.001) than
did A. carolinensis, which downregulated more transcripts
under these conditions (Intermediate transcripts in
Table 1; χ21 = 256.329, P < 0.001). Consistent with the en-
hanced response hypothesis, the cool-climate A. picea in-
duced 273 (~50 %) more transcripts in response to low
temperatures than the warm-climate A. carolinensis (Low
transcripts in Table 1; χ21 = 71.227, P < 0.001). However,
there was no difference among species in the number of
transcripts upregulated at high temperatures (High tran-
scripts in Table 1; χ21 = 0.53, P = 0.47).
In addition, we also examined the specific patterns of

shifts from one expression category to another between
species. As transcripts may change expression between
species due to neutral drift alone, we used the Stuart-
Maxwell test of marginal homogeneity to test if the
number of responsive transcripts in each expression cat-
egory differed between the species when controlling for
overall differences in the number of responsive tran-
scripts. We found that the expression categories of indi-
vidual transcripts between the two species were not
randomly distributed (Stuart-Maxwell test of marginal
homogeneity χ24 = 319, P < 0.001, Additional file 2: Figure
S1). Specifically, the two species differed significantly in

expression pattern, which captures differences in slope as
well as category, for 1553 (62 %) of the thermally respon-
sive transcripts. Most of these shifted from one to another
expression category.
The enhanced response and tolerance hypotheses make

opposing predictions concerning the overlap in response
patterns between the two species (Fig. 2). The enhanced
response hypothesis posits that temperature adaptation
uses existing mechanisms for thermal resistance, which
should result in significant overlap in response and fewer
transcripts shifting expression categories than expected
by chance (Fig. 2, left). In contrast, the tolerance hypoth-
esis predicts that transcripts involved in active defense
will become non-responsive or shift to other expression
categories in the better-adapted species (Fig. 2, right).
We tested these predictions by examining if the tran-
scripts upregulated in response to the temperature ex-
treme experienced less frequently by a species (cool
temperatures for the warm-climate A. carolinensis, and
warm temperatures for the cool-climate A. picea) dis-
played the same response profile in the species that
more frequently experiences those conditions.
Transcripts upregulated at low temperatures in A. car-

olinensis (Low and Bimodal transcripts) were signifi-
cantly biased toward this same category and away from
other expression categories in A. picea (Fig. 3a), suggest-
ing shared response pathways as predicted by the en-
hanced response hypothesis. In contrast, transcripts
upregulated in response to high temperatures in A. picea
(High and Bimodal) shifted expression categories in A.
carolinensis (Fig. 3b), primarily to the Intermediate cat-
egory (Fig. 3b). These transcripts are less likely to be up-
regulated in any context, consistent with the tolerance
hypothesis.

Molecular processes suggest a generalized stress
response mechanism
The gene set enrichment analysis revealed a number
of gene groups enriched in each expression category
(Additional file 3: Table S2). Across both species,
there were 9 terms enriched in the Bimodal category,
including terms involved in stress response (regulation
of cellular response to stress, signal transduction by
p53 class mediator), cell death (apoptotic signaling
pathway) and cellular organization (e.g. protein com-
plex localization). The 6 terms enriched in the Low
category suggest that proteins undergo structural (e.g.
protein acylation) and organizational (single-organism
organelle organization) changes to tolerate colder
temperatures, possibly to maintain membrane fluidity
[50]. The High category included only a single
enriched GO term, “nicotinamide metabolic process”,
while the Intermediate category had 5 terms including
DNA packaging and metabolic process terms.

Table 1 Table of the number of thermally responsive transcripts
by expression type for A. carolinensis and A. picea

Low Intermediate High Bimodal NotResp

A. picea 1193 249 248 278 110

A. carolinensis 920 680 232 117 129

Low are transcripts with increased expression at low temperatures (<10 °C),
Intermediate are transcripts with maximum expression between 10–30 °C,
High are transcripts with increased expression at high temperatures (>31 °C),
Bimodal are transcripts with increased expression at both low and high
temperatures, while NotResp are transcripts that are not thermally responsive
in one species but are in the other species
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A. carolinensis has greater inertia of expression change to
increases in temperature than does A. picea
As an additional test of the tolerance hypothesis, we exam-
ined the critical temperature of gene induction in re-
sponse to increasing and decreasing temperatures. We
compared between species the mean temperatures of tran-
script upregulation, defined as the temperature at which
the transcript showed the greatest positive change in ex-
pression. In support of the enhanced response but not the
tolerance hypothesis, the temperature of induction at low
temperatures was significantly higher for the cool-climate
A. picea than for A. carolinensis (12.4 °C) than A. picea
(13.1 °C; t1308 = −3.1, P < 0.002; Fig. 4a), though the

temperature of induction did not differ between species
for high temperatures (t567 = 0.8, P < 0.403).
Similarly, for down-regulated (Intermediate) tran-

scripts, we compared the mean temperatures of down-
regulation of transcript expression between species at
both high (>20 °C) and low (<20 °C) temperatures. Con-
sistent with the tolerance hypothesis, A. carolinensis had
greater inertia of gene expression in response to increas-
ing temperatures. The temperature of downregulation
for Intermediate transcripts was 28.6 °C for A. carolinen-
sis compared to 27.2 for A. picea (t294 = 3.8, P < 0.001).
The difference between species was not significant with
decreasing temperatures (t251 = 0.5, P = 0.584, Fig. 4b).
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Fig. 2 Illustrations of the expected thermal response patterns in the two species under alternative mechanistic hypotheses of temperature
adaptation. Although both temperature extremes were investigated in a similar way, for simplicity only the response to low temperatures is
illustrated here. Each column indicates the distribution across all response categories in A. picea, which has a lower CTmin and is therefore better
adapted to low temperatures, for the set of transcripts identified as cold-induced (either High or Bimodal categories) in the species with higher
CTmin , A. carolinensis, relative to the null hypothesis of equal marginal frequencies. The dashed boxes highlight cells that would indicate matched
responses in the two species, and the color of each cell (blue = excess, orange = deficit) represents the deviation of the observed from expected
number of transcripts. The Enhanced Response hypothesis (left) proposes that the increase in cold tolerance in A. picea is achieved by amplifying
existing molecular mechanisms, and thus there should be an excess of shared response types between species. In contrast, the Tolerance Hypothesis
(right) predicts that A. picea is less reliant on induced responses to confer cold-tolerance than A. carolinensis, leading to an excess of shifts from induction in
A. carolinensis to the Not Responsive or down-regulation categories in A. picea
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No evidence for genetic assimilation
We tested the genetic assimilation hypothesis by compar-
ing the log ratios of relative inducibility to relative base-
line expression at the rearing temperature (25 °C). If
stress-response transcripts have shifted between species
from inducible to constitutive expression, there should
be a negative relationship between the two. We found
no evidence of such a relationship for either temperature
extreme: transcripts more upregulated at high tempera-
tures in the cool-climate A. picea were not expressed at
higher baseline levels in the warm-climate A. carolinen-
sis (Fig. 5a). Similarly, transcripts more upregulated at
low temperatures in A. carolinensis did not show higher
baseline levels in A. picea (Fig. 5b). In fact, for both

comparisons we found a weakly positive relationship
between relative inducibility and baseline expression
between the two species (β1 = 0.31, P < 0.001 and (β1
= 0.21, P < 0.001). In addition, the thermally respon-
sive transcripts in A. carolinensis, regardless of ex-
pression pattern, had higher baseline expression than
those in A. picea, including those with Intermediate
expression profiles in both species (Wilcoxon V =
68842, P < 0.001). An important exception to this
pattern is the set of transcripts that had High or Bi-
modal expression in A. picea but were not thermally
responsive in A. carolinensis (top-row of Fig. 3b).
These transcripts are less likely to be upregulated in
any context, consistent with the tolerance hypothesis.
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Fig. 3 Results of analysis of thermal response patterns in the two species. The color of each cell (blue = excess, orange = deficit) represents the
deviation of the observed from the expected number of transcripts based on hypothetical equivalence of the marginal frequencies. The units are
number of transcripts. For each temperature extreme, the species expected to be less well adapated to that extreme is displayed on the x-axis for
the two response categories corresponding to upregulation (Bimodal and Low for the low temperatures, or Bimodal and High for high temperatures).
The distribution of response categories for those transcripts in the better-adapted species is arrayed along the y-axis. The dashed boxes indicate the
matched responses (e.g. High - High). a Low temperature extreme: there is an excess of shared Low and Bimodal expression types and a bias away
from all other categories in A. picea, consistentwith the enhanced response hypothesis (Fig. 1). b High temperature extreme: in addition to an excess of
matched categories, there is an excess of High and Bimodal transcripts in A. picea that are not upregulated in A. carolinensis (Intermediate and Not
Responsive), partially consistent with the tolerance hypothesis. The complete set of matched observations is shown in Additional file 1: Figure S1.
Expression types are defined in Table 1
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Discussion
The potential for many species to persist in face of cli-
mate change will depend in part upon their thermal tol-
erances. However, for most species little is known about
how plasticity or adaptive changes in gene expression
underlie thermal tolerance. By using a reactionome ap-
proach, we were able to quantitatively describe plasticity
in transcript expression across a thermal gradient, and
identify putative changes in gene expression associated
with shifts in thermal tolerance between the ant species
Aphaenogaster picea and A. carolinensis. We found non-
linear patterns of gene expression changes in response
to temperature, with both quantitative and qualitative
differences between species, consistent with different
mechanisms of thermal adaptation to low and high
temperature extremes.
Under the enhanced response hypothesis, stress-

adapted species are hypothesized to induce a stronger
and earlier response to extreme conditions. We found
evidence for this hypothesis at low temperatures: al-
though the lower thermal limit for A. picea is

substantially lower than A. carolinensis, A. picea upregu-
lated responsive transcripts at slightly less extreme tem-
peratures (Fig. 4a). Moreover, the transcripts
upregulated in A. picea included about about half (55 %)
those upregulated in A. carolinensis as well as an add-
itional set of 261 transcripts (Table 1), enriched for me-
tabolism, organization and translation processes
(Additional file 3: Table S2). Two non-mutually exclusive
hypotheses may explain this pattern. First, surviving pro-
longed low temperatures, such as would be experienced
during overwintering, generally requires advance pro-
duction of specialized cryoprotectants [43] and a suite of
preparatory physiological modifications [51]. The north-
ern species A. picea may induce a greater response to
survive the longer winter period. Alternatively, the re-
sponse to low temperatures may reflect countergradient
expression to counteract reduction in enzyme efficiency,
and maintain activity as temperature declines [41]. This
requirement may be under stronger selection in A. picea
given the shorter growing season that would necessitate
foraging under a broader range of temperatures.

Low High

0.00

0.05

0.10

0.15

0 10 20 30 40 0 10 20 30 40
Critical temperature of upregulation

D
en

si
ty

a

Low High

0.00

0.04

0.08

0.12

0 10 20 30 40 0 10 20 30 40
Critical temperature of downregulation

D
en

si
ty

Species A. carolinensis A. picea

b
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while blue bars and lines are for A. picea
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In contrast to cold tolerance, the enhanced upper ther-
mal limit in A. carolinensis is best explained by the toler-
ance hypothesis. High temperatures were associated
with significantly fewer upregulated transcripts in A. car-
olinensis (Table 1), and a large proportion (25 %) of the
transcripts upregulated at high temperatures in A. picea
were either downregulated or expressed at negligible
levels overall in A. carolinensis. These results suggest
that mechanisms other than the heat shock response are
acting to maintain protein stability in face of temperature
increases. Such mechanisms may include novel constitu-
tive defenses [19, 21, 22], enhanced proteome stability [52]
or behavioral quiescence [5] to tolerate thermal stress.
These differences are in line with expectations that A. car-
olinensis, with a growing season over twice the length of
its northern congener, may be better able to afford to re-
strain from foraging in suboptimal conditions. Indeed,
quiescence under stressful conditions by the red harvester
ant Pogonomyrmex barbatus has been shown to increase
colony fitness [42].

The one hypothesis that did not receive support
was the genetic assimilation hypothesis (Fig. 5), which
predicts that exposure to more frequent stressors will
select for a shift from inducible to constitutive ex-
pression of stress-response transcripts. This contrasts
with other recent studies on adaptation in field popu-
lations to thermal stress [21]. However, in a short-
term selection experiment for heat tolerance, Sikkink
et al. [46] also found no evidence for genetic assimila-
tion at the expression level after ten generations of
selection for heat tolerance in Caenorhabditis rema-
nei, even though there was a substantial increase in
heat tolerance. Both the genetic assimilation and tol-
erance routes to increasing thermal limits are func-
tionally similar in that they emphasize damage
prevention rather than repair. Whether a particular
taxon evolves one strategy over another may be re-
lated to availability of alternative mechanisms as well
as the the intensity, frequency and duration of
temperature stress in a given environment.
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Fig. 5 Scatterplots of log ratios of relative inducibility to relative constitutive expression, defined as expression level at the common rearing
temperature (25 °C) for (a) High transcripts in A. picea (P < 0.001, r2 = 0.07) and (b) Low transcripts in A. carolinensis (P < 0.001, r2 = 0.1). Blue lines
and confidence intervals are from ordinary least squares regressions
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Given the differences in the patterns of thermal re-
sponsiveness between species (Fig. 3), it is worth noting
a number of similarities. In both species, there were
2 – 3 times more transcripts upregulated at low than
high temperatures (Table 1). The degree of upregulation
at low temperatures is surprising given previous studies
[53, 54] that found little transcriptional activity at low
temperatures. However, these studies exposed organisms
to a few extreme (−10 – 0 °C) temperatures. At these ex-
tremes, we also found few upregulated transcripts
(Fig. 3a), whereas the peak of low-temperature transcrip-
tional activation occurred near 10 °C (Fig. 4). A potential
explanation for this pattern is that increased gene ex-
pression functions to support elevated metabolism at
moderately cold temperatures, as suggested by the meta-
bolic cold adaptation hypothesis [55]. The observation
that more transcripts were upregulated at low than high
temperatures could also be due to stronger selection on
upper than lower thermal limits, thereby reducing both
genetic variation and gene expression plasticity at high
temperatures [4, 56]. This explanation is consistent with
the observation in Aphaenogaster rudis [57] and other
ectotherms [10, 58] that critical maximum temperatures
vary less among taxa than do critical minimum
temperatures.
Critical maximum and minimum temperatures are hy-

pothesized to be genetically correlated [10, 58], but this
was not evident in terms of gene expression in this
study. Only ~10 % of transcripts upregulated in response
to temperature were bimodal, and for both activation
and down-regulation, thresholds differed between spe-
cies at only one temperature extreme (Fig. 4). This sug-
gests that species do not face a fundamental trade-off
between these two limits and may be able to shift upper
and lower thermal limits independently to match re-
quirements of more seasonally variable environments.
A major contribution of this study is the construction

of a reactionome for gene expression data. Similar ap-
proaches have been used in other species [59, 60], but to
our knowledge, none have applied a regression approach
to identify a complete list of responsive transcripts
across an environmental gradient. This approach re-
vealed quantitative patterns of temperature response
not captured in categorical comparisons. For example,
the degree of upregulation at cool (~10 °C) but not ex-
treme cold temperatures was missed in previous studies
that focused on extreme cold limits, as discussed above.
Further, a number of issues have hampered RNA-seq
studies to date. Namely, lists of differentially expressed
transcripts are prone to false positives [61], depend on
the genetic background of the organism [62] and are
prone to “storytelling” interpretations [63]. Our findings
are robust to these issues as we focus on the average
change in the shape of the reaction norms across many

hundreds of responsive transcripts in each species. Al-
though we use gene ontology information to interpret
our results, the key findings about differential plasticity
of expression between species do not depend on func-
tional annotation.
Moreover, by characterizing responses across thou-

sands of transcripts, the reactionome approach can help
to distinguish selection from neutral drift in gene ex-
pression [64–66]. Although we cannot rule out drift as a
source of variation for individual transcripts, we would
not expect to see systematic differences in expression
type categories or critical temperature thresholds as we
do here (Fig. 3, Additional file 2: Figure S1). Thus, our
method provides an example of how focusing on
transcriptome-wide changes in gene expression—as op-
posed to identifying lists of differentially-expressed tran-
scripts—can provide meaningful insight on the process
of evolution. It should be noted, however, that although
including non-linear relationships between expression and
temperature captured a significantly larger range of
biologically-relevant responses, it also led to a substantial
increase in false positives. Empirical estimation of these
rates via randomization tests, combined with robust sam-
pling designs, can help to minimize this bias and focus re-
sults on biologically-meaningful gene sets.
A number of caveats do apply to our work. First, spe-

cies may differ in gene expression along axes which we
have not measured here, especially temporal patterns of
gene expression [25], which could be studied in further
work. Second, the de novo transcriptome assembly is
highly fragmented, given that all sequenced ant genomes
to date have only about 18,000 genes [67]. Although we
took steps to remove contaminants and redundant tran-
scripts, some likely remain, in addition to partially as-
sembled transcripts. A genome assembly, in progress,
will help to reduce fragmentation. Third, the quality of
the annotation for a non-model system such as Aphae-
nogaster is not as good as it would be for model arthro-
pods such as Drosophila and Apis. Finally, the mapping
of changes in gene expression to organismal fitness is far
from direct [68], and large differences in patterns of
gene expression may have only small effects on fitness.
In particular, functional protein levels cannot be ex-
pected to be fully linked to mRNA abundance due to
post-transcriptional modification, regulation, mRNA
fluctuations and protein stability [68].
Our results are congruent with evidence from other

systems [21] that thermally-stressful habitats select for
investment in tolerance, whereas organisms from less
stressful environments rely on plastically-induced resist-
ance. Although the heat-shock response is one of the
most conserved across living organisms [39], it is ener-
getically expensive, particularly under chronic stress
conditions [69]. Under such circumstances, it may be
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advantageous to proactively prevent thermal damage
even at the cost of reduced metabolic efficiency, either
by maintaining a higher constitutive level of chaperone
proteins [11] or by increasing the thermal stability of
proteins at the expense of catalytic activity [70]. Thus,
although in the short term increasing temperature stress
leads to a quantitatively stronger induced response,
adapting to such stress over evolutionary time appears
to require a qualitative shift in mechanism of resistance
that can alter not only the magnitude, but the sign of
gene expression change in response to temperature.
Whether such a shift would be possible in the com-
pressed time frame of projected climate change, particu-
larly for long-lived organisms such as ants, is likely to be
critical in determining the capacity of populations to
adapt to more frequent and long-lasting stressors.

Conclusions
In this work, we have brought reaction norms to the
genomic era by characterizing the thermal reactio-
nomes of two temperate ant species, Aphaenogaster
picea and A. carolinensis. At least 2 % of their tran-
scriptomes are thermally responsive. Our results indi-
cate that these two ant species have different
responses to thermal extremes. A. picea responds by
increasing expression of transcripts related to metab-
olism, stress response and other protective molecules,
whereas A. carolinensis decreases expression of tran-
scripts related to metabolism and likely relies on
other mechanisms for thermal tolerance. The thermal
reactionomes of these two species provide key in-
sights into the genetic basis of thermal tolerance, and
a resource for the future study of ecological adaptation in
ant species. Finally, the reactionome itself illustrates a new
direction for characterizing acclimation and adaptation in
a changing climate.

Methods
Samples
Ants of the genus Aphaenogaster are some of the most
abundant in eastern North America [71], and species as
well as populations within species differ in critical max-
imum and minimum temperatures [57]. Temperature is
a potentially strong selective force for ground-nesting
ant populations, which must tolerate seasonally freezing
winters and hot summers. On shorter time scales, indi-
vidual workers can experience extreme thermal environ-
ments when they leave the thermally buffered ant nest
to forage for food [32].
In fall 2012, we collected a single colony of Aphaeno-

gaster picea from Molly Bog, Vermont (University of
Vermont Natural Areas; 44.508° N, −72.702° W) and a
single colony of Aphaenogaster carolinensis, part of the

A. rudis species complex [26], from Durham, North Car-
olina (36.037° N −78.874° W). These sites are centrally
located within each species’ geographic range. Species
identity was confirmed with morphological characters
(Bernice DeMarco, Michigan State University). Colonies
of both species were maintained in common conditions
at 25 °C for 6 months prior to experimentation. Due to
colony size limitations, we were unable to determine the
critical thermal limits of these particular colonies. In
summer 2013 we collected additional colonies of Aphae-
nogaster from Molly Bog, VT and North Carolina (Duke
Forest, 36.036° N, 79.077° W). We tested the upper and
lower critical thermal limits for five ants from each of
these colonies using a ramp of 1 °C per minute, starting
at 30 °C, and recorded the temperature at which the ants
were no longer able to right themselves, following the
protocol of Warren & Chick [57].

Common garden design
Ideally, genetically-based variation in gene expression
profiles would be identified by comparing individuals
completely reared under common-garden conditions to
eliminate environmental variation experienced either as
adults or during development. However, Aphaenogaster
colonies are long-lived, cannot be bred under laboratory
conditions, and do not achieve complete turnover of the
workforce for at least a year or longer. Thus, as is com-
monly done with other long-lived organisms [21, 65], we
exposed both colonies to common-garden rearing condi-
tions for six months to fully acclimate adult workers to
common temperatures. Over this time, roughly 1–2 co-
horts of new workers are expected to join each colony
(~1/3 of the total), such that the workers sampled for
thermal traits and gene expression are likely to have in-
cluded a mix of adult-acclimated and fully lab-reared
individuals.
Unlike ANOVA-based experimental designs, which

derive statistical power from replication within each ex-
perimental treatment level, regression designs have
greater power when sampling additional values across
the range of the continuous predictor variable [72].
Ideally, the treatments should be replicated at each level
of the predictor variable [73]. However, even with no
replication, the regression design is still more powerful
than an ANOVA design with comparable replication,
and provides an unbiased estimator of the slope [72].
For these reasons, we focused our sequencing efforts on
maximizing the number of temperatures at which the
transcriptome was profiled, rather than on replication at
each temperature.
To limit differences in gene expression not related to

the experimental treatment, on 12 different days we hap-
hazardly collected three ants from each 2012 colony at the
same time of day to minimize variation due to circadian
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oscillations. We measured response to temperature with a
one-hour static temperature application, which is eco-
logically relevant for workers that leave the thermally-
buffered nest and are immediately exposed to ambient
temperatures while foraging [71]. Each day, the ants were
placed in glass tubes immersed in a water bath maintained
at one of 12 randomly-assigned temperatures (0° to 38.5 °
C, in 3.5° increments) for one hour. The minimum and
maximum temperatures were selected based on previous
work showing that these temperatures are close to the
critical minimum (~0 °C) and maximum (~43 °C) temper-
atures for Aphaenogaster [57], and these treatments did
not cause mortality. At the end of the hour, the ants were
flash frozen in liquid nitrogen and stored at −80 °C.
Thus, our reactionome characterized early, but not
late, responding genes. We extracted mRNA by hom-
ogenizing the three pooled ants in 500 uL of RNAzol
buffer with zirconium silicate beads in a Bullet
Blender (Next Advance; Averill Park, NY), followed
by RNAzol extraction (Molecular Research Center
Inc; Cincinnati, OH) and then an RNeasy micro ex-
traction (Qiagen Inc; Valencia, CA) following the
manufacturer’s instructions.

Sequencing, assembly and annotation
For each species, the 12 samples were barcoded and se-
quenced in a single lane of 2 × 100 bp paired-end reads
on an Illumina HiSeq 1500 yielding 200 and 160 million
reads for the A. picea and A. carolinensis samples re-
spectively. Reads were filtered to remove Illumina
adapter sequences and low quality bases using the pro-
gram Trimmomatic [74].
We assembled the sequenced reads into the full set of

mRNA transcripts, the transcriptome, for the combined
data set from both species using the Trinity de novo
transcriptome assembly program [75]. De novo tran-
scriptome assembly is prone to falsely identifying alter-
native transcripts and identifying inaccurate transcripts
that are chimeric (e.g. regions of two separate transcripts
that assemble into a false, or chimeric, third transcript)
[76]. We removed potentially false transcripts by first
running the program CAP3 [77] to cluster sequences
with greater than 90 % similarity and merge transcripts
with overlaps longer than 100 bp and 98 % similar in
length. Second, we ran the program uclust which clus-
ters sequences completely contained within longer se-
quences at greater than 90 % similarity (see Additional
file 4). We used liberal values (90 % similarity) to merge
orthologous transcripts in the two species that may not
have assembled together in the initial de novo transcrip-
tome assembly. To identify contaminant sequences, we
screened our full transcriptome using the program
DeconSeq [78] with the provided bacteria, virus, archaen
and human databases of contaminants.

The Trinity de novo transcriptome assembly for both
species assembled together included 126,172 transcripts
with a total length of 100 million bp. Filtering to remove
redundant or chimeric reads resulted in an assembly
with 105,536 transcripts. The total length was 63 million
bp with an N50 length of 895 bp and a mean transcript
size of 593 bp. Of the 105,536 filtered transcripts, 55,432
had hits to the NCBI-nr database. Of these, 38,711 tran-
scripts mapped to GO terms, 1659 transcripts were
identified to an enzyme and 18,935 transcripts mapped
to a domain with >50 % coverage. We removed 5675
transcripts identified as known contaminants, leaving
99,861 clean transcripts.
We assessed the quality of the transcriptome using the

BUSCO program [47] available from (http://busco.ezla-
b.org/). BUSCO asseses transcriptome completeness by
measuring the number of near-universal single-copy
orthologs using the Arthropod database from OrthoDB.
To determine the putative function of the transcripts,

we used functional annotation of the transcriptome as-
sembly using the web-based tool FastAnnotator [79]
which annotates and classifies transcripts by Gene
Ontology (GO) term assignment, enzyme identification
and domain identification.

Identification of thermally-responsive transcripts
We quantified expression of each transcript using the
program Sailfish [48] and used the bias-corrected tran-
scripts per million (TPM) [80] as our measure of tran-
script expression. We included the contaminant
transcripts identified by DeconSeq at the quantification
stage to avoid incorrectly assigning reads to other tran-
scripts, but removed these from further analyses. Be-
cause preliminary examination of the data (Additional
file 4) indicated that the 7 °C samples may have been
mis-labeled, we omitted these data from the analysis.
The expression values were highly correlated between
species at each temperature treatment (r2 > 0.98) indicat-
ing that assembling the transcriptome with data from
both species was justified (Additional file 3).
To identify transcripts that had significant changes in

expression across the thermal gradient, we fit to each
transcript an ordinary least-squares polynomial regres-
sion model

log TPMþ 1ð Þ ¼ β0 þ β1 speciesð Þ þ β2 temperatureð Þ

þ β3 temperature2ð Þ þ β4 species � temperatureð Þ

þ β5 species � temperature2ð Þ þ �

Temperature and species were both fixed effects, with
a quadratic term included for temperature. We used
log(TPM+ 1) as the response to control for skew in the
expression data. For a continuous predictor such as
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temperature, this regression approach is preferred to an
ANOVA approach as it can reveal non-linear responses
such as hump-shaped or threshold effects [72]. This
method is robust to over-dispersion because we expect
errors in the read count distribution [81] to be inde-
pendent with respect to temperature.
To evaluate the statistical significance of the patterns,

we computed parametric P-values for each model and
adjusted these P-values using the False Discovery Rate
(FDR) approach of Benjamini and Hochberg [82]. As a
more stringent filter for false positives, we then ran-
domly re-assigned each transcript within a species to a
different temperature, fit the polynomial models as
above, and again calculated P-values and FDR. Ideally,
these randomized data sets should not yield any signifi-
cant associations. We repeated this resampling approach
100 times, and used the 95th quantile of false significant
transcripts as the null expectation for retaining tran-
scripts from the true data.
Of these overall significant transcripts, we identified

thermally-responsive transcripts as the subset that had
significant β2(temp), β3(temp2),β4(species * temp) or
β5(species * temp) terms after step-wise model selection
by AIC. For each thermally-responsive transcript, we
predicted expression levels using the final linear model
for each species across the tested thermal range. We
used the predicted transcript expression levels to parti-
tion transcripts for each species into five expression cat-
egories: High transcripts had greatest expression at
temperatures > 31 °C, Low transcripts had greatest ex-
pression at temperatures < 10 °C, Intermediate tran-
scripts had greatest expression between 10 to 30 °C,
Bimodal transcripts had increased expression at both
high and low temperatures, while NotResp transcripts
were those that were not thermally responsive in the
focal species but did respond in the other. For the Bi-
modal group, we required that expression at both low
and high temperatures was at least one standard devi-
ation greater than the expression at the rearing
temperature of 25 °C. Because expression category was de-
fined by the temperature of maximal expression, both
Low and High categories were biased toward transcripts
up-regulated at that temperature extreme, but also likely
included some transcripts down-regulated at the opposing
extreme. The two categories which could unambiguously
distinguish up- from down-regulation are Bimodal (up at
both extremes) and Intermediate (down at both
extremes).

Statistical analyses
We used χ2 tests to determine if the total number of re-
sponsive transcripts, and the number of transcripts in
each expression category differed between species. To
evaluate if shifts from one expression category to another

between the two species were randomly distributed, we
used the Stuart-Maxwell test of marginal homogeneity
from the coin package [83] in R [84] which tests if the row
and column marginal proportions are in equity.
To test whether the temperature at which thermally-

responsive transcripts were activated differs between spe-
cies, we identified the temperature at which there was the
greatest change in expression for each transcript in each
species, using only the transcripts with a significant spe-
cies x temperature interaction. For upregulated tran-
scripts, we grouped the High transcripts along with the
high temperature end of the Bimodal transcripts, and did
the same for Low transcripts. We then performed a t-test
to determine if the mean temperature of transcript activa-
tion differed between the two species for each group. For
downregulated transcripts (i.e. Intermediate), we identified
the greatest change in expression for each transcript
in response to both increasing (>20 °C) and decreasing
(<20 °C) temperatures, and used a t-test to compare the
mean temperature of down-regulation between species.
To test for a tradeoff between induciblity and constitu-

tive baseline expression between species, we fit ordinary
least squares regressions with the log ratio of relative
constitutive expression as the response variable and the
log ratio of relative inducibility as the predictor variable
for High transcripts in A. picea and for Low transcripts
in A. carolinensis. Constitutive expression was defined as
predicted expression at 25 °C, whereas inducibility of each
transcript was defined as ((maximum TPM - minimum
TPM)/minimum TPM) x 100. In addition, we used a
Mann–Whitney test to compare the baseline constitutive
expression between species for all responsive transcripts.

Gene set enrichment analysis
To describe the molecular processes involved in thermal
adaptation, we performed gene set enrichment analysis
(GSEA) using the parentChild algorithm [85] from the
package topGO [86] in R [84]. Briefly, this approach
identifies GO terms that are overrepresented in the sig-
nificant transcripts relative to all GO terms in the tran-
scriptome, after accounting for dependencies among the
GO terms.
All analyses were performed with R 3.2 [84] and are

fully reproducible (Additional file 4).

Availability of supporting data
The reproducible and version-controlled scripts under-
lying the analysis are available at http://dx.doi.org/
10.5281/zenodo.46416.
The Illumina short-read sequence data supporting the

results of this article are available in the NCBI Short
Read Archive BioProject repository, PRJNA260626
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA260626/.

Stanton-Geddes et al. BMC Genomics  (2016) 17:171 Page 12 of 15

http://dx.doi.org/10.5281/zenodo.46416
http://dx.doi.org/10.5281/zenodo.46416
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA260626/


The Trinity transcriptome assembly, FastAnnotator
annotation file and Sailfish gene expression quantifica-
tion files supporting the results of this article are avail-
able from the LTER data portal, datasets hf113-38,
hf113-41, and hf113-42 (http://dx.doi.org/10.6073/pasta/
05ea6464df30efa2f1e2c7439366bf47).

Additional files

Additional file 1: Table S1. Annotation, P-value, r2 , adjusted P-value,
and expression type for the thermally-responsive transcripts in each spe-
cies. (CSV 436 kb)

Additional file 2: Figure S1. Deviations from expected numbers of
transcripts in matched observations of transcript expression type
between species (A. carolinensis on rows, A. picea on columns). The color
of each cell represents the deviation of the observed from the expected
number of transcripts based on hypothetical equivalence of the marginal
frequencies (blue = excess, orange = deficit). The expression types are
Low transcripts that had greatest expression temperatures < 10 °C,
Intermediate transcripts with greatest expression between 10 and 30 °C,
High transcripts that had greatest expression at temperatures > 31°,
Bimodal transcripts with increased expression at both high and low
temperatures, and Not Responsive transcripts that were not thermally
responsive in that species. (PNG 19 kb)

Additional file 3: Table S2. Results of the gene set enrichment analysis,
showing the enriched gene ontology terms for each species in each
thermal response category. (CSV 2 kb)

Additional file 4: Technical Report containing full details of the analysis.
(PDF 970 kb)
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