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ABSTRACT

Aim A long-standing challenge in ecology is to identify the suite of factors that
lead to turnover in species composition in both space and time. These factors might
be stochastic (e.g. sampling and priority effects) or deterministic (e.g. competition
and environmental filtering). While numerous studies have examined the relation-
ship between turnover and individual drivers of interest (e.g. primary productivity,
habitat heterogeneity, or regional – ‘gamma’ – diversity), few studies have disentan-
gled the simultaneous influences of multiple stochastic and deterministic processes
on both temporal and spatial turnover. If turnover is governed primarily by sto-
chastic sampling processes, removing the sampling effects of gamma diversity
should result in non-significant relationships between turnover and environmental
variables. Conversely, if deterministic processes govern turnover patterns, removing
sampling effects will have little influence on turnover gradients. Here, we test these
predictions.

Location The United States.

Methods Continental-scale, multidecadal data were used to quantify spatial and
temporal turnover in avian community composition within 295 survey routes. A
series of regression and structural equation models were coupled with a null model
to construct statistical models describing turnover patterns.

Results Examining explanatory variables alone or in combination showed that
spatial and temporal turnover increased together, decreased with primary produc-
tivity and increased with habitat heterogeneity. The relationships between turnover
and all variables became weaker when sampling effects were removed, but relation-
ships with primary productivity and habitat heterogeneity remained relatively
strong. In addition, spatial turnover increased strongly with spatial gamma diver-
sity after sampling effects were removed.

Main conclusions Our results show that spatial and temporal turnover are
related to each other through a stochastic sampling process, but that each type of
turnover is further influenced by deterministic processes. The relative influence of
deterministic processes appears, however, to decrease with primary productivity
and increase with habitat heterogeneity across an east–west longitudinal gradient in
North America.
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INTRODUCTION

A persistent challenge in ecology is elucidating factors that

underlie variation in community structure through space and

time (Rosenzweig, 1995). These factors might include stochastic

processes, such as sampling and priority effects, or deterministic

processes such as competition and environmental filtering.

Important progress in understanding the relative influences of

stochastic and deterministic processes comes from studies that

relate spatial or temporal turnover in community structure

(beta diversity) to biotic and abiotic factors known to influence

community assembly (e.g. Chalcraft et al., 2004; Ptacnik et al.,

2008; Korhonen et al., 2010). For example, spatial turnover often

increases with primary production (e.g. Chase et al., 2000; Chase

& Leibold, 2002; but see Bonn et al., 2004; Gaston et al., 2007),

perhaps because of increased stochasticity in more productive

habitats (Chase, 2010). Spatial turnover also increases towards

the tropics where regional (‘gamma’) diversity is higher (e.g.

Qian & Ricklefs, 2007; Soininen et al., 2007; but see Kraft et al.,

2011), possibly because of stronger deterministic processes in

the tropics than in temperate regions (Soininen, 2010). Increas-

ing spatial turnover with increasing habitat heterogeneity also

points to an important role for deterministic processes (Ander-

son et al., 2006; Veech & Crist, 2007; Hurlbert & Jetz, 2010). In

addition, theory predicts that spatial turnover should be driven,

in part, by temporal turnover due to the decreased probability of

sampling a given species repeatedly when temporal turnover is

high (Steiner & Leibold, 2004), but to our knowledge this pre-

diction has not been directly tested.

Numerous factors influence turnover in community compo-

sition and a consensus regarding the relative importance of mul-

tiple causal mechanisms has yet to emerge. Lack of consensus is

partially due to inconsistencies in empirical patterns. For

example, in contrast to spatial turnover, temporal turnover often

decreases with increasing gamma diversity (White et al., 2006;

Ptacnik et al., 2008). This questions a causal link between tem-

poral and spatial turnover, but is consistent with stronger deter-

ministic processes in highly diverse regions, which may constrain

community composition through time while increasing spatial

turnover. Some studies also show declines in spatial turnover

towards higher primary productivity (e.g. Hurlbert & Jetz, 2010),

which questions the generality of higher primary production

leading to greater stochasticity. Inconsistencies in patterns of

turnover may indicate context dependency, or they may arise

because most studies focus on a single explanatory variable of

interest and do not account for confounding variables.

Patterns of turnover across gamma-diversity gradients are

also influenced by stochastic sampling effects (Kraft et al., 2011;

Fig. S1 in Supporting Information). Without accounting for this

sampling effect it is impossible to uncover the actual influence of

deterministic processes when comparing turnover patterns

among sets of localities that differ in gamma diversity. The sam-

pling effect arises when there is random recruitment of indi-

viduals into localities from the regional species pool. To

illustrate, consider a situation where turnover is calculated by

comparing the species composition of two locations within a

region and assume that individuals from the regional species

pool are randomly placed into each location. When regional

(spatial gamma) diversity is low, nearly all species will be repre-

sented in both locations. With low spatial gamma diversity we

therefore expect low turnover. When spatial gamma diversity is

much higher it is likely that some species will only be found in

one of the two locations due to there being a finite number of

individuals within each location. An analogous scenario can be

envisioned for temporal turnover, except the two locations are

two points in time at one location and temporal gamma diver-

sity is the total number of species observed through time. Spatial

and temporal turnover will therefore increase, respectively, with

spatial and temporal gamma diversity due simply to stochastic

sampling (Kraft et al., 2011; Fig. S1). This effect is independent

of ecological processes such as competition or environmental

filtering. If strong enough, the stochastic sampling can mask the

influence of deterministic processes, making it difficult to

uncover the full suite of factors governing turnover in commu-

nity structure. To date, however, studies have not accounted for

stochastic effects while simultaneously examining potential eco-

logical drivers of turnover. Therefore, our challenge is to disen-

tangle the ecological influences of primary productivity, spatial

and temporal gamma diversity, and environmental heterogene-

ity from each other and from stochastic sampling effects.

Here we begin to untangle the complex processes governing

spatial and temporal turnover using a hierarchical set of statis-

tical models that initially test the following, relatively general,

predictions. First, if turnover is due primarily to stochastic sam-

pling, spatial and temporal turnover should increase together,

but significant relationships between spatial turnover, temporal

turnover, and all potential explanatory variables will become

non-significant once the sampling effect of spatial or temporal

gamma diversity is removed. Second, if deterministic processes

play an important role, significant relationships between turno-

ver and explanatory variables should remain after removing

sampling effects.

In the case where this second, general prediction is supported,

we further test relatively specific predictions based on the obser-

vation that turnover gradients which remain after removing

sampling effects must be due to changes in species occupancy:

when each species occupies a small or large fraction of sites,

turnover will, respectively, be high or low (Hurlbert & Jetz,

2010). Directional changes in species occupancy across environ-

mental gradients may be due to processes that are primarily

deterministic (e.g. environmental filtering; Keddy, 1992) or that

mix stochastic and deterministic elements (e.g. priority effects;

Chase, 2003). A multivariate approach to turnover results in a

large universe of relatively specific predictions that relate to

mixtures of patterns across multiple explanatory variables.

While we do not attempt to articulate all possibilities, the fol-

lowing, relatively specific predictions represent the simplest

cases after sampling effects have been removed. First, strong

environmental filtering should lead to spatial and temporal

turnover increasing with habitat heterogeneity and gamma

diversity (Hurlbert & White, 2005; Gaston et al., 2007; White

et al., 2010). Second, if higher resource supply leads to stronger

Drivers of spatial and temporal turnover

Global Ecology and Biogeography, 22, 202–212, © 2012 Blackwell Publishing Ltd 203



priority effects (as in Chase, 2010) or the persistence of rare

species, turnover should increase with primary productivity.

To test our predictions we used data from the North American

Breeding Bird Survey (BBS) (Bystrak, 1981) that were collected

annually through 25 years at hundreds of sites across the United

States. The data are unique in being both long-term and large-

scale while also providing fine-scale descriptions of community

structure: each BBS site or ‘route’ comprises 50 sampling loca-

tions along a 40-km transect. With this dataset we examine a

series of hierarchically nested models of spatial and temporal

turnover in species composition across environmental gradients.

The models differ in whether they factor out stochastic sampling

effects and whether they include indirect effects among multiple

explanatory variables. This approach allowed novel linkages

among environmental variables and turnover to be identified and

modelled.With the use of a null model we further provide unique

insights into the degree to which turnover is governed by stochas-

tic sampling effects versus deterministic ecological processes.

Our analyses proceed at four levels, outlined below.

Level one: individual, unconditioned correlates of
turnover

First we examined pairwise relationships between turnover,

gamma diversity and environmental variables previously sug-

gested to be important drivers of turnover. This is similar to

previous work in that it does not condition on either stochastic

sampling or potential confounding variables. Specifically, we

separately regressed spatial turnover within BBS routes on

whole-route species richness (spatial ‘gamma diversity’), tempo-

ral turnover within routes, primary productivity (mean summer

normalized difference vegetation index, NDVI), and habitat het-

erogeneity (the range in elevation within routes). Similarly, we

examined pairwise relationships between temporal turnover

and temporal gamma diversity, spatial turnover, primary pro-

ductivity and habitat heterogeneity (see Materials and Methods

for detailed descriptions of each variable).

Level two: individual correlates of turnover after
removing stochastic sampling effects

In the second level of analyses we removed variation in turnover

due to stochastic sampling with the use of a null model that

conditions on spatial or temporal gamma diversity and the

species abundance distribution. Briefly, the null model rand-

omizes individuals of each species across local sites or sampling

periods such that gamma diversity and the species abundance

distribution are maintained across all local sites within a BBS

route or across all sampling periods for a BBS route. The

observed degree of turnover of each BBS route was subsequently

expressed as a standardized departure from a null expectation

generated for that route. In turn, we ask how this degree of

non-random turnover varies with each of the independent vari-

ables used in the level-one analyses. Below we refer to the degree

of non-random turnover as ‘null departure turnover’ and use

‘raw turnover’ to indicate turnover that does not account for the

sampling effect of gamma diversity (see Materials and Methods

for details on both types of turnover).

Level three: multiple drivers of turnover

Next we modelled the independent contribution of each

explanatory variable and further evaluated how these independ-

ent contributions change when stochastic sampling effects are

removed. We used a multiple regression approach to examine

the relationships between turnover and each explanatory vari-

able after conditioning on all other explanatory variables. Two

sets of multiple regression analyses were conducted, one with

and one without stochastic sampling effects removed. To

examine whether there were additional, important environmen-

tal variables, we also collapse a broad range of environmental

variables onto principal components axes and ask how turnover

relates to these integrative environmental axes.

Level four: combining multiple direct and indirect
drivers of turnover

To uncover the potential influence of indirect relationships

between turnover and the suite of potential explanatory vari-

ables, we used structural equation models (SEMs) to compare

the significance and directionality of direct linkages suggested in

level three. Here we asked whether explanatory variables have

direct relationships with turnover or if their relationships with

turnover are due to indirect pathways.

MATERIALS AND METHODS

We use the North American BBS, which estimates species abun-

dances annually at 50 locations along 40-km routes. We selected

the 295 routes with continuous data from 1983 to 2008 (Fig. 1),

so all analyses have a sample size of 295. Spatial distances among

routes ranged from 2 to 6231 km. There is a tradeoff in the time

span used: shorter time spans provide more routes with con-

tinuous data but do not allow temporal dynamics to be fully

characterized, while longer time spans provide more temporal

information but fewer routes. A 25-year time span represents a

useful compromise.

Measuring raw turnover

Spatial turnover was the mean, across five time intervals, of

1− α γ/ (proportional species turnover; Tuomisto, 2010), where

α is mean local species richness and g is whole-route species

richness (spatial gamma diversity) (Ricotta, 2008). This is

referred to as ‘raw spatial turnover.’ For each time interval, 5

years of data were collapsed to provide time-averaged estimates

of species abundances at each sampling location along each

route. The 50 sampling locations within each route were binned

into five spatial segments with 10 locations each. The value of α
for each route was the mean number of species within each of

the five spatial bins. The value of g for each route was the total

number of species observed on the route over the 5-year time

interval. Each route had 25 years of data so that each route had

five time intervals of 5 years each, producing five estimates of
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raw spatial turnover and five estimates of g. For statistical analy-

ses we used the mean of the five estimates of each variable.

Raw temporal turnover for each route was also calculated as

1− α γ/ , but α was the mean number of species within each

5-year time interval and g was the number of species observed

on the route across the entire 25 years (temporal gamma diver-

sity). No spatial binning was used in the calculation of raw

temporal turnover such that the spatial grain for temporal

turnover is coarser than for spatial turnover.

Measuring turnover as the departure from a null
model

Although raw turnover was measured as 1− α γ/ , there remains

a strong sampling effect of gamma diversity and the species

abundance distribution on this and any other measure of turno-

ver (Kraft et al., 2011; Fig. S1). To determine whether or not

processes beyond sampling (i.e. ecological processes) were

important, pure sampling effects were removed. To remove sam-

pling effects we employed a null model that randomized indi-

viduals of each species through space (for spatial turnover) or

time (for temporal turnover) while maintaining the empirically

observed species abundance distribution, similar to Crist et al.

(2003). The species abundance distribution across a given route

is maintained because the total number of individuals observed

for each species within the route is not altered. This null model

removes sampling effects by breaking spatial (or temporal)

aggregation within and among species (Fig. S1). Running the

null model 1000 times provided a distribution of expected

turnover magnitudes given the total number of species and the

species abundance distribution in a given route. The difference,

in units of standard deviations, between observed and the mean

expected raw turnover provides a measure of turnover that has

sampling effects removed (Fig. S1). Because the null model is

implemented separately for each route by using observed species

abundances, it also accounts for differences in detectability

across sites (e.g. across primary productivity gradients; Hurl-

bert, 2004). The resulting null-departure-based turnover esti-

mates are directly comparable to each other, and any remaining

correlation they have with gamma diversity (or other explana-

tory variables) can be interpreted as evidence for non-random

ecological processes leading to intra-specific aggregation (Ulrich

& Gotelli, 2010). Computer code for the null model is provided

as Supporting Information (see Appendix S1).

Environmental data and statistical analyses

All environmental data were retrieved within a 40-km radius

buffer around the starting location of each survey route. Means

and variances of the environmental variables were taken across

these 40-km buffers. Bioclimatic variables were retrieved from

WorldClim (Hijmans et al., 2005) with a spatial resolution of

2.5′. Only mean values of the bioclimatic variables were used,

although a number of these variables measure intra-annual

climate variation (e.g. annual temperature range). Remotely

sensed NDVI data, with a spatial resolution of 1 km, were

retrieved from the National Oceanic and Atmospheric Admin-

istration’s Advanced Very High Resolution Radiometer satellite.

Previous studies have shown that NDVI provides a reasonable

estimate of primary productivity (e.g. Buono et al., 2010). Mean

NDVI values during the summer (June, July, August) and winter

(November, December, January) months from 1983–2000 were

taken as estimates of summer and winter primary productivity,

respectively. Inter-annual variation in summer NDVI from

1983–2000 was taken as an estimate of temporal variation in

primary productivity. Spatial variation in NDVI across the

40-km buffers, averaged across all years, provided an estimate of

spatial variation in primary productivity. Elevation data were

retrieved from a North American digital elevation model with a

spatial resolution of 1 km. Elevation range (max–min), mean

Raw Spatial Turnover

Raw Temporal Turnover

Spatial Null Departure

Temporal Null Departure

Gamma Diversity

Environmental Conditions (PC2)

Increasing Values

Figure 1 Geographic patterns of raw turnover, deviation from the null, gamma diversity and the second principal components axis
describing environmental variables (PC2). In all maps, values increase from blue to purple to green to red. Variables characterizing
environmental variation load positively on PC2 and variables characterizing higher primary production load negatively on PC2 (Table S1).
The gradient in PC2 thus characterizes highly productive forests in the eastern US and highly variable, mountainous regions in the western US.
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elevation, and elevation standard deviation were calculated

across the 40-km buffer around each survey route. All environ-

mental variables were used to generate the principal compo-

nents axes describing environmental variation (see Table S1 for

environmental variables and their loadings on principal com-

ponents axes).

In addition to univariate linear regressions, we selected the

best multiple regression models explaining each type of turno-

ver. For each set of potential explanatory variables (see Intro-

duction), all possible models were evaluated and the model with

the lowest Bayesian information criterion (BIC) was chosen as

the best model (Schwarz, 1978). Relative to the BIC, the Akaike

information criterion (AIC) increases emphasis on relatively

minor independent variables (Burnham & Anderson, 2002). We

are interested in the factors that most strongly relate to patterns

of turnover because it is these factors that are most likely to be

ecologically relevant. For these reasons we selected models using

the BIC. Each best model was subsequently analysed as a struc-

tural equation model whereby linkages among explanatory vari-

ables were included using the package ‘sem’ within R (http://

cran.r-project.org/).

RESULTS

Level one: individual, unconditioned correlates of
turnover

Raw spatial and temporal turnover showed coarse spatial pat-

terns with turnover generally declining from heterogeneous,

mountainous regions in the western US to highly productive

regions in the eastern US (Fig. 1). Raw spatial and temporal

turnover were strongly related to one another (R2 = 0.40),

declined with primary productivity (R2 = 0.15–17) and

increased with habitat heterogeneity (R2 = 0.14–0.30) (Figs 2a–d

& 3a–d). In addition, raw spatial and temporal turnover signifi-

cantly declined with spatial and temporal gamma diversity,

respectively, although the fraction of variation explained was

low (R2 = 0.03–0.06).

Level two: individual correlates of turnover after
removing stochastic sampling effects

After removing variation due to stochastic sampling, coarsely

similar longitudinal gradients in both spatial and temporal

turnover were observed (Fig. 1).Temporal and spatial null depar-

ture values were always greater than +2 (Figs 2f & 3f), demon-

strating non-random intra-specific aggregation. Relationships

between the spatial or temporal null departure and spatial or

temporal gamma diversity became substantially weaker,account-

ing for almost none of the variation in turnover (R2 � 0.003).

Other relationships from level one retained strong support

(P < 0.001; Figs 2e–h & 3e–h), although explained variation was

lower than for raw turnover (Figs 2 & 3). Specifically, spatial and

temporal null departures were weakly related to each other

(R2 = 0.04) and primary productivity (R2 = 0.05–0.09), while

regressions on habitat heterogeneity retained somewhat higher

explained variation (R2 = 0.10–0.25) (Figs 2e–h & 3e–h).

Level three: multiple drivers of turnover

Simultaneous examination of multiple drivers of turnover

showed that not all potential explanatory variables were

important (Table 1), and that each aspect of turnover is gov-

erned by a unique set of variables. Furthermore, a number of

variables were found to be important even after removing
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Figure 2 Univariate regressions of raw spatial turnover (top row) and deviations from the null model (bottom row) against spatial gamma
diversity, temporal turnover, mean summer normalized difference vegetation index (NDVI) and the range in elevation. Solid lines
characterize the ordinary least squares linear regression model.
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stochastic sampling effects, indicating that multiple aspects of

the environment influence turnover through deterministic

processes. NDVI, spatial gamma diversity, elevation range and

raw temporal turnover all accounted for variation in raw spatial

turnover. Dropping spatial gamma diversity from the model

increased the BIC by 1.83 (Table 1), suggesting that the influence

of spatial gamma diversity over raw spatial turnover may be

relatively small. After removing stochastic sampling effects, tem-

poral turnover dropped out as an explanatory variable, but all

others remained. In contrast, raw temporal turnover was best

explained by raw spatial turnover and temporal gamma diver-

sity, but the temporal null departure was best explained by

NDVI and elevation range. Importantly, both the raw and null

departure measures of spatial turnover were positively related to

spatial gamma diversity (Table 1), in contrast to the univariate

results (Figs 2 & 3). For all other variables included in the best

multiple regression models, the directionality of relationships

observed in the level one and level two analyses were maintained

(cf. Table 1 and Figs 2 & 3). Using additional climatic, primary

productivity and topographic variables to describe environmen-

tal conditions with principal components analysis (see Materials

and Methods) confirmed these results (Tables S1, S2 and

Fig. S2), and including a Gaussian spatial autocorrelation term

in the multiple regression models had no effect on the variables

included in the selected model or on the significance or sign of

regression coefficients (Tables S3 & S4).

Level four: combining multiple direct and indirect
drivers of turnover

SEMs illustrated both direct and indirect relationships among

explanatory variables and turnover. The SEMs generally con-

firmed the sign and relative magnitude of direct effects sug-

gested in level three. This is not a trivial result because what

appeared to be a direct effect of spatial gamma diversity on

spatial turnover, for example, may have instead been due to an

indirect linkage through NDVI. The one difference from level-

three results was that no direct link between spatial gamma

diversity and raw spatial turnover was identified (Figs 4 & S3).

SEMs were also examined with PC1 and PC2 as explanatory (i.e.

exogenous) variables. The direct effects of PC1 and PC2 implied

by the multiple regression analyses (Table S2) were maintained

in the SEM models (Figs S4 & S5).

DISCUSSION

Influence of gamma diversity

Our results reject the hypothesis that temporal gamma diversity

(number of species observed through time) influences temporal

turnover through deterministic processes. In agreement with

previous studies (White et al., 2006; Ptacnik et al., 2008; Korho-

nen et al., 2010), we find that temporal turnover decreases as

temporal gamma diversity increases. This negative relationship

has been hypothesized to be causal and to result from a stabi-

lizing effect of higher diversity (Shurin, 2007). If higher gamma

diversity causally stabilizes (i.e. decreases fluctuations in) com-

munity composition through time, we expect the negative rela-

tionship to remain after controlling for stochastic sampling

effects. After accounting for sampling effects, however, temporal

turnover was not related to temporal gamma diversity. Thus,

temporal gamma diversity does not directly influence temporal

turnover through deterministic processes at decadal time-scales

in North American breeding birds.
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Figure 3 Univariate regressions of raw temporal turnover (top row) and deviations from the null model (bottom row) against temporal
gamma diversity, spatial turnover, mean summer normalized difference vegetation index (NDVI) and the range in elevation. Solid lines
characterize the ordinary least squares linear regression model.
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Although temporal gamma diversity does not influence tem-

poral turnover through deterministic processes, our results

suggest that spatial gamma diversity does influence spatial

turnover through deterministic processes. Although previous

studies often find, or imply, that spatial turnover increases with

spatial gamma diversity (e.g. Qian & Ricklefs, 2007; Soininen

et al., 2007; but see Lennon et al., 2001; Gaston et al., 2007),

these studies have not factored out stochastic sampling effects

(but see Kraft et al., 2011) or evaluated the turnover–gamma

diversity relationship after accounting for other variables that

might influence turnover. The apparent link between spatial

gamma diversity and spatial turnover may dramatically change

once stochastic sampling effects and additional variables are

accounted for. For example, Kraft et al. (2011) found that sto-

chastic sampling effects alone can explain strong positive rela-

tionships between spatial turnover and spatial gamma diversity.

Importantly, our analyses further demonstrate that the inferred

link between spatial gamma diversity and spatial turnover

depends critically on interdependent explanatory variables. Spe-

cifically, while our univariate analyses showed negative (level

Table 1 Standardized regression coefficients, with standard error in parentheses, for the best regression models in terms of variance
explained for a given number of independent variables. Independent variables were raw temporal turnover, the departure of raw temporal
turnover from the null expectation, raw spatial turnover, and the departure of raw spatial turnover from the null expectation. Independent
variables for temporal turnover included mean summer time normalized difference vegetation index (NDVI), elevation range, temporal
gamma diversity, and spatial turnover. Independent variables for spatial turnover included NDVI, elevation range, spatial gamma diversity,
and temporal turnover. An overall best model was chosen for each dependent variable by finding the model with the lowest Bayesian
information criterion (BIC). The difference between the lowest BIC and the BIC values of the other models is provided as delta BIC.

Temporal turnover: raw

No. of

variables NDVI Elevation Range

Spatial turnover:

raw

Temporal

gamma R2

Delta

BIC

2 X X 0.63 (0.04) -0.15 (0.04) 0.43 0.00

3 X 0.09 (0.05) 0.58 (0.05) -0.17 (0.05) 0.43 2.91

1 X X 0.64 (0.05) X 0.40 6.12

4 -0.08 (0.06) 0.08 (0.05) 0.55 (0.06) -0.12 (0.06) 0.44 6.72

Temporal turnover: departure from null

No. of

variables NDVI Elevation range

Spatial turnover:

null departure

Temporal

gamma R2

Delta

BIC

2 -0.17 (0.06) 0.29 (0.06) X X 0.13 0.00

1 X 0.32 (0.06) X X 0.10 3.78

3 -0.22 (0.07) 0.26 (0.06) X 0.01 (0.07) 0.13 4.33

4 -0.23 (0.08) 0.28 (0.06) -0.03 (0.07) 0.09 (0.07) 0.14 9.87

Spatial turnover: raw

No. of

variables NDVI Elevation range

Temporal turnover:

raw

Spatial

gamma R2

Delta

BIC

4 -0.26 (0.05) 0.31 (0.04) 0.49 (0.05) 0.15 (0.06) 0.55 0.00

3 -0.18 (0.04) 0.34 (0.04) 0.43 (0.05) X 0.54 1.83

2 X 0.35 (0.04) 0.50 (0.04) X 0.51 12.29

1 X X 0.64 (0.05) X 0.40 64.96

Spatial turnover: departure from null

No. of

variables NDVI Elevation range

Temporal turnover:

null departure

Spatial

gamma R2

Delta

BIC

3 -0.44 (0.06) 0.42 (0.05) X 0.36 (0.06) 0.37 0.00

4 -0.44 (0.06) 0.41 (0.05) 0.05 (0.05) 0.37 (0.06) 0.38 4.81

2 -0.21 (0.05) 0.46 (0.05) X X 0.30 28.47

1 X 0.51 (0.05) X X 0.25 39.75

X, indicates a variable not used in a model.
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one) and non-significant (level two) relationships between

spatial turnover and spatial gamma diversity (see also Lennon

et al., 2001; Gaston et al., 2007), a positive relationship between

spatial gamma diversity and spatial turnover emerged after con-

trolling for environmental variables in levels three and four (cf.

Figs 2–4). This positive relationship was especially strong after

factoring out stochastic sampling effects (Table 1), which is

remarkable given that removing stochastic effects nullifies the

sampling-based influence of gamma diversity on turnover

(Fig. S1). Therefore, the degree to which spatial turnover devi-

ates from its stochastic sampling expectation increases with

spatial gamma diversity when the influences of environmental

variables are controlled for by including them in the statistical

model (Fig. 4). This was true even though spatial turnover was

always greater than expected (Fig. 3).

A positive relationship between spatial turnover and spatial

gamma diversity is expected to emerge from deterministic proc-

esses such as niche-based habitat matching (i.e. environmental

filtering). That is, if coexistence is maintained due to different

species living in different habitats, higher spatial gamma diver-

sity will be maintained by greater spatial turnover due to habitat

specialization (Stevens, 1989; Gaston et al., 2007). Conversely,

when more species attempt to occupy a local site inter-specific

competition may become more intense, causing an increase in

conspecific aggregation and spatial turnover. Spatial turnover

and spatial gamma diversity may therefore have a positive feed-

back without any clear direction of causality, consistent with our

level-four SEM results (Fig. 4b). A positive link between spatial

turnover and spatial gamma diversity mediated by deterministic

processes in North American breeding birds was also suggested

by Veech & Crist (2007). To test the generality of our results it

would be useful to revisit documented relationships between

spatial gamma diversity and spatial turnover, such as the nega-

tive relationship found in Lennon et al. (2001), by factoring out

stochastic sampling effects and accounting for the influence of

environmental drivers.

Influence of primary production

Previous work found temporal turnover to increase with

primary production (Ptacnik et al., 2008, 2010), consistent with

the ‘paradox of enrichment’ (Rosenzweig, 1971). In contrast, our

results show that temporal turnover declines with primary pro-

duction (NDVI) and that this relationship remains significant

after controlling for stochastic sampling effects and the indirect

effects of other explanatory variables. Hence, the negative

NDVI–temporal turnover relationship shown here is not spuri-

ous, and is potentially due to higher primary production caus-

ally lowering the probability of local extinction (Wright, 1983;

Evans et al., 2005). On the other hand, the stabilizing effect of

primary production may be weak as the variance in temporal

turnover explained by NDVI was relatively small and, over short

time-scales, temporal turnover does not vary with primary pro-

ductivity (Chalcraft et al., 2004; Chase, 2010).

Consistent with the temporal turnover relationships as well as

other studies of bird communities (Bonn et al., 2004; Steinitz
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Figure 4 Structural equation models examining direct and
indirect linkages among environmental variables, gamma diversity
and turnover. The variables included in each model are limited to
those variables selected in the multiple regression analyses that
had turnover as the dependent variable (see Table 1).
Standardized path coefficients are next to each link, explained
variance of each endogenous variable is placed within its box,
arrow widths are proportional to magnitudes of path coefficients,
red and blue arrows, respectively, indicate positive and negative
correlations. Solid and dashed arrows indicate linkages for which
the P-value is < 0.05 or > 0.05, respectively. Double-headed arrows
indicate correlations lacking a clear direction of causality. Models
include either raw turnover (a, c) or turnover as measured by
departure from the null expectation (b, d). Given the structure in
(c), explained variances are not meaningful and were replaced
with NA. With unidirectional arrows in (c), the explained fraction
of variation in raw temporal turnover was 0.42.
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et al., 2006; Gaston et al., 2007; Evans et al., 2008; Hurlbert &

Jetz, 2010), we find that spatial turnover declines with increasing

primary production. The relationship between spatial turnover

and primary production is highly variable among studies, with

relationships ranging from positive (e.g. Chase, 2010) to unimo-

dal (Chalcraft et al., 2004) to negative (e.g. Evans et al., 2008).

The decline in spatial turnover with primary productivity found

here, however, was robust across all levels of analyses, strongly

suggesting that higher primary production allows species to

persist in more locations across the landscape (Bonn et al., 2004;

Donohue et al., 2009). That is, for a given level of spatial gamma

diversity and a given level of habitat heterogeneity, increasing

primary production may reduce the effect of competitive inter-

actions and/or environmental filtering. In turn, each species can

occupy more local sites thereby decreasing spatial turnover

(Hurlbert & Jetz, 2010).

Influence of habitat heterogeneity

Across all levels of analysis, we find a consistently positive rela-

tionship between habitat heterogeneity and both spatial and

temporal turnover, similar to previous work (Hurlbert & White,

2005; Veech & Crist, 2007). The positive relationships remained,

irrespective of how heterogeneity was characterized: as elevation

range or using multiple heterogeneity measures (e.g. spatial

variation in NDVI) within principal components axes. For eco-

systems in which environmental filtering is an important

process, it is expected that higher habitat heterogeneity will lead

to greater intra-specific aggregation (Brown et al., 1995) and

spatial turnover (Anderson et al., 2006). However, we are

unaware of studies that directly evaluate the link between

habitat heterogeneity and the degree of spatial turnover after

controlling for the sampling effect of gamma diversity and the

effects of other explanatory variables. In addition, the relation-

ship between temporal turnover and habitat heterogeneity has

not been previously examined.

The positive heterogeneity–spatial turnover relationship

shown here is consistent with an important influence of envi-

ronmental filtering, but it is less clear why a link between het-

erogeneity and temporal turnover emerges. One possibility is

that environmental filtering combines with habitat heterogene-

ity to produce source–sink dynamics across the landscape

(Pulliam, 1988; Hanski, 1998). In a heterogeneous landscape

source populations may be continuously colonizing and disap-

pearing from adjacent unsuitable habitats (sink populations),

thereby increasing temporal turnover (White et al., 2010). Fur-

thermore, the probability of stochastic extinction of each sink

population may increase as the environment becomes more het-

erogeneous (Latore et al., 1999), assuming that the growth rate

and/or size of the sink population declines with increasing het-

erogeneity. This may occur if immigration into sink populations

declines (Pulliam, 1988) due to smaller source populations in

heterogeneous landscapes with small spatial extents of high-

quality habitat (MacArthur & Wilson, 1967; Pautasso & Gaston,

2006).

Spatial and temporal turnover

Our results show a strong positive relationship between spatial

and temporal turnover in breeding birds, but also suggest that

this link is due to stochastic sampling effects rather than eco-

logical processes. This is consistent with theory showing that

temporal turnover will cause increases in spatial turnover if

species are randomly placed throughout the landscape (Steiner

& Leibold, 2004). A positive relationship between spatial and

temporal turnover has been implied in previous studies

(Ptacnik et al., 2008, 2010), and it has been suggested that

spatial and temporal turnover are two pieces of a single, unified

pattern known as the species–time–area relationship (Adler

et al., 2005; White et al., 2006). However, we are unaware of

studies that directly evaluate the relationship between spatial

and temporal turnover. We find that spatial and temporal

turnover do indeed increase together, but this relationship dis-

appears after accounting for stochastic sampling effects and

environmental variables. As such, the positive relationship

between spatial and temporal turnover is partially governed

by stochastic sampling effects and partially influenced by

co-varying environmental variables that have more direct, eco-

logical effects on turnover.

CONCLUSIONS

A large literature examines patterns of spatial and temporal

turnover in community composition (Tuomisto, 2010; Ander-

son et al., 2011). These studies collectively point to complex

linkages between the magnitude of turnover and ecological

processes related to gamma diversity, habitat heterogeneity and

primary productivity. Here we unravelled these linkages, finding

that increasing gamma diversity, increasing habitat heterogene-

ity and decreasing primary productivity are simultaneously tied

to an increasing influence of deterministic processes. We relied

heavily on a null modelling framework, and we recommend that

future studies working to understand the ecological drivers of

community composition take a similar approach. Without null

models we cannot know if gradients in turnover (e.g. with

gamma diversity or across latitude) are driven by changes in

ecological processes or simply by stochastic sampling effects

(Kraft et al., 2011).

Lastly, it is intriguing that the selected model for raw tem-

poral turnover shared no independent variables with the

selected model for the temporal null departure. This shift in

model structure following the removal of stochastic sampling

effects suggests that stochastic sampling has a very strong influ-

ence over temporal turnover. The raw versus null departure

models for spatial turnover, in contrast, were relatively similar

to each other, suggesting an important but weaker influence of

stochastic sampling effects. More generally, we find that the

relative influences of stochastic and deterministic processes

vary with type of turnover examined (temporal or spatial) and

across biotic and abiotic gradients in North American breeding

birds.
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