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Abstract

Background

Mansonella perstans is a widespread, but relatively unknown human filarial parasite trans-

mitted by Culicoides biting midges. Although it is found in many parts of sub-Saharan Africa,

only few studies have been carried out to deepen the understanding of its ecology, epidemi-

ology, and health consequences. Hence, knowledge about ecological drivers of the vector

and parasite distribution, integral to develop spatially explicit models for disease prevention,

control, and elimination strategies, is limited.

Methodology

We analyzed data from a comprehensive nationwide survey ofM. perstans infection con-

ducted in 76 schools across Uganda in 2000–2003, to identify environmental drivers. A

suite of Bayesian geostatistical regression models was fitted, and the best fitting model

based on the deviance information criterion was utilized to predictM. perstans infection risk

for all of Uganda. Additionally, we investigated co-infection rates and co-distribution with

Wuchereria bancrofti and Plasmodium spp. infections observed at the same survey by map-

ping geographically overlapping areas.

Principal Findings

Several bioclimatic factors were significantly associated withM. perstans infection levels. A

spatial Bayesian regression model showed the best fit, with diurnal temperature range, nor-

malized difference vegetation index, and cattle densities identified as significant covariates.

This model was employed to predictM. perstans infection risk at non-sampled locations.

The level of co-infection withW. bancrofti was low (0.3%), due to limited geographic
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overlap. However, where the two infections did overlap geographically, a positive associa-

tion was found.

Conclusions/Significance

This study presents the first geostatistical risk map forM. perstans in Uganda. We con-

firmed a widespread distribution ofM. perstans, and identified important potential drivers of

risk. The results provide new insight about the ecologic preferences of this otherwise poorly

known filarial parasite and its Culicoides vector species in Uganda, which might be relevant

for other settings in sub-Saharan Africa.

Author Summary

Mansonella perstans is a widespread, but relatively unknown human filarial parasite that
occurs in many parts of Africa. In a nationwide survey carried out in Uganda in 2000–
2003, the distribution ofM. perstans was assessed by screening school children. Here, we
studied the underlying environmental drivers and ecologic correlates of the observedM.
perstans prevalence patterns, produced a predictive risk map, and investigated associations
withWuchereria bancrofti (causative agent of lymphatic filariasis) and Plasmodium (caus-
ative agent of malaria). Several Bayesian geostatistical logistic regression models with and
without spatially structured random effects were fitted for comparison. The model that fit-
ted the data best was used to predictM. perstans infection risk for all of Uganda. Positive
associations withM. perstans infection status were observed with cattle densities, forested
areas, and vegetation greenness, whereas negative associations were observed with land
surface temperature. Only a small geographic overlap was observed withW. bancrofti, and
the overall level of co-infection was low (0.3%). However, where the two infections over-
lapped, a positive association was found. Our study presents the first nationwide geostatis-
tical risk map forM. perstans, and gives important clues about the ecologic preferences of
the still unknown main Culicoides vector species in Uganda.

Introduction
The human filarial parasiteMansonella perstans has been considered as one of the most preva-
lent human parasites in Africa [1]. Despite the wide distribution, only very few studies have
addressed its epidemiology and associated health consequences, and currently no effective
drug therapy for treatment, control, and local elimination is available [2]. Indeed,M. perstans
is viewed as one of the most neglected of the neglected tropical diseases (NTDs) [2].

On-going large-scale surveys and control programs for other filarial infections (e.g., lym-
phatic filariasis and onchocerciasis), considered to be of greater health importance, have largely
ignoredM. perstans infections, even though these filarial infections frequently co-occur. This
lack of attention mainly stems from its predominance in poor rural communities, and from a
paucity of a distinct and clearly recognizable clinical picture [2]. However, widespread co-
occurrence with lymphatic filariasis and onchocerciasis could cause complications with regards
to control program diagnosis and compliance assessment [2], and could potentially trigger
adverse events during mass anti-filaricides administration [3]. It has also been suggested that
there could be more subtle effects, asM. perstansmight interfere with the host’s immune
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regulation and influence the susceptibility and effect of other, co-occurring pathogens such as
Plasmodium spp. and HIV [2].

The geographic distribution and transmission ofM. perstans is closely linked to its vectors,
biting midges of the genus Culicoides, and their environmental requirements for breeding and
feeding. Culicoides species are widespread throughout the world, and known to transmit a vari-
ety of pathogenic viruses, bacteria, protozoa and helminths to humans, and to domestic and
wild animals [4–6]. Yet, they remain among the least studied of the Dipteran vectors [7]. As
such, only a few studies have tried to incriminate the exact Culicoides species responsible for
transmission ofM. perstans in endemic areas in Africa [2]. An accurate understanding of the
environmental drivers of both vector and parasite distribution is paramount for the develop-
ment of spatially explicit risk models based on sound ecological principles, which can help opti-
mize disease prevention planning, and control and elimination programs.

In 2000–2003 a national survey was conducted to map the distribution ofM. perstans, con-
currently with that ofWuchereria bancrofti [8] and Plasmodium parasites, in school-aged chil-
dren in Uganda. While geostatistical risk and co-endemicity maps have been constructed for
the two latter infections [9],M. perstans infections in Uganda have only crudely been mapped
[10]. Furthermore, no risk factor analysis has been performed to identify the underlying envi-
ronmental drivers ofM. perstans infection, and the co-infection rates and geographic overlaps
(co-distribution) between the three parasites have yet to be investigated. Delineating areas of
geographic overlap, where co-infections might occur, is an important operational issue for inte-
grated disease control planning and implementation [11].

The aim of the present study was to determine the underlying environmental drivers and
ecological correlates of the observed prevalence patterns ofM. perstans infection and to pro-
duce statistically robust prevalence estimates at non-sampled locations (smooth prevalence
maps) across Uganda. We furthermore investigated the levels of co-infection and co-distribu-
tion with bancroftian filariasis and malaria.

Methods

Ethics Statement
The studies which contributed data used in this paper, received ethical clearance from the
Uganda National Council for Science and Technology and were approved by the Central Scien-
tific Ethical Committee of Denmark. Prior to each survey, meetings were held with school staff
and village leaders, to explain the objectives and implications of the study. Written informed
consent to participate was obtained from those examined (or from the parents/legal guardians
of participants aged<15 years). At each study site, a clinical officer from a nearby health unit
accompanied the team, examined all the children who were not feeling well and, if need be,
either treated the children or referred them to a nearby clinic. For a full description, we refer
the reader to prior publications [8, 10].

Study Design and Parasitologic Survey Data
The surveys were carried out between October 2000 and April 2003 and included pupils aged
5–19 years from 76 Ugandan primary schools (12,207 pupils in total) covering the major topo-
graphical and ecological zones of the country (see S1 Appendix for a list of schools, with
names, geographical coordinates and prevalence). Full details of the study design, data, and the
procedures for selection of study sites and participants have been described elsewhere [8,10].
In brief, 100-μl blood sample was collected from each consenting child during the school day
and used to prepare a thick film to examine for microfilaremia and Plasmodium parasites.
After drying, the thick films were dehemoglobinized, fixed in methanol, stained with Giemsa,
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and examined under a microscope. All microfilariae observed were identified to species, using
morphological criteria [12] and counted. Finger-prick samples of blood were also collected,
and assayed forW. bancrofti specific circulating filarial antigens (CFA) by use of ICT cards [1].
Boys and girls were examined in approximately equal numbers.

Environmental and Other Predictor Variables
We investigated a series of climatic and other environmental variables (Table 1) known to be
of importance for the distribution of arthropod transmitted parasitic infections in the tropics,
but also known ecological drivers of Culicoides species transmitting other parasites and viruses
[7,13]. These included measures of temperature, known to influence parasite developmental
rate and vectorial development rates, as well as habitat-related factors (i.e., vegetation and land
use) and livestock densities that possibly influence the breeding and survival of the (unknown)
Culicoides species believed to transmitM. perstans in Uganda.

The central longitude and latitude of each school obtained using a hand-held global posi-
tioning system (GPS; Garmin eTrex, Garmin, Olathe, KS, United States of America) was uti-
lized to define an area of 1 km radius (representing the coarsest resolution of the
environmental data) encompassing the community. Average values of each environmental
layer were then extracted using ArcGIS 10.1 spatial analyst extension (ESRI; Redlands, CA,
United States of America). Land cover variables, calculated as the number of pixels of each cat-
egory of land use, was counted within the 1 km buffer zone (using the ‘Geospatial Modeling’
environment extension [14]), and the percentage of each category calculated. For a full descrip-
tion of these environmental variables, see Stensgaard and colleagues [15,16].

Statistical Analysis
Initially, a non-spatial, frequentist bivariate logistic regression analysis was conducted in Stata
version 13 (Stata Corporation; College Station, TX, United States of America) to assess the rela-
tion between various environmental and habitat-related predictors ofM. perstans infection sta-
tus. Significant candidate factors based on likelihood ratio test (LRT) with significance levels of
5% were selected as covariates in further multivariate analyses. To avoid over-parametrization
and confounding arising from correlated environmental variables within the same

Table 1. Overview, sources, and resolution of remotely sensed and other geographic information system data used for modeling.

Data type Description Resolution spatial (period) Source

Satellite imagery

Day-time LST Land surface temperatures 1 x 1 km (2001–2003) MODIS Terra1

Night-time LST Land surface temperatures 1 x 1km (2001–2003) MODIS Terra1

NDVI Normalized difference vegetation index 500 x 500 m (2001–2003) MODIS Terra1

Land cover Land cover classes 1 x 1km (2002) MODIS Terra1

Other

Altitude Digital elevation model derived 1 x 1 km Shuttle Radar Topography SRTM2

Gridded livestock of the world (GLW2.01) Livestock densities (head/km2) 1 x 1 km FAO//GEONETWORK3

1 Moderate Resolution Imaging Spectroradiometer (MODIS); available at: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table

(accessed: 1 October 2014).
2 Shuttle Radar Topography Mission (SRTM); available at: ftp://edcsgs9.cr.usgs.gov (accessed: 1 October 2014
3 Food and Agricultural Organization (FAO) livestock density products at GEONET; available at: http://www.fao.org/geonetwork/srv/en/main.home

(accessed: 1 February 2015).

doi:10.1371/journal.pntd.0004319.t001
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“environmental theme”, these were ranked by the Akaike information criterion (AIC) [17],
and strongly correlated variables (Spearman rank correlation r>0.75) excluded.

Next, Bayesian multivariate non-spatial and geostatistical logistic regression models were
fitted in OpenBUGS version 3.1.1. (Imperial College and Medical Research Council; London,
United Kingdom) via Markov chain Monte Carlo (MCMC) methods which provide higher
flexibility in fitting complex models and avoid asymptotic inference than frequentist
approaches, and overcome the computational challenges encountered in likelihood-based fit-
ting [18]. Bayesian geostatistical modeling represents the current leading edge in spatial statis-
tics, and makes it possible to incorporate both spatial dependence and covariates, but also
enables full representation of uncertainty in model outputs [19] that can be visualized, for
example, as maps of prediction errors.

The association betweenM. perstans,W. bancrofti, and Plasmodium spp. was assessed using
multivariate regression models on a single parasite species with all other parasite species as
covariates. Demographic and cluster effects were accounted for at the unit of the school.

Model Formulation
We assumed that theM. perstans status Yij of child i at location si, which takes a value of 1 if
the child was tested positive and 0 otherwise, follows a Bernoulli distribution Yij ~ Ber(pij), with
pij measuring the infection risk at location si. The outcome can be related to its predictors via

standard multivariate logistic regression analysis. This model is given by logitðpijÞ ¼
b0 þ

Pp
k¼1 bkX

ðkÞ
ij þ εi where βij = (β0, β1, β2, . . . βp) is the vector of regression coefficients and

the intercept, and Xij ¼ ðXð1Þ
ij ;Xð2Þ

ij ; . . . X
p
ijÞ are the model covariates (the fixed part of the

model), and εij is a location-level exchangeable random effect that accounts for clustering of
individuals in schools. They are assumed to be independent, arising from a normal distribution
(*N(0, τ2)) where τ2 accounts for the non-spatial variation in the infection risk data.

The spatial relationship often found among parasitemia survey locations was considered by
introducing spatially correlated random effects ϕi at every sampled location si, which is the stan-
dard way of incorporating geographical dependence in the model. The underlying spatial process
was modeled by the residuals using the geostatistical design described in Diggle et al. (1998) [18]
via a multivariate normal distribution, ϕ = (ϕ1, . . .. ϕn)

Twith variance-covariance matrix S. More-
over, an isotropic spatial process was assumed, i.e.,Sij = σ2exp(−ρdij), where dij is the Euclidean dis-
tance between locations i and j, σ2 is the spatial variation (known as the sill), and ρ is a smoothing
parameter controlling the rate of correlation decay with increasing distance. For the exponential
correlation function, the minimum distance at which the spatial correlation between locations is
less than 5% (range of spatial process) is calculated by 3/ρ for the exponential correlation structure.

To complete Bayesian model specification, independent normal prior distributions was
assumed for the regression coefficients, with mean 0 and variance 100. For σ2, τ2, and ρ inverse
gamma distributions with mean 1 and variance equal to 100 were adopted. We ran a single
chain sampler with a burn-in of 5,000 iterations, followed by 100,000 iterations. Convergence
was assessed by inspection of ergodic averages of selected model parameters and convergence
was successfully achieved before the 100,000th iteration. The strength of correlations and signif-
icance of the co-variates was assessed by inspecting the estimated odds ratios (ORs) and their
Bayesian credible intervals (BCI).

For appraisal of the best fitting multivariate model, the deviance information criterion
(DIC) was applied [20]. The smaller the DIC, the better the model fit. Bayesian kriging was
applied to generate smooth risk maps forM. perstans prevalence based on the parameter esti-
mates of the best fitting model [18].
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Results

Parasitological Findings
Children withM. perstansmicrofilaremia were observed in 47 out of the 76 study sites (61.8%),
with prevalence ranging from 0.4% to 72.8%. The highest prevalence was observed at sites
south of Lake Albert and north-west of Lake Victoria with prevalence decreasing toward zero
when moving to the north-eastern and southern sites (Fig 1).

Of the 12,207 children examined forM. perstansmicrofilaremia, 11,606 were examined con-
currently for infection withW. bancrofti (CFA). Co-infections withM. perstans andW. ban-
crofti were observed in 33 individuals (0.3%) in six schools (Fig 2).

Four of these six schools were clustered together in the area north of Lake Kyoga that had
relatively highW. bancrofti prevalence, but lowM. perstans prevalence. However, the few chil-
dren infected withM. perstans in these schools, also tested positive forW. bancrofti CFA. High
levels of mono-infections withM. perstans were primarily found in the southern parts of
Uganda, whereas mono-infections withW. bancrofti were restricted to the east-central north-
ern areas of Uganda (Fig 2). Malaria has previously been found to be widespread in Uganda
(see Stensgaard et al. (2011) [9] for more details).

Co-infections withM. perstans and Plasmodium spp were observed in 347 of 11,469 examined
children (3.0%). Triple-infections withM. perstans, Plasmodium spp, andW. bancrofti were
observed in only nine out of 11,267 (0.08%) examined children (in three schools). Co-infections
and triple-infections were approximately equally distributed among age groups and sex.

Regression Analyses
The non-spatial bivariate logistic regression analyses revealed that most of the climatic and
environmental predictors were significantly associated withM. perstans prevalence (Table 2).

Diurnal land surface temperature (LST) range (Tmax minus Tmin), which was negatively
associated withM. perstans prevalence, showed the best fit among the temperature variables as

Fig 1. School survey locations and observed prevalence ofM. perstansmicrofilaremia in Uganda.

doi:10.1371/journal.pntd.0004319.g001
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measured by the AIC. Among the vegetation associated variables, NDVI and the percentage of
forest cover around the schools showed positive associations withM. perstans infection status,
with NDVI composited over the wet season showing the best fit to the data. Among the live-
stock density factors, only cattle densities showed a significant (and positive) association with
M. perstans infection status. Furthermore, age was a significant risk factor, with three times as
high odds of being infected in the oldest age group (14–19 years) as compared to the youngest
age group (5–9 years). Sex, on the other hand, was not significant at the 5% significance level
and thus not included in subsequent Bayesian models.

In the Bayesian multivariate regression analyses (Table 3), the introduction of exchangeable
random effects (model B), improved model performance considerably based on DIC estimates
(4,991 vs. 3,543).

The random effect had also an influence on the regression parameters of the covariates, but
all covariates remained significant except forest cover. The introduction of location-specific
random effect parameters into the model (model C) further increased model performance
(DIC 3,543 vs. 3,389) suggesting that this is the best fitting model, while the covariate parame-
ter estimates remained largely unchanged. Models 2 and 3 estimated approximately the same
geographic variability σ2 (3.46 vs. 3.65). The estimated spatial range (above which spatial corre-
lation drops below 5%) was 44.3, which is equivalent to about 7.5 km at the Equator.

Risk Mapping
A predictiveM. perstans filariasis risk map for Uganda (Fig 3) was obtained based on the best
fitting model, the spatial logistic regression model (model 3).

Highest risks were predicted in the central areas, below Lake Kyoga, with highest prevalence
(>20%) south of Lake Albert, and at the northern areas and western shores of Lake Victoria.
Intermediate levels (10–20%) were predicted in a belt stretching from south of Lake Albert to

Fig 2. Observed proportional distribution of mono- and co-infections (yellow) withM. perstans
(green) andW. bancrofti filariasis (red). Data from 11,606 pupils aged 5–19 years in 76 schools in Uganda
(2000–2003).

doi:10.1371/journal.pntd.0004319.g002
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the north-eastern shores of Lake Victoria, but with pockets of high risk in the far north-western
and south-eastern parts of the country. In contrast, low prevalence estimates (�1%) were pre-
dominantly predicted in the north-east and central-south of Uganda. When interpreting the
maps in Fig 3, it should be noted that these are based on model-predictions, and that areas
with few survey points may have relatively high levels of associated prediction error. Further-
more, the predictions are based on data from school children only, and thus not necessarily
representative for the adult Ugandan population infection levels, which may be considerably
higher given the relationship between age and infection risk.

Table 2. Parameter estimates based on bivariate logistic regressionmodels forM. perstansmicrofilaremia in school-aged children in Uganda
(2000–2003).

Data source Covariate M perstans parasitemia

ORa 95% CIb P-value (AICc)

School survey Age (5–9 years) 1.00

10–14 years 1.57 1.26, 1.96

15–19 years 2.48 1.77, 3.47 <0.001

Sex (female) 1.00

Male 0.96 0.81, 1.14 0.660

Season (dry) 1.00

Wet 1.52 0.39, 5.87 0.546

Sattelite imagery Land surface temperature (LST)

Day (wet season) 0.79 0.66, 0.93 0.005 (3,699)

Day (dry season) 0.79 0.66, 0.93 0.005 (3,699)

Day (annual) 0.78 0.65, 0.91 0.003 (3,698)

Night (wet season) 1.09 0.85, 1.40 0.498 (3,706)

Night (dry season) 1.12 0.82, 1.52 0.473 (3,706)

Night (annual) 1.10 0.81, 1.45 0.521 (3,707)

Diurnal_diff (wet season)* 0.63 0.51, 0.78 <0.001 (3,688)

Diurnal_diff (dry season) 0.65 0.53, 0.79 <0.001 (3,689)

Diurnal_diff (annual) 0.63 0.51, 0.77 <0.001 (3,687)

Normalized difference vegetation index (NDVI)

Wet season* 1.16 1.09, 1.23 <0.001 (3,683)

Dry season 1.15 1.08, 1.21 <0.001 (3,684)

Annual 1.15 1.08, 1.22 <0.001 (3,684)

Land cover (%)

Forest cover* 1.06 1.02, 1.10 0.005 (3,697)

Open vegetation 0.97 0.95, 0.99 0.019 (3,709)

Cropland 0.98 0.95, 1.03 0.201 (3,715)

GIS maps Altitude 0.99 0.99, 1.00 0.013

Livestock

Cattle density* 1.04 1.02, 1.06 <0.001

Sheep density 1.07 0.99, 1.16 0.105

Goat density 0.99 0.98, 1.01 0.523

Pig density 1.02 0.96, 1.07 0.593

Chicken density 1.00 0.99, 1.00 0.673

*Chosen for further multivariate modeling. Models include a school-level random effect to account for clustering at school level.
aOR, odds ratios
bCI, 95% confidence interval
cAIC, Akaike information criterion.

doi:10.1371/journal.pntd.0004319.t002
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Geographical Overlaps and Parasite-Parasite Associations
The smooth map of the predicted endemic areas (predicted prevalence>5%) ofM. perstans
from the present study was super-imposed with a map of predicted endemic lymphatic filaria-
sis (>5%W. bancrofti CFA prevalence) and high risk malaria (>50% Plasmodium spp. preva-
lence) previously published [8] to delineate areas of co-endemicty (Fig 4).

Results from parasite-parasite association inferred from multivariate logistic regression
models revealed a significant positive association betweenM. perstansmicrofilaremia and test-
ing positive forW. bancrofti (CFA), when clustering at the unit of schools was accounted for
(Table 4). No other significant associations were found.

Discussion
The present study provided countrywide, model-based prevalence maps forM. perstans in
Uganda, at a high spatial resolution. To our knowledge this is the first study to apply rigorous

Table 3. Factors associated withM. perstansmicrofilaremia in Ugandan school-aged children based
on non-spatial and spatial logistic multivariate regression modeling of national survey data (2000–
2003).

Model parameter Non-spatial(no random
effect)

Non-spatial
(exchangeable
random effect)

Spatial
model

Model A Model B Model C

ORa (95% BCIb) OR (95% BCI) OR (95%
BCI)

Age (years)

5–9 1.00 1.00 1.00

10–14 1.53 (1.24, 1.91) 1.59 (1.27,
1.96)

1.59 (1.27,
1.97)

15–19 3.04 (2.23, 4.15) 2.58 (1.81,
3.54)

2.56 (1.80,
3.57)

Altitude 0.99 (0.99, 1.00) 1.00 (0.99,
1.00)

1.00 (0.99,
1.00)

Land surface temperature (LST)

Diurnal range (wet season) 1.23 (1.16, 1.28) 0.72 (0.52,
0.95)

0.72 (0.50,
0.94)

Normalized difference vegetation
index (NDVI)

Wet season 1.72 (1.66, 1.78) 1.07 (1.01,
1.16)

1.08 (1.02,
1.16)

Forest cover (%) 0.88 (0.87, 0.90) 0.98 (0.93,
1.04)

0.98 (0.93,
1.03)

Livestock density

Cattle/km2 1.05 (1.04, 1.06) 1.04 (1.03,
1.06)

1.03 (1.01,
1.05)

Other model parameters

σ2 (random effect variance) - 3.46 (2.00,
5.72)

3.65 (1.98,
6.71)

ρ (rate of spatial correlation decay) - - 44.3 (1.49,
161.1)

DICc 4,991 3,543 3,389

aOR, odds ratios
bBCI, Bayesian credible interval
cDIC, deviance information criterion.

doi:10.1371/journal.pntd.0004319.t003
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Bayesian geostatistical risk mapping to national survey data of this neglected human parasitic
infection. The study furthermore identified risk factors and displayed high prevalence areas,
and thus provides new insights into the ecological preferences of the unknown vector (Culi-
coides spp.). The resulting maps were finally combined with geostatistical risk maps previously
developed for bancroftian filariasis and malaria [9], to delineate overlapping areas (co-distribu-
tions) and to investigate levels of co-infection and parasite-parasite associations. Overall, the
investigations provide a deeper understanding of the zoogeographical patterns of this wide-
spread, yet little studied parasitic infection, of importance for integrated disease control plan-
ning and implementation [11].

An increasing number of geospatial applications now analyze the relationship between par-
asitic infections and environmental factors, to generate predictive risk maps, including uncer-
tainty estimates [21,22]. The majority of these studies have pertained to malaria risk [23–26],
but more recently also to a number of NTDs, such as schistosomiasis [27–30], lymphatic filari-
asis [9], loiasis [31–32], and soil-transmitted helminthiasis [33,34]. Besides being useful for
spatial targeting of control measures, surveillance, and measuring progress toward elimination,
these studies can also give important new insights and clues about the ecology of the parasites
and their vectors or intermediate hosts.

Environmental Drivers
Because of the limited number of studies ofM. perstans epidemiology in Africa, the current
knowledge about the climatic and other environmental factors that help drive transmission of
this filarial parasite is very scarce [2]. Our results indicated that high prevalence ofM. perstans

Fig 3. Geostatistical model-based predictedmean prevalence ofMansonella perstans in school-aged children in Uganda. Smooth map of the
predicted mean prevalence ofM. perstans (a), and the corresponding map of the standard deviations of the predictions (b), highlighting areas of high/low
uncertainty associated with the model predictions.

doi:10.1371/journal.pntd.0004319.g003
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in Uganda was associated with cooler areas with little diurnal temperature variation, and with
high NDVI values, a surrogate variable for soil moisture and correlated with vegetation bio-
mass. A positive association was also observed with forested areas (although not significant in
the final model). An association with forested ecosystems was also observed in Gabon [35,36]
and Cameroon [37], and historically by Low (1903) [38], who noticed that high prevalence was
associated with tropical forests alternating with swamps and other large, open ground areas.
Other reports fromWest Africa have related the common occurrence ofM. perstans along the
forest fringes between the rain forest and open land, to the particular species and density of the
vectors [39,40], while studies from central/southern Africa similarly indicated high prevalence
in or near dense forest [41–44].

Fig 4. Maps of the predicted geographic co-distribution ofM. perstans andW. bancroftibased on A) a 10% prevalence threshold, and B) a 5%
prevalence threshold. The predicted areas are based on surveys of Ugandan school-aged children in 2000–2003 and Bayesian geostatistical model
predictions of each (single) parasite infection. Predicted areas of high risk malaria (Plasmodium spp. infection prevalence >50%) is shown in hatch as an
overlay.

doi:10.1371/journal.pntd.0004319.g004

Table 4. Parasite-parasite associations as assessed bymultivariate logistic regression models based on a national survey conducted in Uganda
(2000–2003).

Outcome variable Covariate OR (95% CI) P-value Adjusted OR* (95% CI) P-value

M. perstans W. bancrofti 3.26 (1.50, 6.93) 0.003 3.01 (1.43, 6.37) 0.005

P. falciparum 1.01 (0.81, 1.31) 0.983 1.19 (0.98, 1.35) 0.531

W. bancrofti M. perstans 3.33 (1.53, 7.14) 0.003 3.27 (1.51, 7.06) 0.004

P. falciparum 0.84 (0.62, 1.02) 0.086 0.92 (0.72, 1.10) 0.332

P. falciparum M. perstans 1.03 (0.85, 1.21) 0.815 1.14 (0.91, 1.38) 0.524

W. bancrofti 0.89 (0.63, 1.09) 0.092 0.90 (0.70, 1.19) 0.245

Statistically significant (p <0.05) odds ratios are highlighted in bold. OR, odds ratio; CI, confidence interval.

*Adjusted for age groups and sex.

doi:10.1371/journal.pntd.0004319.t004
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The association to forested areas, as well as banana plantations [45,46], has been linked to
the importance of decomposing woody material, tree holes, and forest floor cover as breeding
sites for the vector species, Culicoides spp. However, besides the affinity for moist substrates
the some 1,400 described species of Culicoides show a highly diverse range of species habitat
preferences, ranging from salt- and freshwater marshes, to animal dung, water logged pastures,
and leaking irrigation pipes [5].

In Uganda, a total of 31 Culicoides species have been listed thus far [47], and several of them
(e.g., C. grahamii), which have been identified as vectors ofM. perstans in the Congo [48] and
Cameroon [39], occur in areas predicted to be endemic forM. perstans [47]. Yet, no studies
have been carried out to confirm the role of this or other Culicoides species in the transmission
ofM. perstans in Uganda.

Here, the identified environmental correlates ofM. perstans give us important clues about
the bionomics of the unknown vector species. Besides the climatic associations, areas of high
prevalence ofM. perstans were found to coincide with areas of high cattle densities (but not
densities of other types of livestock). This is interesting and calls for further investigation, asM.
perstans also has been shown to occur at high prevalence in Fulani nomads (cattle raising peo-
ple) in northern Nigeria [49]. Possible explanations could be either a role for cattle in providing
a steady source of blood meals for an opportunistic biting, or in creating habitats for larval
development. Animal dung has been shown to provide important larval habitats for several
Culicoides species [50,51] and, C. grahamii, for example, has been incriminated in blue tongue
virus transmission among cattle in Kenya [52].

Parasite Co-Distributions and Associations
While models and maps of individual parasite infections are valuable, the distribution of these
infections rarely occurs independently of each other. Multiple species are often found within
populations (co-endemicity) and individuals (co-infection), and co-infections are increasingly
being recognized to have important health consequences [53–56]. Concomitant infections with
helminths have, for example, been shown to increase susceptibility to infection with P. falcipa-
rum [57,58]. Delineating areas of geographic overlap, where co-infections might occur, is thus
an important operational issue for integrated disease control planning, implementation, and
evaluation.

In Uganda, several NTDs have been reported to be co-endemic [59], and also to be co-
endemic with malaria [9]. Here we found that while perstans filariasis was widely overlapping
with areas of high malaria risk (Fig 3), there were no significant associations between infections
with Plasmodium spp andM. perstans and/orW. bancrofti at the individual level or at the unit
of the school. A similar result was found by Nielsen et al. (2006) [60], in a study from north-
eastern Tanzania, whereas Kelly-Hope et al. (2006) found a negative spatial association
betweenW. bancrofti and P. falciparummalaria prevalence in West Africa [61].

In contrast, we observed a distinct pattern of geographic segregation betweenM. perstans
andW. bancrofti, another filarial parasite of human health importance in Uganda (Fig 2).
WhileM. perstans was mainly predicted in the central-to-southern parts of the country,W.
bancrofti dominated in the central-northern parts. This pattern has been noted previously [10],
but this is the first time a co-distribution map based on rigorous geostatistical modeling of indi-
vidual infections is presented.

This very likely reflects the ecological distinctiveness of theM. perstans Culicoides spp. vec-
tor compared to that of the Anophelesmosquitoes transmittingW. bancrofti in Uganda. It is
noted, for instance, that while highM. perstans infection risk is related to forested and densely
vegetated areas, the opposite seems to apply forW. bancrofti, which showed a negative
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association with NDVI [9]. Similar contrasting epidemiologies have been shown for other filar-
ial infections in Africa, i.e., between onchocerciasis and loiasis in the Democratic Republic of
the Congo (DRC) [62], although L. loa andM. perstans have been found to coexist with high
prevalence geographically in some African countries [35,37].

The limited geographical overlap observed in Uganda, explains the relatively low levels of
overall filarial co-infection (0.8%). Yet, where the two parasites did overlap in space, in a high
prevalentW. bancrofti foci in central Uganda at the northern geographical range margin ofM.
perstans plus a location south of Lake Albert, with highM. perstans prevalence (Figs 2 and 3), a
positive association was observed between the two species. This finding warrants further inves-
tigation of potential risk factors for co-infection at the school and individual level in Uganda,
and indicates that special attention should be paid to children living in geographically overlap-
ping areas, even if these areas may be few.

In conclusion, this study adds further to our knowledge about the distinct zoogeography of
filarial parasites [11] in Africa. The observed correlation betweenM. perstans prevalence and
cattle density warrants further scientific inquiry, particularly the role played by livestock as
either opportunistic blood meals (resource) for the Culicoidesmidges and/or the role of dung
as larval habitats. Finally, we urge further studies based on geographically stratified field-collec-
tions of Culicoides, to clarify the identity, bionomics, and behavior of the vector species ofM.
perstans in Uganda and elsewhere in Africa, as this is a vital piece of the puzzle toward a fuller
understanding of the transmission cycle and epidemiology ofM. perstans infections.
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