
Article https://doi.org/10.1038/s41467-023-38329-4

Mechanistic models project bird invasions
with accuracy

Diederik Strubbe1,2 , Laura Jiménez 3,4, A. Márcia Barbosa5, Amy J. S. Davis1,6,
Luc Lens1 & Carsten Rahbek 2

Invasive species pose a major threat to biodiversity and inflict massive eco-
nomic costs. Effective management of bio-invasions depends on reliable pre-
dictions of areas at risk of invasion, as they allow early invader detection and
rapid responses. Yet, considerable uncertainty remains as to how to predict
best potential invasive distribution ranges. Using a set of mainly (sub)tropical
birds introduced to Europe, we show that the true extent of the geographical
area at risk of invasion can accurately be determinedbyusing ecophysiological
mechanistic models that quantify species’ fundamental thermal niches.
Potential invasive ranges are primarily constrained by functional traits related
to body allometry and body temperature, metabolic rates, and feather insu-
lation. Given their capacity to identify tolerable climates outside of con-
temporary realized species niches, mechanistic predictions are well suited for
informing effective policy and management aimed at preventing the escalat-
ing impacts of invasive species.

Driven by advances in technology and trade liberalization policies,
globalization has had drastic effects on the economic world and
societies’ way of life, facilitating unparalleled economic growth, cross-
bordermovements of goods and a diversification of human immigrant
populations1. Concurrently, this increased mobility led to a profound
reshuffling of biodiversity, as humans transport more and more spe-
cies across the globe, inadvertently or for commercial or cultural
reasons. The ‘Global Report’ of the Intergovernmental Science‐Policy
Platform on Biodiversity and Ecosystem Services (IPBES) alarmingly
states that introduced species that become invasive and spread across
their new range are one of the main direct causes of the current bio-
diversity collapse2. Invasive alien species also causemassive damage to
agriculture3 and can pose a considerable threat to human health4.
While these threats were recognized decades ago, and despite the
implementation of legal frameworks ranging from more stringent
biosafety practices to (supra)national list of invasive species of high
concern5, invasive species accumulation across continents and taxo-
nomic groups shows no sign of abating. The rate of species

introductions is increasing and, if current trends continue, established
alien species numbers globally are predicted to increase by more than
35% by 20506. As removal of established invaders is costly7, formal risk
assessments aimed at identifying likely high-impact invaders are
increasingly used to set trade-restrictive regulations. For example, the
European Union’s flagship initiative (Regulation 1143/2014) for meet-
ing United Nations Aichi Biodiversity Target 9 concerning biological
invasions applies evidence-based risk assessment protocols to restrict
the use, trade, and transport of certain invasive alien species8.

Identifying the geographical areas at risk of invasion is crucial for
prioritization of alien species for policy andmanagement efforts9, as it
relates to an invader’s overall impact10 and guides surveying of risk
areas for early invader detection andelimination11. Inaccurate forecasts
of areas suitable to invaders jeopardize timely risk assessment out-
comes, with significant downstream effects on policy and manage-
ment actions, such as the selection of suboptimal response measures
and over—as well as underinvestment in mitigation efforts12. Predic-
tions of the potential geographic distribution of species are primarily
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derived from correlative species distribution models (SDM)13. These
tools are widely used in biodiversity assessments, for example, to
select places for protected areas, habitat restoration, and species’
translocations14. SDMs have proved especially effective for modeling
further range expansion of established invaders15,16, but the reliability
of invasion risk forecasts obtained through SDMs fitted with only
native-range distribution data is equivocal17–20. One possible explana-
tion is that accurately forecasting species’ full potential distributions
requires characterizing their fundamental (Grinnelian) niche, i.e.,
identifying all combinations of environmental variables that allow
species to persist21,22. Quantifying the fundamental niche generally
requires physiological data23,24. Although there is an active debate as to
whether certain SDM strategies, reflecting different hypotheses on the
nature of the fundamental niche, can adequately approximate it15,25–28,
there is no broadly applicablemethodological consensus for obtaining
forecasts of invasive species’ full potential distributions based on
native occurrence data20,29–31.

Trait-centered biogeography has recently emerged as one of the
main approaches for assessing how species respond when faced with
changing environments32. For example, generalist birds with larger
brains and capable of rapid population growth are more likely to
succeed as invasive species and cause damage33. Such information can

assist with the ranking of species in terms of their likely invasiveness
and impacts34. Here, we investigate the capacity of trait-based ecology
togenerate spatially explicit predictions of invasion riskby focusingon
a process-explicit framework (‘NicheMapper’), which relies on the
ecophysiological mechanisms that underpin species’ responses to
their environment35. Such a biophysical ‘first principles’ approach does
not use species occurrences to delineate the environmental toler-
ances, but instead relies on functional biophysical traits that have a
clear a priori interpretation29, allowing the role of climate in limiting
potential invasive distributions to be investigated mechanistically
(Fig. 1). For invasive species management, mechanistic approaches
have so far been used to assess ectotherm invasion risks, showing
much larger areas at risk of invasion, e.g., by African clawed frogs
(Xenopus laevis) introduced to Europe36 or cane toads (Rhinella mar-
ina) introduced to Australia37. Further applications include combining
estimates of modeled energy expenditure with food availability to
determine where introduced carp species38 are most likely to invade
the North American Great Lakes or to assess how climate change and
human water storage practices shape invasive mosquito invasion risk
across Australia39. Yet, because of concerns regarding the availability
of sufficient information on key biophysical traits40, similar applica-
tions on endotherms are rare, especially for invasive species.

Fig. 1 | Relationships between realized and fundamental niches and the geo-
graphical areas at risk of invasion by introduced species. Native-area species
distribution models are based on species’ contemporary occurrences and may
underpredict the area at risk of invasion (yellow areas). Purple dot-arrows illustrate
an invasive species invading and spreading beyond the areas predicted as suitable

based on the climates they occupy in their native range. Mechanistic ecophysio-
logical models, in contrast, quantify species’ fundamental thermal niches by inte-
grating their physiology, morphology and behavior with the microclimates they
experience, predicting wider areas at risk of invasion (olive-green).
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Here, we combine modeled microclimates with readily available
species trait data obtained frommuseum specimens, literature review,
and ecological theory to obtain mechanistic forecasts of invasion risk
for a large number of sub-tropical bird species introduced to Europe.
To identify those functional traits that most strongly limit invasive
ranges, and to assess how predictions of geographical areas at risk of
invasion vary with trait parameter estimates, we carried out a series of
sensitivity analyses. We found that mechanistic models accurately
predict invasive occurrences of birds introduced to Europe, especially
when intraspecific variation in key limiting traits is taken into account.
Model performance chiefly depended on a relatively small number of
functional traits related to species’ capacity to generate and retain
body heat. From a biodiversity management perspective, our findings
highlight that generic mechanistic models can provide the robust and
early forecasts of invasion potential that are needed for efficient
resource allocation according to the risks posed by introduced spe-
cies. To realize fully the promise of biophysical models for ecological
forecasting across diverse species and geographic regions, the devel-
opment of standardized open-access biophysical trait databases con-
solidating available knowledge and identifying knowledge gaps is,
however, needed.

Results
Realized niche shifts are prevalent among invasive birds in
Europe
Comparing the climates that invasive birds occupy in their native
versus the invasive ranges showed that the invasion of Europe by
twenty bird species of predominantly (sub)tropical origin is char-
acterized by a marked niche expansion into colder environments, as
birds had on average more than 50% of their invasive occurrences in
climate conditions that are outside of their native realized niche. Niche
similarity tests revealed significant niche differences for 13 of the 20
bird species, implying that differences between native and invasive
realized niches aremostly not solely due to the different availability of
climates in the native versus the invasive range (Supplementary Fig. 1
and Supplementary Data 1).

Mechanistic models more accurately predict invasive
occurrences
Mechanistic forecasts of invasion risk were good to very good at
identifying invasive bird occurrences across Europe, as 79% of bird
presences were successfully predicted based on species-level trait
estimates, and rising to 96% when accounting for intraspecific

variation (Fig. 2). Both the species-level and intraspecific-level models
also showed good to moderate ability to characterize areas that are
likely to be climatically unsuitable, correctly identifying 73 and 36% of
the locationswhere introducedbirds are currently absent, respectively
(Fig. 2, Supplementary Data 2). Mechanistic models predict that
southern Europe is most at risk of invasion, while only introduced
pheasants (Syrmaticus reveesi and Chrysolophus pictus) and larger
parakeet species (Myiopsitta monachus, Psittacula eupatria, and P.
krameri) are expected to tolerate the central European climate, with
pheasants able to invade Scandinavia as well (Supplementary Figs. 2
and 3).

Correlative models including biotic and habitat predictor vari-
ables better captured species’ native-range distributions (AUC ratio of
1.32 ± 0.14 when including biotic and habitat variables versus
1.28 ±0.13 for climate-only models, all partial ROC p-values <0.05).
Invasion risk forecasts, in contrast, were more accurate when using
climate-only models (AUC ratio of 1.40 ± 0.30 for climate-only versus
1.31 ± 0.27 for models with biotic and habitat variables, all partial ROC
p-values < 0.05). While the accuracy of correlative invasion risk fore-
casts varied with model algorithm and settings (see below), they were
generally less accurate compared to the mechanistic models (Fig. 2,
Supplementary Data 2–3). The fundamental niche ellipse method
tended to underpredict invasive distributions, correctly identifying
79% of locations currently free from invasion but only predicting 37%
of invasive occurrences. GLM correctly identified on average 58% of
presences and 47% of absences, but achieved this through alternating
strong over- and underprediction of species’ invasion risks, either
labeling almost the whole of Europe as suitable or none of it. BARTwas
arguably the best performing correlativemethod, correctly identifying
70% of occurrences and 33% of currently uninvaded locations (Fig. 2,
Supplementary Data 2–3). This machine-learning method, however,
also tended to overpredict potential distributions, for example des-
ignating large parts of northern Scandinavia as suitable for several
small-bodied Aftrotropical estrildid finches (Estrildidae), weaverbirds
(Ploceida) and lovebirds (Psittaculidae, Fig. 3, Supplementary Fig. 2).

For seven bird species, contemporary native-range distributions
may not allow to capture adequately their fundamental niche, but this
native niche truncation did not affect correlative model performance
(Supplementary Data 3 and 4). Model accuracy correlated positively
with the number of native-range occurrence data available for model
training, andwashigherwhenmodel forecasts were restricted to those
parts of Europe that have a climate similar to the climate species
encounter across their native range. When making forecasts for parts

Fig. 2 | Accuracy of invasion risk predictions. Accuracy of correlative (light gray)
versus mechanistic (dark gray) models in correctly predicting a invasive presences
(‘sensitivity’) and b locations currently uninvaded (‘specificity’) by introduced birds
across Europe (n = 20 introduced bird species). Each small black dot (jittered for
visibility) denotes an introduced bird species. Boxplots indicate mean (large black
dot) and interquartile range (i.e., 25th percentile–75th percentile), with whiskers
corresponding to 1.5 times the interquartile range. Split-half violin plots visualize

the probability density of the data at different accuracy values. Top gray lines
indicate significant differences between correlative and mechanistic models as
revealed by post-hoc Tukey tests. Correlative models: GLM (binomial Generalized
LinearModels), BART (Bayesian Additive Regression Trees), and FNE (Fundamental
Niche Ellipses). Mechanistic predictions were obtained through the NicheMapper
platform using either species-level parameter estimates (NM(sp)) or allowing for
intraspecific variation (NM(intra)).
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of Europe with climates different from species’ native climates,
extrapolating response curves (as opposed to clamping to limit
extrapolation) tended to result inmore accurate forecasts. Correlative
model performance was higher for species exhibiting less niche
expansion in the invaded range (Supplementary Data 3, Supplemen-
tary Fig. 4). Specifying an invasive range omission rate of 2.5% was
associated with higher evaluation statistics compared to a 5% rate.
Restricting the invaded range to areas accessible to the species via

dispersal since their introduction and the number of invasive range
occurrences available for model evaluation did not affect the accuracy
of model forecasts (Supplementary Data 3).

A limited number of key biophysical traits determine invasive
range distributions
Sensitivity analyses indicate that mechanistic model performance in
birds is most strongly influenced by basal metabolic rate, body mass,

Fig. 3 | Forecasts of invasion risk. Areas at risk of invasion by introduced a blue-
crowned parakeets Thectocercus acuticaudatus (body mass of ~170 g) and
b common waxbills Estrilda astrild (~9 g) across Europe. Gray indicates areas pre-
dicted to be climatically unsuitable while black areas are at risk of invasion
according to correlative (GLM: generalized linear model, BART: Bayesian additive
regression trees, FNE: fundamental niche ellipse) versus mechanistic (species-level
NicheMapper) models. Red dots represent current invasive occurrences, used to
independently evaluate model forecasts, expressed as the percentage of correctly
predicted occurrences (sensitivity). Thresholds discriminating suitable versus
unsuitable area are based on a 5% native-range omission rate for the correlative
models and on a 4.6 times the basalmetabolic rate limit for themechanisticmodel.
Response curves in the upper panel show how climate gradients (summarized into

principal component axes) drive predicted suitability, while gray and black hor-
izontal bars show the range of each climate axis in the native and invasive area,
respectively. Estimated ellipses in themiddle panel (FNE) represent 25, 75, and 95%
confidence regions of the modeled fundamental niche, with the star as the niche
center. Yellow points represent the climate conditions accessible to the species in
the native range (‘Mhypothesis’), blue dots the available native-range occurrences.
Gray points indicate climates across Europe, red dots the invasive occurrences. In
the lower panel, the black polygons are the species’ native ranges according to
BirdLife, the blue dots are occurrences obtained through GBIF, and the yellow
regions are the geographical backgrounds (‘M’) used to train the correlative
models.
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and density, followed by feather length, feather depth, and body
temperature (Supplementary Fig. 5). Model capacity to identify accu-
rately invasive occurrences was higher for species characterized by
higher body masses, higher basal metabolic rates, better plumage
insulation capacity, and a lower body temperature, while the opposite
was true for the capacity to predict locations where species are cur-
rently absent (Fig. 4, Supplementary Figs. 6 and 7). Please see Supple-
mentary Notes 1 for an extended technical description of the results.

Discussion
Globalization of trade and transport increasingly allows species to
overcome their natural biogeographic barriers and spread across new
ranges. To promote effective management of such invasive alien spe-
cies, the ongoing IPBES Invasive Alien Species assessment has identi-
fied the development of strategies and procedures to forecast the
spread of invasive alien species as a key support tool for decision
makers41. Climate is a dominant driver of both species’ native and
invasive range distributions42,43, but this does not necessarily imply
that reliable forecasts of invasion risk can easily be obtained based
solely on the native-range climate conditions a species currently
occupies. Here, we show that characterizing species’ fundamental
thermal niche of ecophysiological tolerance allows us to identify
invasive occurrences with high accuracy (Figs. 2–3). We found little
evidence of shifts in species’ fundamental thermal niches during

invasion, and the successful invasion of parts of Europe by introduced
(sub)tropical birds can rather be explained by species occupying dif-
ferent parts of their fundamental niche in different regions.

In recent decades, the pet bird trade has been dominated by the
export of (sub)tropical birds to more affluent consumers in the global
North44. Predicting the potential distribution of such introduced spe-
cies is arguably one of the most difficult challenges facing biodiversity
models14. We found that mechanistic niche models can be used to
accurately guide proactive surveillance aimed at early detection. This
is critically important with charismatic species such as sub-tropical
birds, as culling measures to control or even eradicate large popula-
tions are costly and are not easily welcomed by the general public45.
Species-level estimates of biophysical traits, such as upper and lower
critical body temperatures or maximal heat production rates, alone
often correlate poorly with distributional limits46. However, here we
show that integrating key traits related to species’ capacity to generate
and retain heat under a single process-explicit framework allows us to
reliably identify geographical areas with climates that make them
vulnerable to species’ invasion (Figs. 2–3). Ecophysiological insights
have so far only been applied sparingly to questions of range dynamics
of endothermic animals, partly because of the greater data require-
ments compared to correlative models. However, we have found that
the cold resistance of birds is mainly determined by a limited number
of input variables that characterize theirmass, size, feather properties,

Fig. 4 | Key biophysical traits. Significant relationships between biophysical traits
and mechanistic model predictive accuracy. Model performance is chiefly gov-
erned by a small number of key biophysical traits related to species’ capacity to

generate and retain heat. Each dot represents a bird species, and data are slightly
jittered along the x-axis for visibility. Solid black lines represent themean estimate,
gray shading indicates the 95% confidence interval of significant relationships.
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metabolic rate and body temperature (Fig. 4). Species with special
thermoregulatory adaptations, such as the use of daily torpor by
hummingbirds, may require more detailed information and con-
sideration, but our results suggest that for many species generic
mechanistic models are likely to produce useful predictions of
invasion risks.

Our forecasts show that most bird species introduced to Europe
have ample climatically suitable areas available to spread further into
(Supplementary Fig. 3). This is not unexpected, as pet bird introduc-
tions typically only stem from the 1960s andonwards47, and species are
likely still in the early stages of invasion. Some degree of range over-
prediction can however not be excluded, as we did not explicitly
consider the development of juvenile stages, which may prevent spe-
cies establishment in areaswhere (nest)microclimates do not allow for
nestling survival. Similarly, we may have overestimated the amount of
intraspecific variation available to individuals by allowing key traits to
vary according to the amount of variation found at the species-level.
Finally, as we did not explicitly account for bird water requirements
and water availability, our mechanistic forecasts may also have over-
estimated invasion risks in the warm and arid parts of Europe, as a lack
of access to water may hamper the potential for evaporative cooling,
with the risk of mortality from hyperthermia48.

The comparatively lower accuracy of our correlative model fore-
casts is in line with a recent meta-analysis based on >200 invasive
species, stating that when niche expansion is high (as is the case here),
confidence in native-range SDM predictions is low49. Correlative
models are more readily applicable compared to mechanistic models,
as they require only species occurrence data and relevant environ-
mental factors for deriving correlations50. Yet, the quality and quantity
of available occurrence data can have profound effects on model
performance19. The positive associationwe foundbetween the number
of native-range presences available for model calibration and the
accuracy of the fundamental niche ellipse approach (Supplementary
Data 3) suggests that, at least for some bird species, an insufficient
occurrence sample size may have prevented us from fully harnessing
the predictive capacity of this method. An equally important factor to
consider is the delineation of the areas across which models are cali-
brated, and especially so for applications aimed at estimating funda-
mental niches41. Ideally, the area across which species’ responses to
environments are estimated should represent the set of sites that have
been accessible to the species via dispersal over relevant periods51.
Accurately defined calibration areas may allow us to account statisti-
cally for the fact that available occurrence data do not necessarily
reflect all the environmental potentiality of a species. In our case, we
lacked the detailed ecological knowledge needed to create species-
specific accessible areas and account for possible abiotic barriers to
dispersal such as large rivers, deep valleys or high mountain crests,
whose barrier effects differ among species. Potential niche
truncation52, which describes to what extent a limited availability of
climates across the calibration area can lead to an incomplete repre-
sentationof a species’ fundamental niche,wasnot related topredictive
accuracy here. Yet, issues regarding optimal calibration area selection
likely contributed to uncertainty in our correlative model forecasts.

Another factor potentially contributing to the differing perfor-
mance of correlative versus mechanistic models is the difference in
climate and weather variables used. Whereas our mechanistic models
included a built-in microclimate module to convert a range of climate
and weather data into detailed estimates of the thermal environment
organisms experience, for our correlative models we followed the
common practice of using WorldClim variables, representing climate
conditions at a standard reference height of ~2m above ground level53.
Recent studies, mainly focusing on ectotherms and plants, have,
however, shown that including downscaled microclimates into SDMs
can significantly increase their performance, e.g., by uncovering local
topography-driven climate variability, accounting for the buffering

effect of vegetation cover or anthropogenic disturbances such as
urban heat islands54. Microclimate SDM applications to endotherms
are rare to date but constitute a promising avenue for further research.

Pooling occurrence data from native and invasive ranges to fit
SDMs has been proposed as an alternative strategy for better
approximating species’ fundamental niches, and hence, obtaining
more reliable forecasts of invasion risk15. Here, SDMs were created
using only native-range occurrence data so we could assess the use-
fulness of correlativemodels for species at very early stages of (or even
before) invasion. For example, several species on the List of Invasive
Alien Species of Union concern (https://ec.europa.eu/environment/
nature/invasivealien/list/index_en.htm) have no recorded invasive
presences yet. As the standard native-area based SDM modeling pro-
cedures applied here did not consistently result in accurate invasion
risk forecasts, our results support recent calls for more research into
identifying modeling procedures and conditions in which SDM inva-
sion risk forecasts can be most reliable18,55. An alternative modeling
strategy could be to model explicitly species’ native realized niches
only, which has been done for example to identify hotspots of traded
non-native birds under current and future climates56. This, however,
comes at the cost of reduced reliability for areas where the climate is
predicted to be unsuitable for the establishment and spread of inva-
ders. In cases where the availability of high-quality native-range
occurrence data is limited, and where knowledge of the species’
autecology does not allow to make informed decisions on calibration
areas and relevant ecological predictor variables, our results indicate
that mechanistic, ecophysiological approaches can serve as a valid
alternative—even when input data are largely based on allometric
scaling, literature reviews and museum specimens.

To promote the uptake of biophysical modeling in ecological
forecasting, and to assess further which functional traits best predict
invasive ranges under different environmental conditions, it is
imperative to increase the availability of reliable biophysical functional
trait information. While over the past decades, a wealth of ecophy-
siological data has been gathered, the development of standardized
open-access databases for functional traits has lagged57. We here find
that at least for macro-ecological predictions of invasion risk of sub-
tropical birds introduced to Europe, a relatively small number of key
functional traits suffices—yet parameter values for these traits still
typically need to be retrieved through bespoke literature reviews,
combined with empirical measurements on live or museum speci-
mens. For example, repositories such as the recent AVONETdatabase58

are described as providing comprehensive functional trait data for all
extant bird species worldwide, however, from a biophysical point of
view, this database contain mainly descriptive phenotypic traits such
as wing, tail and tarsus lengths. While the widespread availability of
such traits allows for testing of evolutionary and macro-ecological
hypotheses (e.g., on drivers of rapidmorphological diversification59, or
on the role of divergent adaptation during speciation60), the sole
biophysical functional trait (i.e., an individual property that has a
connection to organismal performance in the context of energy and
mass exchanges between an individual and its environments61) that is
readily available for most bird species is body mass. Biophysical
functional traits such as plumage depth and feather length, which
influence the capacity for thermal insulation, are not more difficult to
measure than traditional phenotypic traits but their importance is
hitherto largely unknown to the wider scientific community, hindering
data collection and sharing.

To support the development of robust and interpretable bio-
physicalmodels of species’distributions, buildingdatabases, including
the decision on which functional traits to prioritize, should be based
on, and in dialog with, ecological theory. Collecting empirical mea-
surements for large numbers of species will remain a challenge for the
foreseeable future, especially for ecophysiological functional traits,
such as metabolic rates, body temperatures or evaporative water loss,
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that can only be collected using often time-consuming and costly
experiments. Therefore, instead of simply collecting more biophysical
trait data for more species, studies should focus on collecting those
data that best enable the testing, development and refinement of
predictive hypotheses about how biophysical functional traits are
likely to vary across space, time andphylogeny. For example, empirical
measurements of (basal) metabolic rates—which determine heat gen-
erating capacity—are currently available for only about 10% of the
world’s bird species62. Although body-mass-based scaling laws63 may
serve as a first reasonable approximation, much uncertainty remains
about the factors underlying inter- and intraspecific variation in
metabolic rates (e.g., whether tropical birds are characterized by lower
and less plastic metabolic rates compared to birds from temperate
regions64). Similar unresolved questions exist regarding body tem-
perature regulation65 (e.g., whether the plasticity of upper limits is
much smaller than that of lower limit plasticity66) and how birds trade
off water conservation against avoiding lethal hyperthermia via eva-
porative cooling67. A better mechanistic understanding of these traits
is key to predicting invasion risks, for example in hot and arid areas,
where ranges are more likely to be limited by the species’ heat
tolerance48.

For (sub)tropical birds introduced to Europe, our results show
that several introduced bird species, most notably parakeets and
waxbills, have established populations in parts of Europewith climates
that are close to the maximal thermoregulatory costs they can bear
(Supplementary Fig. 3). They may be able to do so because they are
effectively subsidized by the abundant availability of energy rich food
at bird tables68 or in highly productive rice fields69. To assess the extent
and rate at which invasive birds will be able to fill their potential cli-
matic distribution, ecophysiological estimates of discretionary energy
(i.e., the amount of energy available to individuals for growth and
reproduction after accounting for thermoregulatory needs70) can be
combined with information on habitat availability and species’ colo-
nization potential. As a first practical approximation, this can be
achieved by using the presence or absence of required habitats as a
filter to refine invasion risk maps56,71. Trends in data availability and
computational power also increasingly allow to employ process-
explicit population-level models that constrain demographic rates or
carrying capacity to suitability surfaces72. Given their capacity to
identify climatically suitable areas that are outside of species’ con-
temporary native realized niches, ecophysiological energetic surfaces
are ideally suited formodels aimed at identifying areas that can sustain
viable invasive populations. Combined with spatially explicit dispersal
models (which can range from simple cellular automata to more
complex tools simulating dispersal heterogeneity among individuals73)
and estimates of biotic resistance to invasion (e.g., based on species
compositions of both source and incipient communities74), forecasts
of temporal patterns of invasive spread and potential invasion corri-
dors can then be obtained75.

Our analyses thus strengthen the case for including biophysical
modeling of themechanisms underlying the physiological response of
organisms to their environment as a key component in the ecologists’
toolbox, to forecast where non-native species may invade. Recent
developments such as the availability of free and open software
packages to conduct climate downscaling (e.g., ‘microclima’76) and
biophysicalmodeling (e.g., ‘NicheMapR’77) that allow to link up to high
performance computing facilities, combined with dedicated tutorials
and visualization tools (e.g., through the TrEnCh and CAMEL projects),
create an idealmoment for biophysical ecology to rise to the daunting
challenge of improving forecasts of biodiversity under global change78.

Methods
Species occurrence data
From the set of knownnon-native bird species in Europe79, we selected
terrestrial bird species that occurred in at least five different locations

(the minimum sample size for niche dynamic analyses80), that did not
have any part of their native range in Europe, and for which museum
specimens were present in the Royal Belgian Institute of Natural Sci-
ences (RBINS, Brussels, Belgium), resulting in 20 species for this study.
Species occurrence data for native and invasive (i.e., European) ranges
were obtained through the Global Biodiversity Information Facility
portal (GBIF; see Supplementary Table 1). For the invaded range, to
minimize the risk of including species observations that do not reflect
established, self-sustaining populations, occurrences were only
retained when literature sources confirmed the presence of estab-
lished breeding populations69,79,81–88. All occurrence data were rarefied
using a distance of 50 km52 tominimize spatial autocorrelation (except
for Agapornis personatus, A. fischeri, A. roseicollis, Acridotheres tristes,
and A. cristatellus, where a distance of 10 km was used for the invasive
range to retain a minimum of 5 occurrences). To delimit the native
rangeof each species,wefirst consideredoccurrences thatwerewithin
the species’ natural distribution range, as given by BirdLife’s extent of
occurrence digital maps89. Then, we buffered the original range maps
with a distance of 0.5° to reduce potential errors associated with
georeferencing and digitalization procedures, and we excluded those
areas occupied only during the non‐breeding season or during
migration90,91. Next, the remaining GBIF points were fed to the R
CoordinateCleaner92 package, using its default settings tailored for
cleaning occurrence records frombiological collection databases. This
package removes occurrences with potentially problematic geo-
graphical coordinates, such as country centroids, equal longitude-
latitude observations, GBIF headquarters, biodiversity institutions and
zero coordinates.

Niche dynamics during invasion
To assess niche dynamics during the invasion process and to obtain
correlative forecasts of invasion risk, native and invasive range
occurrence data were used together with the full set of 19 bioclimatic
variables available at the WorldClim v2 repository53. Then, for each
species, we delimited native and invasive ‘background’ areas (or, M
hypothesis) that reflected the set of sites accessible to a species
through dispersal over its recent history51,93. For the native range, these
background areas were obtained by applying a spatial buffer sur-
rounding available rarefied occurrences, with a radius equaling the
mean pairwise great-circle distance94 (calculated through the ‘geo-
buffer’ R package) between occurrences, and cut with the zoogeo-
graphical regions95 where the species is native to account for major
biogeographical barriers to dispersal96. We refer to these areas as
calibration areas or native backgrounds, since they were used to cali-
brate the species distribution models. For the invasive range, we
explored two alternative background areas. First, we considered the
whole of Europe as invasive background area (‘EU-background’),
reflecting the assumption that pet bird trade has given bird species the
opportunity to escape and establish populations across the
continent44. Second,wecreated amore restricted invasive background
by buffering known introduction locations with a distance equal to
residence time (i.e., introduction date) multiplied by a general esti-
mate of bird invasion speeds (see refs. 90,97 for details), combined
with the location of known failed introduction events, buffered with
50 km (‘invasion history background’).

We then used a principal components analysis (PCA) to trans-
form the environmental space of the 19 environmental variables
into a two-dimensional surface defined by the first and second
principal components. The PCA was calibrated using environmental
data at all sites comprising the native and invaded areas (thus, once
using the EU and once with the invasion history background). The
PCA scores of the occurrences of each species were then projected
onto a 100 × 100 grid of cells bounded by the minimum and max-
imum PCA values in the background data. A smoothed density of
occurrence for each species in each cell of the PCA grid was
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estimated using a kernel density function80,98 and used to calculate
metrics of niche dynamics.

Niche dynamics were studied by testing for niche equivalency and
similarity, and by calculating metrics of niche expansion, stability and
unfilling80,98. Niche expansion was calculated as the proportion of
species occurrence densities in the non‐native distribution located in
climates other than the native distribution. Niche stability is the pro-
portion of occurrence densities that overlaps with the native dis-
tribution climate conditions, and niche unfilling is the proportion of
occurrence densities in the native distribution located in climates
other than the non‐native distribution98. Note that these metrics are
calculated only on the environmental space that is shared between
both ranges, and using the intersection of the 75th percentile of cli-
mates in each range80,98. Tests of niche similarity and equivalency fol-
lowed randomization tests as outlined previously80. Rejection of niche
equivalency means that the niches of native and non‐native popula-
tions are not statistically equivalent, while a rejection of niche simi-
larity indicates that niches are more similar than expected at random.

Correlative species distribution modeling
We applied three different algorithms for species distribution model-
ing. Our algorithms include (1) a novel presence-only ‘envelope’ type
model assuming an ellipsoidal shape of the fundamental niche in cli-
mate space99, (2) a state-of-the-art machine-learning method called
Bayesian Additive Regression Trees (BART, computed with the
‘embarcadero’ R package100), and (3) a classic statistical method,
namely logistic Generalized Linear Model101 (GLM, computed with the
‘glm’ function of base R). The ellipsoidal envelope method assumes
that the fundamental niche of the species has a convex, symmetrical
shape in climate space and accounts for the fact that the observed
occurrences are constrained by the dispersal abilities of the species
which define the subregion of the fundamental niche that is currently
occupied by the species (i.e., the realized niche), and hence, the sub-
region that is observable. This approach has shown to be useful in
predicting the occurrence sites of an invasive species outside of its
native range99. The GLM approach has shown to be a simple yet robust
and generalizable method102,103, while BART provides highly accurate
predictions without overfitting to noise or to particular cases in the
data104,105.

All three modeling algorithms were first run using the above-
mentioned first and second principal components as bioclimatic pre-
dictor variables. To account for possible geographical sampling biases
due to differences in human accessibility, we applied the ‘sampbias’ R
package106. This method uses a Bayesian approach to estimate how
sampling rates vary as a function of proximity to bias factors such as the
presence of roads, rivers, airports and cities. Spatially explicit estimates
of sampling rates were then included as covariates when training SDMs
on the native range, and were set to zero for invasive range
predictions107. As it currently is not yet possible to include such bias
correction into the fundamental niche ellipse method, accessibility
biases are only implemented for the GLM and BART analyses. To verify
the assumption that species’ range boundaries are primarily deter-
mined by climate43,108, GLM and BART models were also run with cli-
mate, habitat and biotic interaction variables (note that the presence-
only fundamental niche envelope model99 is geared towards climate
niches and can consequently only handle two predictor variables). As
habitat variables, we selected a set of 14 habitat heterogeneitymeasures
based on the textural features of enhanced vegetation index (EVI)
imaginary109. Asbiotic interaction variables, representingmain food and
nest resources110, we selected eight variables available from the
Copernicus Global Land Service (cover of bare ground, crops, forest,
grassland, moss and shrub cover, as well as the presence of permanent
and seasonal water bodies; averaged over the available 2015-2019 time
series)111. We then used a PCA analysis to retain two ‘habitat’ and two
‘biotic’ principal components in the models.

GLM and BART species distributionmodels were computed using
native-range occurrence data only, and a five-fold spatial block cross-
validation resampling method112 to generate the model training and
test datasets in the species’ native backgrounds. Cross‐validation first
splits the data intoK (here:five) roughly equal‐sizedparts, and thenfits
the models K times. Each time one part is used as test data and the
other K–1 parts of the data are used as training data. While conven-
tional random cross-validation can underestimate prediction error,
spatial block cross-validation allows a more rigorous assessment of
model performance, as it reserves bothnearby andmoredistant places
for model testing. Spatial blocks were computed with the ‘blockCV’ R
package112 using a 200-km range, which was considered a reasonable
distance across species. After calibrating the models with the three
different algorithms for each species, we proceeded to calculate dif-
ferent evaluation metrics. To obtain forecasts of invasion risk across
Europe, we (1) allowed models to extrapolate beyond their training
data range and (2) adopted a ‘clamping’ approach, i.e., holding pre-
dicted suitability at constant beyond the limits of training
environments113 using the ‘clamp.vars’ function of the R package
‘ENMeval’114.

To generate binary predictions of invasion risk across Europe, we
applied both a 2.5 and 5% training omission threshold25, based on the
native-range occurrence data used to calibrate the models. We asses-
sed the accuracy of these invasion risk forecasts by computing the
sensitivity (i.e., the proportion of correctly predicted invasive pre-
sences) and specificity (i.e., correctly identified locations without
invasive presences) of the models when extrapolated to the invaded
region, using the ‘threshMeasures’ function of the ‘modEvA’ R
package115. Using the same threshold values, we also calculated the
partial area under the receiver operating characteristic (ROC) curve
and its statistical significance, using the ‘kuenm_proc’ function of the
‘kuenm’ R package116 with 1000 iterations for each species. Evaluation
statistics were calculated based on the two alternative invasive range
background areas defined above (i.e., EU versus invasion history
background). To assess to what extent extrapolation to climate con-
ditions non-analogous to those in the native-range calibration areas
affected model accuracy, we first identified regions of strict extra-
polation using the Mobility-Oriented Parity method (MOP)117 using the
‘mop’ function of the ‘enmSdm’ R package118. MOP compares the
environmental breadth of predictor variables in the native-range cali-
bration areas with that in the projection area (i.e., Europe). We tested
for the influence of extrapolation by recalculating evaluation metrics
based onmaps excluding areas where strict extrapolationwas present.
Lastly, we calculated to Potential Niche Truncation Index, ametric that
describes howmuchof the perimeter of the climate spaceoccupied by
the species abuts, overlaps, or is outside the margins of the environ-
ment’s (available) climate space52. The larger the proportion of the
occupied niche that is truncated in the available climate space, the
higher the risk that the occupied niche may poorly reflect the funda-
mental niche. All R scripts used for species distribution models are
available in a publicGitHub repository at https://github.com/LauraJim/
Modeling_bird_invasions. Model procedures have been detailed
through the ODMAP (Overview, Data, Model, Assessment and Predic-
tion) protocol119 presented in Supplementary Table 2.

The NicheMapper ecophysiological modeling platform
Ecophysiological, mechanistic forecasts of invasion risk were obtained
using NicheMapper, a mechanistic bioenergetics model that uses an
animal’s morphological, physiological, and behavioral traits in com-
bination with the ambient microenvironment in order to identify
geographical areaswith climates that arewithin a species’ fundamental
thermal niche. NicheMapper consists of two submodules: (a) a
microclimate model that generates, for each landscape pixel, hourly
calculations of solar and infrared radiation intensities, above‐ground
profiles of air temperature, wind velocity and relative humidity, and (b)
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an endotherm model that calculates metabolic rates based on a heat
balance equation in which the animal’s metabolic heat production
must equal the net heat loss to its microenvironment to maintain a
stable core temperature. The simulated metabolic rate is then com-
pared to a target metabolic rate for any given hour (using the basal
metabolic rate when the animal is resting, or basal rates multiplied by
an activity multiplier when the animal is active) to determine whether
thermoregulatory actions to avoid hypo- or hyperthermia should be
taken. If the simulated metabolic rate is beyond ±5% (arbitrary error
accepted by the model) of the target range, the model allows animals
to employ both physiological and behavioral thermoregulation (e.g.,
varying flesh thermal conductivity to simulate vasodilation or vaso-
constriction, seeking shade)70,120 until a heat balance is achieved. The
model thus calculates the necessary (in cold temperatures) or allow-
able (in warm temperatures) metabolic rate that will enable an animal
to maintain its body temperature within a tolerable range. Metabolic
rates hereby represent hard limits for survival: if the simulated meta-
bolic rate falls below the basalmetabolic rate, the animal is assumed to
have diedof overheating, if the simulated required energy expenditure
exceeds the estimated maximal energy intake, the animal is assumed
to have died of hypothermia.

Ecophysiological data inputs
The microclimate model uses approximately sinusoidal equations to
translate long-term, gridded monthly climate averages, which are
typically derived from weather stations placed approximately 1–2m
above the ground into estimates of hourly microclimates at the ani-
mal’s average height, representing mid-month conditions for a calen-
dar year (i.e., 12 total model days)77. It relies on information about
monthly maximum and minimum daily average temperature, relative
humidity, cloud coverage, wind speed, snow presence/absence,
topography, solar radiation and soil properties. Minimum and max-
imum temperature data and windspeeds were obtained from the
WorldClim v2 repository53. We used the same average wind speed
throughout the day because no maximum/minimum values were
available.Windspeedsweremodified based on habitat cover and set to
50% of the reference value for forests120, 90% for shrubs and/or her-
baceous vegetation120 and 75% for urban areas121, whereby land-cover
was derived from the CORINE Land Cover inventory122. Cloud cover
was taken from CRU v2.0123, and we assumed the same cloud cover for
every hour within a given month. Presence or absence of snow cover
for each month of the year was taken from NOAA Northern Hemi-
sphere SCE v1.0124. Hourly relative humidity profiles were calculated
assuming a daily maximum of 100% and minimum values were calcu-
lated based on the daily temperature range assuming constant water
mass in the air over 24 h125. All climate andweather data used here span
the period 1970–2000, except for cloud cover, which represents
averages for the period 1960–1990. Data were downloaded at the
highest resolution available and rescaled to 10 x 10 km grid pixels.
Topography (elevation, slope and aspect) was derived from the
Copernicus EU-DEM dataset. Clear sky solar radiation was calculated
based on date, hour and geographic location. Using a built-in sub-
routine, the timing and intensity of radiation reaching the groundwere
further adjusted according to horizon angle, slope, aspect and cloud
cover126. Based on the Soil Atlas of Europe, each landscape pixel was
assigned to a generalized soil type (i.e., either sand, rock or soil)127,
using the corresponding values for thermal conductivity, density,
specific heat and substrate reflectivity; with the exception of urban
areas (as identified by CORINE Land Cover, see above), which were
assigned the properties of (Portland cement) concrete, as derived
fromwww.engineeringtoolbox.com. Pixels that hadmore thanone soil
types at a 10x10km resolution weremodeled using a weighted average
of the parameter values of the constituent soil types. Average animal
height was set at 150 cm above ground level for Psittaciformes, as
these aremainly arboreal species but descending to lower heights, e.g.,

for foraging. For Estrildidae, Viduidae and Ploceidae, we used 120 cm
reflecting their habitat preference for scrubs and reedbeds. As Stur-
nidae and Phasianidaemainly forage onground-level, for these species
we used approximate breast heights of 10 and 20 cm, respectively.

The endothermmodel requires information on a set of biophysical
and behavioral species traits. Morphological traits: Bird body dimen-
sions were measured from museum specimens, body-mass estimates
were taken from the literature and average bird density was estimated
at 875 kg/m³128,129. Body fat was considered to be present sub-
cutaneously on bird neck and torso, and taxon-specific fat percentages
were derived from130,131. Within the model, adjustments to morpho-
metric measurements of each body part were made when model-
calculated densities of body parts (flesh only, without feathers) dif-
fered by more than 5% from the 875 kg/m³ estimate above129. These
adjustments were allowed because body masses were taken from the
literature while morphometric parameters were measured from
museum specimens. Feather length, depth and solar reflectivity were
measured dorsally and ventrally for each body part. Using the same
body locations as for feather length and depth, solar reflectivity was
measured across 300–2100 nm using a dual spectrophotometer132.
Solar reflectivity of legs and beak was set at 0.33129. For species that
have (seasonally) sexually dimorphic plumages, reflectivity was cal-
culated separately formales and females, assuming that outside of the
breeding season, males had the same reflectivity as females. Ecophy-
siological traits: body temperature133–139 and basal metabolic rates
(BMR) were taken from literature on the focal species, from closely
related species, or based on allometric scaling relationships63. BMR
multipliers for daily foraging activity were set at 2.5140–142, and an
additional energetic multiplier of 1.5 was implemented to account for
heat generated during breeding. Muscle efficiency was assumed to be
25%143, flesh-specific heat capacity was modeled at 4185 J/Kg.C144 and
flesh thermal conductivity was allowed to vary between 0.41 and
2.80W/m.C145 (simulating vasodilation or vasoconstriction). We esti-
mated that 1% of the skin functioned as a free water surface to account
for the eyes and thin skin, and assumed that effective percent wet skin
can rise up to 5% under heat stress146. Birds were also allowed to
increase plumage depth to simulate ptiloerection under cold stress.
Behavioral traits: to preserve homeothermy, birds were assumed to
first employ ecophysiological responses before activating behavioral
modifications. All birds were considered to be active during diurnal
and crepuscular periods147. More details on the exact parametrization
of NicheMapper for our bird species can be found in Supplementary
Methods 1.

Ecophysiological model building and evaluation
Ecophysiological models usually assume that a single individual is
representative of the species as a whole. Here, we first ran such a
species-level model, which was then subjected to a sensitivity analysis
uncovering the most influential variables (see Latin Hypercube sam-
pling below). These variables were then considered in an intraspecific-
level model accounting for trait variation.

To obtain such a species-level model, whenever multiple mea-
surements were available for a species, themean was taken to obtain a
single value.WhileNicheMapper allows some traits (bodymass and fat,
feather lengths anddepths) to vary throughout the year, given a lackof
information, all were considered to be constant throughout the year.
In order topersist in a given location,we assumedbirds need tobe able
to survive throughout the year and to complete a breeding cycle. As
little or no information is available on the breeding phenology ofmost
introduced birds across Europe, we separately modeled energetic
requirements for yearly survival (i.e., ‘daily foraging’ BMRmultiplier of
2.5 for each month of the year, see above) and breeding (i.e., an
additional energetic multiplier of 1.5, see above). For any location (i.e.,
pixel), to be suitable in any given month, modeled energetic require-
ments (a) cannot correspond to a metabolic rate lower than the BMR

Article https://doi.org/10.1038/s41467-023-38329-4

Nature Communications |         (2023) 14:2520 9

http://www.engineeringtoolbox.com


and (b) cannot exceed digestible energy intake, which for birds is
generally considered to be ~4.6 times the BMR148,149. For annual survi-
val, a locationwas deemed suitable only if energetic demands could be
met for each month of the year. For breeding, we first obtained the
average duration (months) from egg laying to fledging from the
literature69,82,150–163, rounded up to the nearest integer) and areas were
only considered suitable when energetic demands could be met for
sufficient consecutive months. A pixel was considered at risk of inva-
sion only when the climate allows for survival year-round and for the
completion of at least one breeding cycle. For those birds exhibiting
(seasonal) sexual dimorphism, survival and breeding were separately
modeled for males and females, and only locations where both sexes
can meet energetic demands were considered as suitable. Note that
here we focus on survival of and breeding by adult birds only, and did
not account for the survival and development of eggs and nestlings.
The resulting binarized maps, representing areas that are in- versus
outside a speciesmetabolic’ reach (i.e., at risk of invasion or not), were
used to calculate model sensitivity and specificity, using the same
invasive range occurrence data as for evaluating the correlative
models.

Next, we used an (iterative) Latin Hypercube Sensitivity (LHS)
analysis to assess the impact on model performance of varying the
values of a set of key functional traits (i.e., BMR, BMRmultipliers, body
mass, body density, body fat and body core temperature, the esti-
mated temperature differential between body core and skin, feather
diameter, feather length, feather depth, and feather solar reflectivity,
temperature difference between inhaled and exhaled air)70,149,164–166.
Parameter values were allowed to vary within the range of values
contained within our empirical measurements or present within the
literature surveyed (Supplementary Data 5). Feather lengths and
depths were scaled according to the total mass of the modeled bird
assuming isometric scaling167. Latin Hypercube sampling simulta-
neously varies the values of the input parameters to efficiently sample
the parameter space168,169, and was used to first generate 1.000 model
variants for each bird species considered here. Variable importance
was then obtained by fitting a random forest170 to model outcomes
(using the True Skill Statistic TSS, an evaluation metric providing an
equal weighting to commission and omission errors)171. We then
selected all models whose settings resulted in TSS values larger than
0.3172–174. For all variables that had a variable importance larger than 5%,
we assessed the range of parameter values that characterized these
well-performing models. The resulting, trimmed parameter space was
then used as input for a second LHS iteration. This process was repe-
ated until the reduction in the range of parameters values fell below
5%. For birds showing (seasonal) sexual dimorphism, LHS analyses
were run formales and females separately. To assess howchanging the
values of the most important input parameters turns into changes in
the area identified as suitable by the biophysical models, we used the
percentage of Europe predicted to be at risk of invasion as dependent
variable and the LHS generated values of the input parameters as
dependent variables in amixed beta-regression framework, specifying
species andLHS iteration as randomeffects. Input data formechanistic
models can be found at https://github.com/LauraJim/Modeling_bird_
invasions (NicheMapper alomvars.dat and endo.dat files).

Lastly, to obtain ecophysiological predictions accounting for
intraspecific variation (‘intraspecific-level model’) in key biophysical
traits, instead of running NicheMapper using a single value for each
trait, for each pixel, 100 LHSmodel variants were run, assigning to the
pixel the lowest amount of energy needed for thermoregulation pre-
sent among the model variants considered. Key biophysical traits
considered were BMR, body mass, body density and body tempera-
ture, feather depth and length (cfr. results of the species-level LHS
analyses, see results). For computational reasons, and given the
smaller parameter space (six traits versus 14), we here only ran 100

model variants175. The predictive accuracy of models at the intraspe-
cific level was assessed on the basis of sensitivity and specificity, as
above for the model at the species level.

Statistical analyses
To investigate differences in model evaluation criteria between mod-
eling approaches, we used linear mixed models, specifying species
identity as a random effect. When AUCratio was the dependent vari-
able, we used a Gaussian error distribution, but for specificity and
sensitivity, we adopted a beta-regression approach suitable for ana-
lyzing dependent variables ranging between 0 and 1 (R package
‘glmmTMB’176). Model contrasts were set up using the ‘emmeans’
function of the R library ‘emmeans’, resulting in Tukey p-values
adjusted for multiple testing. To explore which factors influence
model forecasts,we ran similar linearmodels using thedifferentmodel
evaluation statistics as dependent variables, and the explanatory
variables: native-range occurrence sample size, invasive range occur-
rence sample size, the potential niche truncation index and the niche
dynamic indices (i.e., niche expansion). Lastly, to assess whether key
biophysical traits relate to correlative and ecophysiological model
performance, beta-regressionmodels were created using the ‘betareg’
package177. As several biophysical variables were strongly correlated,
we first used a PCA to retain two independent ‘biophysical trait’ axes
(explaining 82.2% of the variation; Axis 1: 65.1%, Axis 2: 17.1%). Given the
pervasive influence of propagule pressure on invasive species
distributions178,179, we also included residence time in the invasive
range (i.e., time since first successful introduction) and the number of
successful introduction events as covariates in these analyses. Propa-
gule pressure data were taken from47,79.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data gathered and processed, and resulting model outcomes (GIS
maps and associated model evaluation statistics), are openly available
via the Zenododatabase under accession codehttps://doi.org/10.5281/
zenodo.7733648.

Code availability
Code used for parametrizing the mechanistic and correlative models
are available and openly accessible at https://github.com/LauraJim/
Modeling_bird_invasions. Mechanistic models were run using the full
NicheMapper endotherm module, available as proprietary software
that needs to be purchased from http://niche-mapper.com/.
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