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ABSTRACT

Aim Mapping the distribution and diversity of plant functional traits is critical

for projecting future changes to vegetation under global change. Maps of plant

functional traits, however, are scarce due very sparse global trait data matrices.

A potential solution to this data limitation is to utilize the known levels of

phylogenetic signal in trait data to predict missing values. Here we aim to test

existing phylogenetic comparative methods for imputing missing trait data for

the purpose of producing continental-scale maps of plant functional traits.

Location North America and Europe.

Methods Phylogenetic imputation models and trait data from one continent were

used to predict the trait values for tree species on the other continent and to produce

trait maps. Predicted maps of trait means, variances and functional diversity were

compared with known maps to quantify the degree to which predicted trait values

could estimate spatial patterns of trait distributions and diversity.

Results We show that the phylogenetic signal in plant functional trait data can

be used to provide robust predictions of the geographical distribution of tree

functional diversity. However, predictions for traits with little phylogenetic

signal, such as maximum height, are error prone. Lastly, trait imputation

methods based on phylogenetic generalized least squares tended to outperform

those based on phylogenetic eigenvectors.

Main conclusions It is possible to predict patterns of functional diversity

across continental settings with novel species assemblages for most of the traits

studied for which we have no direct trait information, thereby offering an

effective method for overcoming a key data limitation in global change biology,

macroecology and ecosystem modelling.
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Forest ecology, imputation, plant biodiversity, phylogeny, temperate forest,

trait biogeography.
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INTRODUCTION

Theoretical and empirical ecological investigations suggest

that strong linkages exist between plant functional diversity

and ecosystem function (Tilman et al., 1997; Loreau et al.,

2001). The distribution of functional diversity across a vari-

ety of spatial scales is therefore of fundamental interest to

ecosystem modellers. Quantifying the continental-scale distri-

bution of plant functional diversity has, however, been par-

ticularly challenging due to limitations in the available

species trait data (Reich, 2005; Swenson & Weiser, 2010;

Swenson et al., 2012). This lack of information has led eco-

system modellers to characterize vegetation types using a few

plant functional types, leading to coarse and potentially inac-

curate projections of ecosystem function under global climate

change (Purves & Pacala, 2008; van Bodegom et al., 2012).

The most obvious obstacle to estimating the continental-

scale distribution of plant functional diversity is the require-

ment for species-level functional trait data that are linked to

performance for thousands of species distributed across vast

areas, as well as specific knowledge about how such traits are

directly or indirectly linked to ecosystem function or persist-

ence. It may require many years to collect such data, even in

less diverse temperate floras, and much longer in highly

diverse tropical floras (Swenson, 2013; Uma~na et al., 2015).

A potentially powerful and more easily employed alternative

or stopgap measure is to take advantage of phylogenetic sig-

nal in functional traits (i.e. the tendency for closely related

species to have similar trait values) to estimate the function

of individual species. Plant ecologists have demonstrated a

large degree of phylogenetic signal in global-scale studies of

plant functional traits (e.g. Moles et al., 2005; Swenson &

Enquist, 2007), suggesting that reasonable estimates of trait

values for species that are absent in global databases may be

possible based on their phylogenetic position. Specifically,

phylogenetic imputation, in which a model of trait evolution

is applied to a phylogeny to estimate the missing trait values

for species, holds tremendous promise (Swenson, 2014a).

However, these methods have not yet been applied to large

plant trait databases nor have they been used to predict the

spatial distribution of multiple traits across continents or to

predict the distribution of functional diversity itself.

Here, we show that phylogenetic information can be used

to generate robust predictions of the distribution of individ-

ual functional traits and the overall functional diversity of

tree assemblages on continental scales. The analyses focus on

using phylogenetic generalized least squares (pGLS) regres-

sion and phylogenetic eigenvector regression to evaluate phy-

logenetic signal in available trait data from one continent

and to estimate the functional trait values of individual spe-

cies on another continent based upon their phylogenetic

position (Martins & Hansen, 1997; Garland & Ives, 2000;

Swenson, 2014a,b). The analyses were conducted using the

geographical distribution of tree species in eastern North

America and Europe, a phylogenetic tree of these species and

data for four key functional traits (leaf size, maximum

height, seed mass and wood density) for all species. The spe-

cific questions we ask are: (1) can the mean and variance of

individual traits and multivariate functional diversity of tree

species on one continent be predicted by simply knowing the

traits and phylogenetic positions of a different set of species

on a different continent; (2) does a lack of detailed phyloge-

netic information within genera greatly hinder predictive

models; and (3) do alternative phylogenetic regression mod-

els, such as those built using phylogenetic eigenvectors, pro-

vide robust predictions of the distribution and diversity of

plant function across continents?

MATERIALS AND METHODS

Geographical data

Geographical range maps for 273 eastern North American

and 121 European tree species were used in this study (we

defined a ‘tree’ as any free-standing woody plant with a max-

imum height greater than 10 m). Tree species in these two

regions that did not have trait data available in the literature

were not included in the study. The eastern North American

tree range maps were downloaded from the United States

Geological Survey (http://esp.cr.usgs.gov/data/little/) and

gridded into 18 squares. The European tree range data were

digitized from the Atlas Flora Europaeae (http://www.luo-

mus.fi/english/botany/afe/) and were gridded using the atlas’s

map grid system where grid cells are 50 km2 on average. The

two tree floras used are well known for their compositional

similarity, making them a probable ‘best case scenario’ for

phylogenetic imputation. Specifically, 72.7% of the genera in

our European data set are in the North American data set

and 25.2% of the North American genera are in our Euro-

pean data set.

Phylogenetic tree

A single phylogenetic tree was generated for this study using

the eco-informatics software Phylocom (Webb & Donoghue,

2005). Specifically, we used the Phylocom R20100701.new

backbone phylogeny and our species list to produce a phy-

logeny. Generally, the degree of relatedness between species

within genera was left unresolved using this approach (i.e. all

congeneric species pairs were treated as equally related). We

used this approach to generate the phylogenetic tree because

it is likely to be the approach most widely employed by ecol-

ogists in the future attempting to predict trait data on conti-

nental scales, particularly in geographical regions where DNA

sequences for most species are unavailable (e.g. tropical

floras).

Trait data

This study utilized data for four traits that indicate where a

species falls along the spectrum of plant ecological strategies

(e.g. Grubb, 1977; Dolph & Dilcher, 1980; Chave et al., 2009;

Moles et al., 2009). These traits were also used because they

are widely available, allowing for model testing. The traits we
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considered were maximum height, seed mass, wood density

and leaf size, and were recorded for every species (i.e. there

were no missing trait values for any species or trait). The

maximum height data came from the literature where we

recorded the absolute largest value reported (Britton & Sha-

fer, 1923; Polunin, 1976) and the United States Department

of Agriculture PLANTS database (http://plants.usda.gov). The

wood density data came from the global wood density data-

base published by Chave et al. (2009) and from additional

literature sources (Iatsenko-Khmelevski, 1954; Bosshard,

1974). Leaf area was estimated as the product of the reported

leaf length, leaf width and 0.70 to account for leaf tapering.

This calculation has recently been shown to produce values

that are highly correlated with the known area of leaves

(Kraft et al., 2008) and represents a pragmatic approach for

estimating leaf area for hundreds of species from the litera-

ture. For some species, the leaf length and/or width was not

available in the literature and was recorded by N.G.S. using

herbarium specimens in the Gray Herbarium at Harvard

University and the Michigan State University Herbarium.

Because the degree of leaf shrinkage across these taxa was not

known and leaves could not be rehydrated we retained the

dry dimensions. We expect that this introduced error is mini-

mal given the total variation in leaf size in our data set and

would probably bias towards weaker predictions. Seed mass

was recorded from the Kew Millennium Seed Database

(http://data.kew.org/sid/) and the PLANTS database. An

additional 15 species had their seed masses quantified using

seeds stored with herbaria sheets at the Michigan State

University Herbarium by N.G.S. The maximum height,

leaf size and seed mass data were all log transformed for

the downstream analyses given their highly skewed global

distributions.

Phylogenetic generalized least squares regression

We used pGLS regression to model the trait data for species

on one continent given their phylogenetic position and the

phylogenetic distribution of traits for species on the second

continent. A pGLS regression can incorporate the phyloge-

netic non-independence of data points by assuming a phylo-

genetic error structure given a model of trait evolution. In

the simplest case, a Brownian motion model of trait evolu-

tion can be assumed in which the error structure takes the

form of an untransformed phylogenetic variance–covariance

(VCV) matrix where the diagonal is the root to tip distance

and the off-diagonal elements are the amounts of shared

branch length between two taxa. This basic model can

become more flexible by fitting a model of trait evolution

given the data by transforming the phylogenetic VCV matrix

and finding the transformation that best fits the data (Swen-

son, 2014a,b). For example, if the data have no evident phy-

logenetic signal (i.e. non-independence) the transformation

of the off-diagonal values in the VCV matrix that would best

fit the data would be to multiply the values by zero. Simi-

larly, if the data are best explained by a Brownian motion

model the transformation that would best fit the data would

be to multiply the off-diagonal elements by one. The values

by which the off-diagonal elements are multiplied are

referred to as k. We utilized maximum likelihood to estimate

the k values (Pagel, 1999; Freckleton et al., 2002) using the R

package ‘caper’ (http://caper.r-forge.r-project.org/) for each

trait on each continent and generated a GLS regression

model for that trait using the estimated phylogenetic error

structure (i.e. the transformed phylogenetic VCV matrix;

Swenson, 2014a,b). This model and the transformed VCV

matrix containing all species on both continents were then

used to predict the trait values of species on the other conti-

nent given the model from first continent. To assess the

degree to which the predicted species-level values were

related to the known values we regressed the predicted values

against the known values.

Next, the predicted values were then used to quantify the

mean and variance of traits in map grid cells on each conti-

nent as well as the multivariate functional dispersion (FDis)

and functional richness (FRic) in those grid cells. The FDis is

the mean distance of each species to the centroid of the mul-

tivariate trait space and the FRic is the volume of the multi-

variate trait space that an assemblage occupies (Laliberte &

Legendre, 2010). These values were then compared with the

known values using a regression.

A simple alternative to estimating the most likely k values

for a given trait dataset and phylogeny is just to assume that

traits evolve under a Brownian motion model. For example,

a Brownian motion model could be assumed where the phy-

logenetic VCV matrix is left untransformed (i.e. k 5 1). We

generated these models for each trait on each continent and

used the models and an untransformed phylogenetic VCV

matrix containing all species to predict the trait values on

the other continent. As with the previous analysis, we then

regressed predicted trait values for species against their

known values. Then, the predicted values were used to quan-

tify the mean and variance of traits in map grid cells on each

continent as well as the multivariate FDis and FRic in those

grid cells.

Phylogenetic eigenvector regression

In addition to the two pGLS approaches used to predict trait

values, we utilized phylogenetic eigenvectors to predict trait

values, which assume no model of trait evolution – Brownian

motion or otherwise. To accomplish this, a phylogenetic dis-

tance matrix was computed from the phylogeny and used in

a principal coordinate analysis to generate phylogenetic

eigenvectors (Diniz-Filho et al., 1998; Ramirez et al., 2008;

Diniz-Filho et al., 2011). The number of phylogenetic eigen-

vectors produced is equal to the number of species minus

one. A subset of eigenvectors must be selected for phyloge-

netic eigenvector regression because the use of all eigenvec-

tors leads to model saturation (Rohlf, 2001). We utilized an

iterative search for the subset of eigenvectors that reduces the

largest amount of autocorrelation in the residuals (Griffith &

Phylogenetic imputation
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Peres-Neto, 2006; Diniz-Filho et al., 2012). Specifically, as

new eigenvectors were added to the model for a single trait

on a single continent, residual autocorrelation was recalcu-

lated and the iterative search stopped until the residual auto-

correlation calculated using Moran’s I was less than 0.05. The

selected eigenvector values for species on one continent were

then used as independent variables in a multiple linear model

with the data for a single trait from the same continent as

the dependent variable. This model was then projected onto

the values for the species on the other continent from the

same subset of eigenvectors. This process was repeated for

each trait to produce predicted trait values on one continent

given the trait data on the other continent and their phyloge-

netic eigenvector positions. The R package ‘PVR’ was used

for all phylogenetic eigenvector analyses (http://cran.r-project.

org/web/packages/PVR/). Again, the predicted species-level

trait values were regressed onto the known values through

the origin and the coefficient of determination was recorded.

Next, the predicted trait values derived from this phyloge-

netic eigenvector approach were then used to quantify the

mean and variance of traits in map grid cells on each conti-

nent as well as the multivariate FDis and FRic in those grid

cells. These values were then compared with the known

values.

Prediction error and climate

Deviations of the predicted map grid cell values from the

‘known’ values may be linked to climate. We therefore per-

formed a series of ad hoc tests in which we first quantified

the deviation of the predicted values from the known values

(i.e. known value minus the predicted value) and correlated

these values with four climatic variables for the same grid

cell. Specifically, we used Pearson correlations to evaluate the

relationships between the deviations and mean annual tem-

perature, temperature seasonality, annual precipitation and

precipitation seasonality using climate maps from the World-

Clim database (Hijmans et al., 2005) at a resolution of 2.58.

RESULTS

We utilized three phylogenetic imputation methods to pre-

dict the trait values of species in one region (eastern North

America or Europe) based upon their phylogenetic position

and the traits and the phylogenetic position of species in the

other region. We used the predicted values to map the mean

and variance of each trait and to estimate two multivariate

functional diversity indices in the map grid cells in each

region. We began by testing the pGLS regression with a fit

model of trait evolution. The predicted trait means, FDis and

FRic in map grid cells in the projection region based on trait

information in the calibration region and phylogenetic infor-

mation were typically highly correlated (r2> 0.60; Table 1,

Figs 1 & 2). The predicted trait variances in map grid cells

were also highly correlated with the known variances

(r2> 0.60; Table 1). However, predictions of the mean and

variance of maximum height values for the map grid cells

were far weaker (r2 � 0.1–0.3) indicating that the lability in

the evolution of this trait prevented strong predictions even

when k was estimated and used to fit the model. The geo-

graphical locations that were the most difficult to predict in

Europe were typically in the south-east (Figs 1 & 2). Simi-

larly, the more species-rich south-eastern portion of eastern

North America was the region hardest to predict, probably

due to the higher number of congeners and the greater num-

ber of species that may be distantly related from the dataset

used to build the statistical model.

To explore whether alternative phylogenetic prediction

frameworks provided similarly strong predictions we took

two additional approaches. First, we did not use maximum

likelihood to estimate k values in the pGLS model. Rather,

we used the observed phylogenetic VCV matrix in the pGLS

model, effectively assuming a k value of one (i.e. Brownian

Table 1 We used phylogenetic generalized least squares (pGLS) regression to estimate a model of trait evolution (k) using the trait data

from one continent to predict the trait values for species on the other continent. The table shows the intercept and slope of each regres-

sion with their standard errors (SE) and r2. We also report the k values estimated by our pGLS models where values closer to one

indicate more phylogenetic signal and values closer to zero indicate less phylogenetic signal.

Eastern North America prediction of European traits European prediction of eastern North American traits

Map grid cell value Intercept SE Slope SE r2 k Intercept SE Slope SE r2 k

Mean maximum height (m) 1.13 0.01 0.16 0.01 0.28 0.68 1.39 0.01 20.02 0.01 0.10 0.65

Variance maximum height (m) 0.02 < 0.00 20.07 0.01 0.14 0.68 0.02 < 0.00 20.11 0.01 0.15 0.65

Mean leaf size (cm2) 20.09 0.01 1.17 0.01 0.87 0.96 0.17 0.01 0.59 0.02 0.76 0.98

Variance leaf size (cm2) 20.03 < 0.00 0.94 0.01 0.92 0.96 20.02 0.01 0.63 0.01 0.88 0.98

Mean seed mass (g) 0.13 < 0.00 0.79 < 0.00 0.97 0.99 0.41 0.01 0.82 0.01 0.92 0.89

Variance Seed Mass (g) 0.16 0.01 0.64 0.01 0.87 0.99 0.59 0.01 0.30 0.02 0.42 0.89

Mean wood density (g cm23) 0.01 < 0.00 0.97 0.01 0.93 0.85 20.02 0.01 1.04 0.02 0.99 0.85

Variance wood density (g cm23) 0.01 < 0.00 0.12 0.01 0.30 0.85 < 0.00 < 0.00 0.20 0.02 0.38 0.85

Functional dispersion 0.46 0.03 0.77 0.01 0.44 – 0.10 0.03 1.10 0.01 0.84 –

Functional richness 3.67 0.10 0.62 0.01 0.66 – 4.29 0.16 0.81 0.02 0.80 –
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0.31 - 0.54

0.55 - 0.66

0.67 - 0.74

0.75 - 0.83

0.84 - 0.91

0.92 - 1.12

Mean log(Leaf Size)

0.17 - 0.57

0.58 - 0.86

0.87 - 1.10

1.11 - 1.34

1.35 - 1.63

1.64 - 2.15

Mean log(Seed Mass)

0.50 - 0.53

0.54 - 0.55

0.56 - 0.57

0.58 - 0.59

0.60 - 0.62

0.63 - 0.69

Mean Wood density

1.13 - 1.23

1.24 - 1.29

1.3 - 1.34

1.35 - 1.38

1.39 - 1.41

1.42 - 1.47

Mean log(Maximum Height)

Figure 1 The known (left) and predicted (middle) trait means in map grid cells for European trees. Deviations (right) where the predicted

values were subtracted from the known value are also plotted. The top row is mean maximum height (log m), the second row is mean leaf size

(log cm2), the third row is mean seed mass (log g) and the fourth row is mean wood density (g cm23). The predicted values were generated

by fitting a model of trait evolution for maximum height, leaf size, seed mass and wood density for eastern North American trees and using

that model to predict the trait values of European tree species based on their phylogenetic position. The colour legends are provided on the

right side of each row with the top legend corresponding to the maps in the first two columns (i.e. the trait means) and the bottom legend to

the map in the last column (i.e. the deviations).

Phylogenetic imputation
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motion trait evolution) for every trait dataset (Table 2). Sec-

ond, we utilized a phylogenetic eigenvector regression that

does not fit a model of trait evolution (Table 3). The results

from both pGLS approaches were qualitatively similar (Tables

1 & 2) where strong predictions were possible for most traits,

with the notable exception of maximum height. The phyloge-

netic eigenvector predictions were less robust, with some

traits having strong predictions (e.g. leaf area and seed

mass); wood density and maximum height predictions were

less strong (Table 3).

Lastly, we quantified the correlation between four climatic

variables and deviations of the predicted values from known

values for map grid cells on both continents. We found that

deviations were nearly always correlated with the four

climatic variables (Tables S1 & S2 in the Supporting Infor-

mation). The correlations were generally stronger for

temperature-related variables than for precipitation-related

variables. The geographical signature in the deviations for

Europe can be seen in Fig. 1, indicating that in the study sys-

tem the major deviations generally occur at the extremes of

latitude.

DISCUSSION

Mapping the distribution and diversity of plant functional

trait on continental scales is a fundamental goal in biogeog-

raphy and ecosystem ecology (Reich, 2005; Swenson &

Weiser, 2010; Swenson et al., 2012). A key limitation to pro-

gress is that most large plant trait databases are highly sparse

(Kattge et al., 2011) so probably making most efforts at func-

tional trait mapping prone to large error. While waiting for

more data to accumulate, a pragmatic way forward may be

to impute or estimate the missing trait values in existing

databases. These estimates could be strengthened by incorpo-

rating phylogenetic information (Swenson, 2014a; Schrodt

et al., 2015). This is because some plant functional traits of

Functional Richness

0.54 - 4.83

4.84 - 7.46

7.47 - 10.09

10.10 - 12.33

12.34 - 14.51

14.52 - 16.88

Figure 2 The multivariate functional richness (FRic) quantified using the known trait data (left) and the predicted trait data (right) for

European trees. The predicted values were generated by fitting a model of trait evolution for maximum height, leaf size, seed mass and

wood density for eastern North American trees and using that model to predict the trait values of European tree species based on their

phylogenetic position. The known and predicted FRic values are highly correlated (r2 5 0.964) with a lower than expected root mean

squared error (RMSE 5 1.944; P< 0.05).
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interest are known to have a phylogenetic signal in global

datasets (e.g. Moles et al., 2005; Swenson & Enquist, 2007).

The goal of the present work was to implement and test the

ability of phylogenetic imputation methods to predict the

distribution and diversity of plant functional traits on conti-

nental scales.

Here, we have shown that robust predictions of individual

trait distributions and the overall functional diversity within

map grid cells can be predicted among novel continental set-

tings simply by taking advantage of the phylogenetic signal

in trait data from another continent. The three approaches

to phylogenetic imputation used here all were able to predict

a large amount of the variance in trait distributions at the

species and map grid cell levels (Tables 1–3). However, the

two pGLS regression-based approaches explained more var-

iance than phylogenetic eigenvector regression-based meth-

ods. Thus, even when setting aside conceptual debates

regarding eigenvector approaches (e.g. Rohlf, 2001), these

methods tended to perform well, but not as well as pGLS.

The two pGLS approaches yielded similar results in this

study, but it is expected that in many cases trait evolution

will not as closely approximate a Brownian motion model

and the pGLS approach fitting a k value will be more reli-

able. More work is needed, using larger empirical and simu-

lated datasets, (Swenson, 2014a) to confirm or reject this

general recommendation.

The phylogenetic imputation methods were able to make

strong predictions of the spatial distribution of traits, but the

Table 2 In this table we do not estimate a model of trait evolution, rather we assume a Brownian motion model of trait evolution

(k 5 1) and phylogenetic generalized least squares. The predicted trait values and species distribution maps were then used to calculate

the predicted mean and variance of each trait value and the predicted multivariate functional dispersion and functional richness value in

map grid cells on each continent. The predicted mean, variance, functional dispersion and functional richness values were regressed onto

the known values. The table gives the intercept and slope of each regression with their standard errors (SE) and the r2.

Eastern North America prediction of European traits European prediction of eastern North American traits

Map grid cell value Intercept SE Slope SE r2 Intercept SE Slope SE r2

Mean maximum height (m) 1.13 0.01 0.162 0.01 0.18 1.33 0.01 0.026 0.01 0.11

Variance maximum height (m) 0.02 < 0.00 20.068 0.01 0.14 0.02 < 0.00 20.118 0.01 0.18

Mean leaf size (cm2) 20.09 0.01 1.174 0.01 0.88 0.17 0.01 0.604 0.01 0.77

Variance leaf size (cm2) 20.03 < 0.00 0.942 0.01 0.93 20.02 0.01 0.631 0.01 0.88

Mean seed mass (g) 0.13 < 0.00 0.794 < 0.00 0.98 0.28 0.01 0.907 0.01 0.91

Variance seed mass (g) 0.10 0.01 0.641 0.01 0.88 0.68 0.02 0.316 0.02 0.41

Mean wood density (g cm23) 0.01 < 0.00 0.973 0.01 0.93 20.03 0.01 1.076 0.02 0.99

Variance wood density (g cm23) 0.01 < 0.00 0.117 0.01 0.26 0.01 < 0.00 0.243 0.02 0.30

Functional dispersion 0.46 0.02 0.767 0.01 0.44 0.07 0.02 1.121 0.01 0.88

Functional richness 3.67 0.09 0.619 0.01 0.67 4.16 0.15 0.786 0.01 0.81

Table 3 We used phylogenetic eigenvector regression using the trait data from one continent to predict the trait values for species on

the other continent. The predicted trait values and species distribution maps were then used to calculate the predicted mean and var-

iance of each trait value and the predicted multivariate functional dispersion and functional richness value in map grid cells on each

continent. The predicted mean, variance, functional dispersion and functional richness values were regressed onto the known values

through the origin. This table shows the intercept and slope of each regression with their standard errors (SE) and the r2.

Eastern North America prediction of European traits European prediction of eastern North American traits

Map grid cell value Intercept SE Slope SE r2 Intercept SE Slope SE r2

Mean maximum height (m) 1.26 0.01 0.06 0.01 0.11 1.33 0.01 0.01 0.01 0.08

Variance maximum height (m) 0.01 < 0.00 20.05 0.01 0.11 0.01 < 0.00 20.06 0.01 0.11

Mean leaf size (cm2) 20.17 0.01 1.16 0.01 0.75 0.27 0.01 0.53 0.02 0.63

Variance leaf size (cm2) 0.02 0.01 0.76 0.01 0.46 0.41 0.02 0.43 0.02 0.46

Mean seed mass (g) 0.36 < 0.00 0.73 < 0.00 0.96 1.03 0.01 0.43 0.02 0.52

Variance seed mass (g) 20.08 0.01 0.60 0.01 0.81 0.65 0.03 0.18 0.01 0.11

Mean wood density (g cm23) 0.22 0.01 0.60 0.02 0.51 0.03 0.02 0.96 0.04 0.93

Variance wood density (g cm23) < 0.00 < 0.00 0.04 0.01 0.15 0.01 < 0.00 20.06 0.01 0.09

Functional dispersion 0.09 0.03 0.85 0.01 0.44 0.21 0.03 0.92 0.02 0.69

Functional richness 0.44 0.15 0.90 0.01 0.65 21.26 0.56 1.88 0.02 0.64
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northern- and southernmost portions of both regions were

where the methods performed worst (Figs 1 & 2). This is

particularly evident when we consider the strong relation-

ships between temperature variables and the deviation of pre-

dicted values from known values (Tables S1 & S2). One

reason for this may be the tendency of the methods to

under-represent trait divergences due to habitat differences

within a clade and an over-averaging of trait data leading to

higher deviations in more extreme climates within clades.

Future work may be able to remedy this bias by either incor-

porating climatic information into the species-level trait pre-

dictions or adjusting predicted species-level values in map

grid cells or the assemblage-level trait or diversity values

based upon climate, but such work is beyond the scope of

the present paper. A second reason is that these regions con-

tain a greater number of species from different parts of the

phylogenetic tree. In other words, the distance between a

data point used to build the statistical model and a species

in these regions will increase. This is particularly the case

when building a model on one continent and projecting it to

another where it is likely that many genera in the species-

rich regions on the continent to be predicted are not found

on the continent used to build the model.

This study focused on four functional traits commonly

used in trait-based ecology and readily available in the litera-

ture. Two of these traits, wood density and seed mass, are

known to have a great deal of phylogenetic signal (Moles

et al., 2005; Swenson & Enquist, 2007), meaning that phylo-

genetic imputation methods are likely to be very successful.

Indeed, we found this to be the case at the species and map

grid cell levels (Tables 1–3). The phylogenetic signal in the

other two traits, maximum height and leaf size, has not been

as well scrutinized in the literature at global scales. Maximum

height was found to have much less phylogenetic signal than

the other traits, but leaf size had a similar degree of phyloge-

netic signal to seed mass and wood density (Table 1). The

outcome of this was that predictions of maximum height dis-

tributions were far less reliable than those of leaf size distri-

butions (Tables 1–3).

Considerations for future implementation of

phylogenetic imputation

It may seem surprising that our phylogenetically based

approach is able to predict the observed geographical pat-

terns so strongly. We expect that some of this success is due

to the fact that the two tree floras are very similar in their

familial and generic compositions. Thus, the average phyloge-

netic distance between a training trait data point and a pre-

dicted trait data point is relatively low and represents

perhaps a best-case scenario. In other words, projecting the

traits of another flora with a very different phylogenetic com-

position (e.g. the Amazon) from European data would be

likely to result in much more error. Indeed, we found evi-

dence of this to a smaller degree when we consider that less

variation in eastern North America could be predicted using

the smaller European flora (e.g. Table 1). Additionally, the

methods used are regressions and extrapolations of these

models, so will more likely than not introduce large errors.

In the present study, the bounds of the data in each region

are roughly similar, but if one region lacked, for example,

gymnosperms there would be a highly increased potential for

error. Taken together, future work will have to closely con-

sider the phylogenetic compositions of the training data set

and the species set to be predicted. Some of the potential for

error could be mitigated by using the largest trait datasets

available (e.g. Kattge et al., 2011; Schrodt et al., 2015) such

that phylogenetic extrapolation does not occur and the pre-

dicted trait values can stay within reasonable bounds.

Another consideration arising from this study is that we

only considered four traits that, while being of interest to

ecologists, do not represent the entirety of the traits that

ecologists are interested in mapping. For example, earth sys-

tem modellers are likely to be more interested in leaf gas

exchange rates that may be highly variable within families

and genera (i.e. have little phylogenetic signal; see van Bode-

gom et al., 2012). Such traits may approximate the situation

we encountered with maximum height where predictions are

not as strong, and this would propagate error once aggre-

gated into things like global dynamic vegetation models.

Thus, an important question will be the degree to which the

error introduced via phylogenetic imputation is less or more

than the error introduced by lumping species into a few dis-

crete functional types.

Next, the present study found strong relationships between

climate and deviations from predictions. Each of the meth-

ods used could incorporate climatic information by quantify-

ing the average climate for each species and using this

information as an additional independent variable in the

model, such that phylogenetic signal and trait–climate rela-

tionships are simultaneously used to predict missing trait val-

ues. It is expected that such models will strengthen trait

predictions, particularly when phylogenies with no resolution

within genera are utilized. An alternative approach could be

adjusting post hoc the grid cell values for assemblages by cli-

mate, but this approach may be more arbitrary and unreli-

able. More detailed future models may also seek to model

population-level response to climate hierarchically, which

may help refine predictions of traits that are very sensitive to

local abiotic conditions (e.g. gas exchange). However, to our

knowledge, such phylogenetically explicit methods that model

trait evolution along branch lengths have not yet been

developed.

Lastly, it is worth highlighting again that the proposed

methods are meant to serve as a pragmatic approach to esti-

mating trait values given the current circumstances. Without

a doubt we would prefer that trait values were actually meas-

ured than predicted, and future trait collection campaigns,

particularly in under-sampled regions like the tropics, should

remain a priority. Further, as previously noted (see Swenson,

2014a), while the biases or errors introduced by phylogenetic

imputation may be tolerable on very large scales, using

N. G. Swenson et al.
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imputed values for local-scale studies or community ecology

would be likely to introduce levels of error that would not be

tolerable. Thus, we are not recommending the use of these

methods for trait-based community ecology.

CONCLUSIONS

In recent years plant ecologists and evolutionary biologists

have made tremendous advances by generating and analysing

large plant trait databases (Kattge et al., 2011) and large phy-

logenetic trees (Webb & Donoghue, 2005). We suggest that

these advances can now be leveraged to produce phylogeneti-

cally based predictions of the continental-scale distribution

and the diversity of plant function, even into areas with

novel sets of species. This predictive power will be crucial in

a future where climate change and species introductions will

increasingly generate novel assemblages. Importantly these

predictions may be the most pragmatic way for ecosystem

modellers to incorporate functional diversity within and

among map grid cells into their models and move beyond

using a singular plant functional type to represent all vegeta-

tion within a region, and to do so even for less-studied

regions with many species for which we have little direct trait

information.
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SUPPORTING INFORMATION

Additional supporting information may be found in the

online version of this article at the publisher’s web-site:

Table S1 Pearson correlation coefficients for eastern North

America between the deviation of the predicted values from

the known value where the deviation is calculated as the

predicted subtracted from the observed.

Table S2 Pearson correlation coefficients for Europe between

the deviation of the predicted values from the known value

where the deviation is calculated as the predicted subtracted

from the observed.
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