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Accelerating climate and land-use change are rapidly transforming Earth’s biodiversity. 
While there is substantial evidence on the exposure and vulnerability of biodiversity to 
global change at the species level, the global exposure of intraspecific genetic diversity 
(GD) is still unknown. Here, we assess the exposure of mitochondrial GD to mid-21st 
century climate and land-use change in terrestrial mammal assemblages at grid-cell 
and bioclimatic region scales under alternative narratives of future societal develop-
ment. We used global predictions of mammal GD distribution based on thousands of 
georeferenced mitochondrial genes for hundreds of mammal species, the latest genera-
tion of global climate models from the ongoing sixth phase of the Coupled Model 
Intercomparison Project (CMIP6), and global future projections of land-use prepared 
for CMIP6. We found that more than 50% of the genetically poorest geographic areas 
(grid-cells), primarily distributed in tundra, boreal forests/taiga and temperate biocli-
matic regions, will be exposed to mean annual temperature rise that exceeds 2°C com-
pared to the baseline period under all considered future scenarios. We also show that 
at least 30% of the most genetically rich areas in tropical, subtropical and montane 
regions will be exposed to an increase of mean annual temperature > 2°C under less 
optimal scenarios. Genetic diversity in these rich regions is also predicted to be exposed 
to severe reductions of primary vegetation area and increasing human activities (an 
average loss of 5–10% of their total area under the less sustainable land-use scenarios). 
Our findings reveal a substantial exposure of mammal GD to the combined effects of 
global climate and land-use change. Meanwhile the post-2020 conservation goals are 
overlooking genetic diversity, our study identifies both genetically poor and highly 
diverse areas severely exposed to global change, paving the road to better estimate the 
geography of biodiversity vulnerability to global change.
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Introduction

The exposure of terrestrial biodiversity to major anthro-
pogenic pressures, such as climate and land-use change, is 
steadily increasing (Newbold et al. 2015, Foden et al. 2019), 
and its adverse effects on species and ecosystems are predicted 
to rapidly escalate in the absence of drastic mitigation efforts 
(Tilman et al. 2017, Powers and Jetz 2019, Trisos et al. 2020). 
Intensified land-use change, including deforestation, agri-
cultural expansion and urbanization, in the last decades has 
been the main driver of terrestrial biodiversity decline, with 
its impacts possibly surpassing the proposed safety bound-
aries for the long-term maintenance of ecosystem functions 
at global scale (Steffen et al. 2015, Newbold et al. 2016). 
Additionally, climate change has already impacted biodiver-
sity (Scheffers et al. 2016), while its effects will likely match 
or exceed those of land-use in the coming decades (Newbold 
2018). Global annual temperature is currently rising by 
0.2°C (± 0.1°C) per decade, with many land regions already 
experiencing annual temperatures that exceed 1.5°C above 
pre-industrial levels (Allen et al. 2018). An increase of more 
than 2°C in annual temperature would significantly elevate 
species abrupt exposure (Trisos et al. 2020) and extinction 
risk (Urban 2015, Warren et al. 2018) and could trigger con-
tinued warming of the Earth system, causing serious disrup-
tions to ecosystems globally (Steffen et al. 2018).

In the past decades, increased data availability on species 
distributions and their evolutionary relationships has enabled 
thorough assessments of the exposure and vulnerability of 
terrestrial species and their diversity to future environmen-
tal change, both at regional (Pio et al. 2014, Dullinger et al. 
2020) and global scales (Hof et al. 2011, Pacifici et al. 2018, 
Carvalho et al. 2019b, Trisos et al. 2020). Yet, a significant 
gap of knowledge exists regarding the exposure of biodiver-
sity below the species level, and in particular for intraspe-
cific genetic diversity (GD). Genetic variation can facilitate 
adaptation of species under rapidly changing environments 
(Zheng et al. 2019, Bitter et al. 2019) and promote ecosys-
tem resilience (Oliver et al. 2015). Moreover, the rapidly 
accumulating variation in animal mitochondrial genes has 
been traditionally considered ‘neutral’ and is extensively used 
to estimate evolutionary histories of individuals and popula-
tions (Avise 2009). However, this assumption of neutrality 
is increasingly being challenged. Specifically, with regard to 
global warming, a growing body of research highlights the 
dual role of variation in the mitochondrial genome both in 
reflecting local adaptation to climate and in determining the 
thermal range that an organism can tolerate (Camus et al. 
2017, Lasne et al. 2019, Li et al. 2019). High levels of mito-
chondrial GD, particularly in warmer climates, are indica-
tive of potentially beneficial standing variation that could 
encode for increased heat tolerance and buffer against rapid 
warming (Camus et al. 2017, Li et al. 2019). On the con-
trary, a homogeneous pool of genetic variation adapted to 
colder climates suggests reduced evolutionary potential 
of species to respond to rising temperatures (Hoffmann 
and Sgrò 2011, Camus et al. 2017). Since GD is a vital 

component of biodiversity, there is a pressing need to assess 
its exposure under ongoing and future climate and land-
use change. Recent studies have assessed the vulnerability 
of GD to climate change focusing either on single species 
(Theodoridis et al. 2018), or on small species assemblages at 
regional scale (Carvalho et al. 2019a), yet global assessments 
within large taxonomic groups are lacking.

For terrestrial mammals, an iconic group in conservation 
(McGowan et al. 2020), large efforts in data collection and 
compilation have identified conservation priority areas and 
hotspots of vulnerability to future environmental change 
for three key dimensions of mammal biodiversity, i.e. taxo-
nomic, phylogenetic and phenotypic diversity (Brum et al. 
2017, Pacifici et al. 2018). Yet, only recently a description of 
the global distribution of genetic variation in terrestrial mam-
mals became available (Miraldo et al. 2016). The generation 
of large-scale geo-referenced sequences for two widely-used 
mitochondrial genes, i.e. cytochrome b (cytb) and cyto-
chrome oxidase 1 (co1), revealed a high degree of covariation 
between GD and interspecific diversity and the major role of 
rapid climate change during the last millennia in reducing 
current levels of diversity in co1 (Theodoridis et al. 2020). 
These results coupled with the suggested relevance of stand-
ing mitochondrial variation to climatic adaptation supports 
the interest for a first evaluation of the global exposure of 
mammal GD to future climate and land-use change, poten-
tially providing crucial information to anticipate the fate of 
the most basal dimension of biodiversity.

To date, most of the assessments of biodiversity expo-
sure and vulnerability to climate change have relied on cli-
mate simulations from either the most recently completed 
phase (fifth) of the Coupled Model Intercomparison Project 
(CMIP5, IPCC 2014), or previous phases. Yet, the latest gen-
eration of global climate models (GCMs) from the ongoing 
sixth phase (CMIP6) shows a substantially increased sensitiv-
ity to atmospheric CO2 concentration than did the previous 
generation of models, resulting both in wider inter-model 
variation and overall greater projected warming through 
the twenty-first century (Forster et al. 2020, Tokarska et al. 
2020, Zelinka et al. 2020). These new climate projections 
are driven by a new set of energy, land-use and emissions 
scenarios produced with integrated assessment models that 
combine narratives of future societal development, namely 
shared socioeconomic pathways (SSPs), and climate mitiga-
tion policies, namely representative concentration pathways 
(RCPs, O’Neill et al. 2016). Multiple combinations of SSPs 
and RCPs were developed in preparation for CMIP6 span-
ning a wide range of scenarios, from sustainable growth 
(SSP1) coupled with low warming (RCP2.6), to fossil-fueled 
development (SSP5) coupled with high warming by the end 
of the century (RCP8.5, O’Neill et al. 2016). Importantly, 
the updated SSP-driven climate projections are in line with 
the most recent future projections of land-use change, the 
land use harmonization 2 (LUH2) dataset, prepared for 
CMIP6 (Lawrence et al. 2016), thus enabling an integrated 
assessment of biodiversity exposure to alternative scenarios of 
future environmental change.
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Here, we assess the exposure of GD in terrestrial mammal 
assemblages to mid-21st century climate and land-use change 
under the four basic Tier 1 scenarios, namely SSP1-2.6, 
SSP2-4.5, SSP3-7.0 and SSP5-8.5, developed for CMIP6. 
Following Foden et al. (2019), we define exposure as the 
magnitude of environmental change experienced by living 
organisms within a geographic area. We take advantage of the 
recently-published modeled distribution of mitochondrial 
GD at global scale (Theodoridis et al. 2020) to estimate expo-
sure in regions of the world that lack adequate genetic data. 
To further account for the uncertainty in the predicted dis-
tribution of GD, we also estimate the exposure of measured 
GD in geographic areas (i.e. grid-cells) based on thousands of 
mitochondrial sequences and hundreds of mammal species 
across the globe. We estimated exposure across grid-cell and 
bioclimatic regions and show that regions of the world that 
harbor high GD, such as the tropical bioclimatic regions, are 
largely exposed both to climate and land-use change, while 
genetically poor regions, such as the boreal forests, are mainly 
exposed to climate change.

Material and methods

Mammal genetic diversity

Due to the advantageous properties (e.g. rapid evolution and 
low recombination) of mitochondrial DNA in mammals, we 
utilized two mitochondrial genes, i.e. cytb and co1, that have 
been extensively used in taxonomic, phylogenetic and phylo-
geographic studies (Avise 2009), and therefore constitute the 
richest resource of genetic data with available spatial informa-
tion. Additionally, standing genetic variation in these genes 
has been recently suggested to affect molecular mechanisms 
that could provide evolutionary adaptation under climatic 
stress (Camus et al. 2017, Li et al. 2019).

Mitochondrial sequences were retrieved from GeneBank 
and BOLD and geographic coordinates to the sequences 
that were not already annotated with latitude and longitude 
were assigned using the API tool provided by GeoNames.
org (<http://api.geonames.org>). A detailed description of 
the retrieval and georeferencing of genetic sequences is pro-
vided in Miraldo et al. (2016) and Theodoridis et al. (2020). 
Following Miraldo et al. (2016), GD was defined as the aver-
age number of nucleotide differences per geographic area 
(grid-cells) across all pairwise sequence comparisons within 
a species. For a particular assemblage of species, GD was 
then defined as the average nucleotide diversity per grid-cell 
(385.9 × 385.9 km spatial resolution) across all species pres-
ent in that assemblage. The choice of the spatial resolution of 
grid-cells was based on the following criteria: 1) maximiza-
tion of the number of sequences from each species that are 
included in each cell, 2) minimization of the difference in 
the number of sequences between species and 3) minimi-
zation of the georeferencing errors deriving from the broad 
locality descriptions attached to each retrieved sequence 
(Miraldo et al. 2016).

To estimate the exposure of mammal GD in future cli-
mate and land-use change, we utilized the recently-published 
predicted distribution of mitochondrial GD in terrestrial 
mammal assemblages at global scale. These global maps 
(1375 cells, Fig. 1a) are based on the predictions made by 
long-standing biodiversity theories that invoke past popula-
tion divergence and extirpations as the intermediate drivers 
of the distribution of GD at global scale. Multiple predictors, 
including interspecific diversity and past climate change, were 
evaluated in a multi-model inference framework and models 
were fitted using selected grid-cells based on data availability 
(Theodoridis et al. 2020 for details). The most parsimonious 
model for cytb was fitted to a total of 185 grid-cells (15 706 
sequences, 581 species, Supporting information) and included 
phylogenetic diversity as the only predictor, while the model 
for co1 was fitted to a total of 76 grid-cells (16 842 sequences, 
492 species, Supporting information) and included both phy-
logenetic diversity and trends in late quaternary temperature 
change as predictors. Utilizing the predicted distribution of 
GD allowed us to include data-poor regions of the world, 
such as the tropical and subtropical regions (Theodoridis et al. 
2020), thus enabling assessments of the exposure of mammal 
GD at global scale. To account for uncertainty (i.e. the unex-
plained variance) in the predicted global distribution of GD 
and validate our assessments, we also assessed exposure based 
only on the aforementioned observed distribution of GD for 
both genetic markers. The maps of predicted and observed 
GD for cytb and co1 were downloaded from <https://github.
com/spyrostheodoridis/Genetic-geography-of-terrestrial-
mammals>. In order to assess the exposure to climate and 
land-use change of grid-cells with higher or lower genetic 
diversity than expected given their species diversity, we further 
regressed GD against mammal species richness (as estimated 
in Theodoridis et al. 2020) and mapped the residuals for both 
mitochondrial genes.

Since bioclimatic regions are primarily defined by climate 
and land-cover (i.e. vegetation type, Olson et al. 2001), mam-
mal assemblages within a region may be subject to similar 
exposure (i.e. dependent with respect to exposure). Therefore, 
we additionally assessed the exposure of GD at the regional 
scale using the classification of the WWF Terrestrial Ecoregions 
(Olson et al. 2001, 14 terrestrial bioclimatic regions, Fig. 1b). 
The predicted GD per region was calculated by intersecting 
the grid-cells from the predicted maps described above with 
the bioclimatic region map. In cases where several regions 
intersected with a grid-cell, the cell was assigned to the region 
with the greatest area overlap with the respective cell.

Future climate change scenarios

We estimated mid-21st century climate change as the mag-
nitude of change in annual temperature and precipitation 
between the baseline period 1961–1990 and the future 
period 2040–2069. These reference periods are adopted by 
the Intergovernmental Panel on Climate Change (IPCC, 
<www.ipcc-data.org/ddc/ddc_faq.html>) as representative 
of 20th and mid-21st century climate.
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Increasing annual temperature has been recently suggested 
to be the primary driver of exposure of species assemblages to 
climate change (Trisos et al. 2020), while long-term historical 
variation in both annual temperature and precipitation has 
been shown to play a major role in shaping current biodi-
versity patterns at multiple dimensions (Brown et al. 2020, 
Theodoridis et al. 2020).

To estimate annual climate for the baseline period, we 
first sourced observed land-surface monthly temperature and 
precipitation from the latest version of the Climatic Research 
Unit Time-Series (CRU TS Ver. 4.03, <http://data.ceda.
ac.uk/badc/cru/data/cru_ts/cru_ts_4.03>) at 0.5° × 0.5° 
(latitude/longitude) spatial resolution (Harris et al. 2014) and 
then calculated the mean annual temperature and total annual 
precipitation for the years 1900–2018. To match the spatial 
resolution of future climate (below), we re-gridded the CRU 
annual values to a 1.4° × 1.4° using distance-weighted average 
remapping. Baseline climate was defined as the average val-
ues of annual temperature and precipitation across the years 
1961–1990.

Future projections of monthly surface temperature and 
precipitation were sourced from the latest generation of 

GCMs that are being currently released as part of the ongo-
ing sixth phase of the Coupled Model Intercomparison 
Project (CMIP6, available at <https://esgf-node.llnl.gov/
search/cmip6>, accessed on 19 February 2020). We selected 
a total of 19 GCM’s with at least one simulation/vari-
ant available for each of the four scenarios (i.e. SSP1-2.6, 
SSP2-4.5, SSP3-7.0 and SSP5-8.5), aiming at maximizing 
the number of models and thus the overall multi-model per-
formance under each scenario (Flato et al. 2013). The 19 
selected GCMs represent different modelling institutions so 
as to minimize model interdependence in the final model 
ensembles (Abramowitz et al. 2019). For models with mul-
tiple climate simulations per scenario (Table 1 for details), 
we averaged across all simulations to minimize internal 
model variability and uncertainty (Eyring et al. 2019). 
Monthly temperature and precipitation data were obtained 
for each of the 19 GCMs and the four basic scenarios and 
re-gridded to a 1.4° × 1.4° (latitude/longitude, the median 
longitude resolution across all models, Table 1) global grid 
using bilinear interpolation. Monthly climate variables were 
then converted to °C (from Kelvin) and mm/month (from 
kg m2 s1), respectively, and summarized to mean annual 

Figure 1. Predicted intraspecific genetic diversity (GD) in mammal assemblages for two mitochondrial genes, cytb and co1. (a) Grid-cells 
at 385.9 × 385.9 km spatial resolution (b) Aggregated grid-cells across 14 bioclimatic regions. Black and red lines in the violin plots show 
mean and median GD values respectively for each region. The map inset shows the geographic distribution of the 14 bioclimatic regions.
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temperature and total annual precipitation. To preserve the 
internal climate variability and uncertainty across GCMs, 
we first calculated the magnitude of climate change (i.e. 
annual anomalies) for each individual model and scenario 
by subtracting the baseline climate (1961–1990) from future 
climate and then averaged the anomalies across all 19 GCMs 
(i.e. mutli-model ensemble of annual anomalies, Flato et al. 
2013). Finally, we averaged the ensemble anomaly values 
across the years 2040–2069 to obtain the predicted mid-21st 
century magnitude of climate change.

We evaluated the overall performance of the multi-model 
ensemble in predicting observed climate by comparing his-
torical runs (1900–2015) for all 19 GCMs with observed cli-
mate. We calculated annual temperatures predicted by each 
model, as described above, and then averaged the annual 
values across all 19 models (multi-model ensemble of annual 
temperatures). Following the IPCC procedures (Flato et al. 
2013), we estimated ensemble bias as the difference between 
the multi-model ensemble and the observed temperature 
from the CRU dataset for the baseline years (1961–1990). 
Additionally, we visually compared the global weighted mean 
of the mutli-model ensemble of annual anomalies (see above 
for calculation), with the observed anomalies for the years 
1900–2015 (Fig. 2a).

Future land-use change scenarios

We estimated GD exposure to mid-21st century land-
use change as the difference in major land-use/land-cover 

categories (below) between current conditions (i.e. the 
year 2015 sourced from the common historic dataset v2h) 
and mid-21st century (i.e. 2050, v2f ) predictions under 
different scenarios. Global land-use data for current con-
ditions and 2050 projections were sourced from the land-
use harmonization 2 (LUH2) dataset prepared for CMIP6 
(Lawrence et al. 2016, <https://luh.umd.edu/data.shtml>). 
The LUH2 project models the states (fractions ranging 
from 0 to 1) of 12 land-use categories for the period span-
ning 2015–2100 at 0.25° × 0.25° spatial resolution. The 
four land-use projections used in this study were generated 
under the same future scenarios that were used to generate 
the CMIP6 climate projections

For each scenario, we summed the states of the 12 
available land-use categories in three general categories 
(Supporting information) based on their similarities with 
regard to changes in vertebrate biodiversity (Newbold et al. 
2015, Newbold 2018): primary vegetation (pristine habitat 
with no record of destruction), secondary vegetation (natu-
ral habitat recovering after some recorded historical destruc-
tion) and human activities (plantations, croplands, pastures 
and areas of human settlement). Here, we only consider 
primary vegetation and human activities because changes in 
these two major classes capture the primary land-use threats 
to vertebrate biodiversity globally (Newbold et al. 2015, 
Carvalho et al. 2019b) and are correlated with changes in 
secondary land. We then calculated the difference in the fre-
quency of primary vegetation and human activities between 
2015 and 2050.

Table 1. Description of CMIP6 models.

Model
Number of variants [ssp126, 

ssp245, ssp370, ssp585]
Resolution  
(Lon × Lat) Source

ACCESS-CM2 1,1,1,1 1.87° × 1.25° Commonwealth Scientific and Industrial Research 
Organisation, ARC Centre of Excellence for Climate 
System Science, Australia

AWI-CM-1-1-MR 1,1,5,1 0.93° × 0.93° Alfred Wegener Institute, Germany
BCC-CSM2-MR 1,1,1,1 1.12° × 1.12° Beijing Climate Center, China Meteorological 

Administration, China
CAMS-CSM1-0 2,2,2,2 1.12° × 1.12° Copernicus Atmosphere Monitoring Service, European 

Union
CESM2 2,3,2,2 1.25° × 0.94° National Center for Atmospheric Research, USA
CNRM-CM6-1 6,6,6,6 1.4° × 1.4° Centre National de Recherches Meteorologiques, Centre 

Européen de Recherche et de Formation Avancée en 
Calcul Scientifique, France

CanESM5 11,7,12,15 2.81° × 2.79° Canadian Centre for Climate Modelling and Analysis, 
Canada

EC-Earth3-Veg 3,3,3,2 0.7° × 0.7° EC-Earth Consortium, Europe
FGOALS-f3-L 1,1,1,1 1.25° × 1° Chinese Academy of Sciences, China
GFDL-ESM4 1,3,1,1 1.25° × 1° Geophysical Fluid Dynamics Laboratory, USA
GISS-E2-1-G 1,5,1,1 2.5° × 2° NASA Goddard Institute for Space Studies, USA
INM-CM5-0 1,1,5,1 2° × 1.5° Institute of Numerical Mathematics, Russia
IPSL-CM6A-LR 6,9,11,6 2.5° × 1.27° Institut Pierre-Simon Laplace, France
MCM-UA-1-0 1,1,1,1 3.75° × 2.24° University of Arizona, USA
MIROC6 3,3,3,3 1.4° × 1.4° Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute, Japan
MPI-ESM1-2-LR 10,10,10,10 1.87° × 1.86° Max Planck Institute for Meteorology, Germany
MRI-ESM2-0 1,1,5,2 1.12° × 1.12° Meteorological Research Institute, Japan
NorESM2-LM 1,3,1,1 2.5° × 1.89° Norwegian Climate Centre, Norway
UKESM1-0-LL 5,5,5,5 1.85° × 1.25° Met Office Hadley Centre, UK
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Exposure of mammal GD to climate and land-use 
change

The exposure of GD to future climate change was assessed 
by intersecting the predicted mid-21st century anomalies in 
annual temperature and precipitation (1.4° × 1.4°) and land-
use (0.25° × 0.25°) with the maps of GD. Exposure within 
each GD grid-cell was calculated as the area-weighted mean 
of all anomaly values intersecting the respective grid-cell. The 
weight for each anomaly grid-cell was calculated using the 
following formula:

Area weight = ´æ
è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷cos y

p
180

  

where y is the absolute latitude of the cell centroid.
To statistically test for differences in exposure between 

high and low GD at the grid-cell scale, we classified the GD 
values in quartiles (i.e. 0–25, 25–50, 50–75, 75–100%). 

Because of reduced sample size (i.e. number of grid-cells) 
for the observed GD, we additionally conducted all statisti-
cal analyses classifying the observed GD in two percentiles 
(0–50% and 50–100%). Due to prominent unequal variance 
(i.e. heteroskedasticity) for all exposure variables across the 
GD quartiles (and percentiles for the observed GD), we first 
applied one-way Welch’s ANOVA across classes, and upon 
rejection of the null hypothesis of equal means we further 
applied the post hoc Welch’s t-test with Bonferroni p value 
corrections for significant differences between the lowest 
and highest class (hereafter low and high GD respectively). 
To further test for significant differences in the medians, we 
applied the non-parametric ANOVA (Kruskal–Wallis test) 
across GD classes followed by the post hoc Dunn–Bonferroni 
pairwise test.

We further assessed the exposure of GD to climate and 
land-use change at the bioclimatic region scale by applying 
mixed linear models treating exposure as response variable, 
and GD and region as fixed and random effects respec-
tively. To this end, each grid-cell was assigned a bioclimatic 

Figure 2. Predicted temperature and precipitation change (anomalies) using 19 CMIP6 models for four future scenarios (SSP1-2.6, SSP2-
4.5, SSP3-7.0 and SSP5-8.5). (a) Global annual mean temperature change compared to the baseline average (1961–1990). Numbers in 
parentheses indicate the total number of model variants used for each future scenario and the common historical ensemble. Grey zones 
indicate the baseline and the future reference periods (2041–2070). Shades around the lines represent one standard deviation (across all 19 
GCMs) from the multi-model ensemble mean. (b) Multi-model ensemble bias in annual temperature (the difference between the multi-
model ensemble mean and the observed temperature from the CRU TS dataset for the baseline period. (c) Global predicted distribution of 
mean annual temperature and annual precipitation change between the baseline and future periods.
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region as described above (‘Mammal genetic diversity’ sec-
tion). We fitted the models using the raw exposure vari-
ables, with the exception of primary vegetation change, 
where we used the square root of its absolute value across 
grid-cells to better meet the normality assumptions of the 
mixed linear model. The significance of the variation in GD 
exposure across regions was assessed using likelihood ratio 
test between the mixed model and the simple model that 
included only GD as independent variable (Harrison et al. 
2018). We additionally assessed the mixed model fit for all 
exposure variables using the conditional R2 (R2c, Nakagawa 
and Schielzeth 2013).

All spatial calculations and statistical analyses were per-
formed in CDO (Schulzweida 2019), GDAL (GDAL/OGR 
Contributors 2020), Python (Van Rossum and Drake 2009) 
and R (<www.r-project.org>).

Results

Global patterns of mammal genetic diversity

For both mitochondrial genes, the grid-cells in the lowest 
GD quartile (low GD) are primarily distributed across high 
latitudes of the Northern hemisphere and in the deserts and 

xeric shrublands of North Africa and Arabian Peninsula, 
while grid-cells in the highest GD quartiles (high GD) are 
distributed in tropical and subtropical latitudes (Fig. 1a, 3, 
4, Supporting information). Additionally, for cytb, regions 
that encompass low GD include the deserts of Australia 
and southern Patagonia (Fig. 1a, 3, 4a). For co1, low GD is 
also distributed in Northern Europe, including Scandinavia 
and the British Isles, and in North America (Fig. 1a, 4b, 
Supporting information).

In agreement with the reported patterns at the grid-cell 
scale, tropical and subtropical bioclimatic regions showed 
a substantially higher number of predicted average muta-
tions per base pair compared to temperate and polar regions 
(Fig. 1b, Supporting information). For both mitochondrial 
genes, mangroves harbored the highest median and mean 
genetic diversity across regions, followed by the tropical and 
subtropical coniferous forests and the tropical and subtropi-
cal grasslands, savannas and shrublands. Additionally, for 
both genes the montane grasslands and shrublands exhibited 
high GD, with maximum values exceeding those of tropical 
and subtropical forests (Fig. 1, Supporting information). The 
bioclimatic regions harboring the lowest GD for both genes 
were boreal forests/taiga and tundra. Genetic diversity for co1 
was noticeably lower compared to cytb for all temperate and 
polar regions.

Figure 3. Exposure of mammal cytb genetic diversity to climate and land-use change across three future scenarios. In the color scales, the 
x-axis indicates genetic diversity split in quartiles. The y-axis indicates the change (i.e. exposure) between future and baseline values for each 
climate and land-use variable.
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Future climate change

The multi-model ensemble (19 GCMs, Table 1) of the new 
CMIP6 climate projections predict an increase in global ter-
restrial annual temperature of > 2°C by mid-21st century 
under all four future scenarios (Fig. 2a). Overall, the multi-
model ensemble of historical runs performed well in predict-
ing the observed baseline annual temperature (Fig. 2b). For 
the majority of the land grid-cells, the multi-model ensemble 
bias in annual temperature falls within −1.79 and 1.43°C 
(mean = −0.18, SD = 1.61, Fig. 2b, Supporting information). 

Deviations from observed values were particularly pro-
nounced in high-latitude regions, such as Greenland (nega-
tive bias), and central East Siberia (positive bias, Fig. 2b). 
High ensemble biases were also present in some mountain-
ous regions, such as the central and southern Andes (positive 
bias) and the Tibetan plateau (negative bias, Fig. 2b).

Mid-21st century change (i.e. average values of anoma-
lies between 2040 and 2069) in annual temperature showed 
a consistent spatial pattern under all four future scenarios 
(Fig. 2c). Overall, the model ensembles predict higher tem-
perature change at higher latitudes, with the exception of 

Figure 4. Statistical comparisons between grid-cells with low (first quartile, blue) and high (fourth quartile, orange) genetic diversity (GD) 
for climate and land-use change across four future scenarios. (a) cytb and (b) co1. Black and red lines in each violin plot show the mean and 
median values respectively for each quartile. Black and red asterisks in each comparison indicate significant differences (p < 0.05) in means 
(post hoc Welch’s t-test) and medians (Dunn–Bonferroni post hoc test) respectively. Inset maps in the lower right plots of each panel show 
the global distribution of the first and fourth GD quartile for each genetic marker.
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southern Greenland where ensembles predict lower tempera-
tures compared to the baseline period (Fig. 2c). The mag-
nitude of change increased gradually from SSP1-2.6 (mean 
anomaly across grid-cells = 2.32°C, SD = 1.88), to SSP5-
8.5 (mean = 3.51°C, SD = 2.08, Supporting information). 
Mid-21st century annual precipitation change also showed a 
consistent spatial pattern under the four scenarios (Fig. 2c). 
Overall, model ensembles predicted a global increase in 
annual precipitation, with the magnitude of change being 
largely similar under the four scenarios Supporting informa-
tion), although areas like the north-eastern Amazon are pre-
dicted to experience pronounced reductions in precipitation.

Exposure of genetic diversity to global change 
across grid-cells

Highly diverse regions in parts of tropical Africa, South 
America and Southeast Asia were predicted to lose > 5% of 
their primary vegetation area with many grid-cells, particu-
larly in tropical Africa, being also exposed to severe warm-
ing of > 2°C under most considered scenarios and for both 
mitochondrial genes (Fig. 3, Supporting information). The 
majority of the less genetically diverse regions in temperate 
and high latitudes are exposed to climate warming of > 2°C, 
with many boreal regions also predicted to lose > 5% of their 
primary vegetation area by the mid-21st century (Fig. 3, 
Supporting information).

We identified significant differences in mid-21st century 
annual temperature change between low and high GD regions 
under all four future scenarios and for both mitochondrial 
genes (post hoc Welch’s t-test p values < 0.05, Kruskal–Wallis 
test p values < 0.05, Fig. 4). For both genes, the vast majority 
of the low GD grid-cells were found to be exposed to tem-
peratures > 2°C compared to the baseline period under the 
four scenarios (Fig. 3, 4, Supporting information). For cytb, 
the magnitude of exposure for low GD regions increased from 
SSP1-2.6 (median = 2.38), to SSP2-4.5 (median = 2.77), to 
SSP3-7.0 (median = 3.03), to SSP5-8.5 (median = 3.37), 
while the majority of grid-cells with high GD for cytb were 
found to be exposed to annual temperature changes of > 1.5°C 
under SSP2-4.5 (median = 1.75), SSP3-7.0 (median = 1.99) 
and SSP5-8.5 (median = 2.25, Fig. 3, 4a). These patterns were 
similar for co1 (Fig. 4b, Supporting information).

Significant differences in the means in annual precipitation 
change between low and high GD for cytb (post hoc Welch’s 
t-test p value < 0.05) were observed only under SSP1-2.6 
(mean exposure of low GD = −21.69 mm, mean exposure of 
high GD = 58.07 mm) and SSP2-4.5 (mean exposure of low 
GD = −16.13 mm, mean exposure of high GD = 51.89 mm, 
Fig. 4a), and only under SSP1-2.6 for co1 (mean exposure of 
low GD = −2.51 mm, mean exposure of high GD = 53.99 
mm, Fig. 4b). Additionally, under all four future scenarios 
the majority of both low and high GD grid-cells are exposed 
to higher precipitation levels compared to the baseline period 
(Fig. 3, 4, Supporting information), with median values in 
precipitation change ranging from 92.13 mm (low GD under 
SSP1-2.6) to 120.56 mm (high GD under SSP5-8.5) for cytb 

(Fig. 4a), and from 88.68 mm (high GD under SSP1-2.6) 
to 152.51 mm (low GD under SSP5-8.5) for co1 (Fig. 4b).

We found that high GD regions are significantly more 
exposed to reduction in primary vegetation compared to 
low GD regions under all four future scenarios (post hoc 
Welch’s t-test p values < 0.05, Kruskal–Wallis test p val-
ues < 0.05, Fig. 3, 4). Within the majority of high GD 
grid-cells for cytb, the fraction of primary vegetation area 
was found to decrease by > 0.02 (i.e. 2% of the total cell 
area) across the different scenarios, with many regions in 
tropical Africa losing > 0.1 (i.e. 10%) of their primary veg-
etation (Fig. 3). The magnitude of loss gradually increased 
from SSP1-2.6 (median = −0.026, mean = −0.036), to 
SSP5-8.5 (median = −0.048, mean = −0.076), to SSP2-
4.5 (median = −0.056, mean = −0.07), to SSP3-7.0 
(median = −0.062, mean = −0.091), with maximum loses 
(i.e. grid-cells exhibiting highest values) of > 0.3 (i.e. 30%) 
under all scenarios. These exposure values were similar for co1 
(Fig. 4b, Supporting information).

We also found that high GD regions are significantly more 
exposed to increased human activity by mid-21st century 
compared to low GD regions across most pairwise compari-
sons, i.e. future scenarios and genes (pos hoc Welch’s t-test p 
values < 0.05, Kruskal–Wallis test p values < 0.05, Fig. 3, 4, 
Supporting information). The exceptions were the pairwise 
comparisons under the scenario SSP1-2.6, where the major-
ity of high GD grid-cells for both genes were predicted to 
exhibit a small reduction in human activities (cytb: high GD 
median = −0.006, co1: high GD median = −0.005, Fig. 4). 
The highest exposure in human activities within high GD 
grid-cells was observed under SSP3-7.0, where most of these 
regions were predicted to experience an increase in human 
activities of > 0.035 (3.5%) of their total area (cytb high GD 
median = 0.036, co1 high GD median = 0.039, Fig. 4). Under 
this scenario, the vast majority of regions in tropical Africa 
were predicted to experience an increase in human activi-
ties of > 0.5 (i.e. 5%) of their total area (Fig. 3, Supporting 
information).

The exposure patterns to climate and land-use change 
identified using the predicted GD distribution matched, 
to a large extent, the exposure patterns identified using 
the observed GD distribution (Supporting information). 
Moreover, when using the observed GD, some exposure pat-
terns were even more pronounced, such as pairwise differ-
ences in annual precipitation change for cytb and in annual 
temperature change for co1, most probably reflecting the 
low sample size (i.e. number of grid-cells) for observed GD 
(Supporting information).

Parts of the tropical and subtropical regions of the planet, 
mostly distributed in central, eastern and southern Africa, and 
south Asia harbor disproportionally higher levels of GD than 
expected by species richness (Supporting information). Those 
regions were found to be highly exposed to temperature rise 
of > 2°C for both mitochondrial genes. A large proportion 
of grid-cells in these regions was also found to be exposed 
to loss of primary vegetation and increased human activi-
ties, particularly under the SSP3-7.0 scenario (Supporting 
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information). In addition, eastern North America is also 
found to harbor higher than expected GD and exposed both 
to severe warming and reduced precipitation by mid-21st 
century. Highly exposed regions to temperature rise that har-
bor lower levels of GD than predicted by species richness are 
primarily distributed in East Asia and western North America 
(Supporting information).

Exposure of genetic diversity to global change 
across bioclimatic regions

We identified significant variation in GD exposure to annual 
temperature change (plrt < 0.01) across bioclimatic regions 
under all scenarios and for both genes (Fig. 5). Regions har-
boring the lowest levels of GD, including tundra, boreal for-
ests/taiga, temperate broadleaf and mixed forests, temperate 
conifer forests, Mediterranean forests, woodlands and scrub, 
deserts and xeric shrublands, temperate grasslands, savan-
nas and shrublands and temperate conifer forests, exhibited 
higher mean exposure (> 2°C under SSP2-4.5, SSP3-7.0 
and SSP5-8.5 for both genes) compared to tropical and 
subtropical regions (Fig. 5). The fit of the mixed models 
increased gradually from SSP1-2.6 (cytb R2c = 0.169, co1 
R2c = 0.163) to SSP5-8.5 (cytb R2c = 0.26, co1 R2c = 0.257). 
Moreover, GD at the bioclimatic region scale showed sig-
nificant variation in exposure to annual precipitation change 
(plrt < 0.01) across scenarios and genes, with tundra, boreal 
forests/taiga, temperate conifer forests and montane grass-
lands and shrublands showing on average an increase of > 
150 mm by mid-21st century and under all considered sce-
narios (Fig. 3, 5, Supporting information). Several regions 
harboring high GD, including mangroves, tropical and sub-
tropical grasslands, savannas and shrublands, tropical and 
subtropical moist broadleaf forests and flooded grasslands 
and savannas exhibited on average a reduction in precipita-
tion (0–150 mm, Fig. 3, 5, Supporting information). The fit 
of the mixed models for annual precipitation exposure was 
similar under all four future scenarios ranging for cytb from 
R2c = 0.178 (SSP5-8.5) to R2c = 0.188 (SSP1-2.6, Fig. 5a), 
and from for co1 R2c = 0.205 (SSP5-8.5) to R2c = 0.216 
(SSP1-2.6, Fig. 5b).

Genetic diversity at the bioclimatic region scale showed 
significant variation in exposure to primary vegetation change 
(plrt < 0.01) under all scenarios and for both genes, with a 
mean reduction in primary vegetation predicted across all 
regions (Fig. 5). The fit of mixed models was higher under 
SSP2-4.5 (cytb R2c = 0.148, co1 R2c = 0.67), SSP3-7.0 (cytb 
R2c = 0.175, co1 R2c = 0.191) and SSP5-8.5 (cytb R2c = 0.167, 
co1 R2c = 0.189), where the majority of regions harboring high 
GD, including mangroves, tropical and subtropical grasslands, 
savannas and shrublands, tropical and subtropical coniferous 
forests, tropical and subtropical moist broadleaf forests and 
flooded grasslands and savannas, exhibited a mean loss of pri-
mary vegetation between 0.05 (i.e. 5%) and 0.1 (i.e. 10%) of 
their total area (Fig. 5). Additionally, we identified significant 
variation across regions (plrt < 0.01) in the exposure of GD to 
increased human activities under SSP2-4.5 (cytb R2c = 0.079, 

co1 R2c = 0.08), SSP3-7.0 (cytb R2c = 0.154, co1 R2c = 0171) 
and SSP5-8.5 (cytb R2c = 0.104, co1 R2c = 0.116). Under these 
three less sustainable scenarios, tropical and subtropical biocli-
matic regions rich in GD showed an average increased expo-
sure to human activities (with the exception of tropical and 
subtropical coniferous forests under SSP5-8.5), while under 
SSP1-2.6 all regions exhibited a reduction in areas impacted 
by human activities (Fig. 5).

Discussion

Much of the global pool of mitochondrial GD is found to 
be exposed to annual temperature change above the critical 
threshold of 2°C degrees by mid-21st century, and this expo-
sure is significantly higher for genetically poor areas mostly 
located at high latitude regions. Additionally, tropical and 
subtropical bioclimatic regions rich in GD are predicted to 
suffer severe losses of primary vegetation area due to defores-
tation and cropland expansion, while many of these regions 
are also exposed to severe future warming. Evidence buried 
in paleo-archives, including ancient DNA (Lorenzen et al. 
2011, Botta et al. 2019, Fordham et al. 2020), but also in 
historical records over the last century (Rubidge et al. 2012) 
shows that mammal species have experienced significant bot-
tlenecks and losses of genetic diversity, under periods of rapid 
warming. If similar declines are to be expected in the future, 
global conservation efforts should also attempt to maximize 
the protection of mammal intraspecific diversity under global 
environmental change (Laikre et al. 2020).

Exposure of genetic diversity to climate change

The exposure of GD to future climate change decreases from 
the poles to the tropics. High latitude regions of the world 
were exposed to rapid past climatic changes (Brown et al. 
2020), eroding their biodiversity at all levels, including 
genetic diversity (Theodoridis et al. 2020). Tundra and 
boreal forests/taiga will experience a significant exposure to 
climate change, with mean annual temperature exceeding 
the 2°C threshold above the baseline period under all con-
sidered future scenarios. Warming in these low GD regions 
is twice the global average, and the overall low intraspecific 
genetic variation in these mammal communities poses great 
challenges for their adaptation to climate change, likely lead-
ing to severe local extinctions (Mills et al. 2018). Climate 
warming, and the resulting declines in suitable habitat (e.g. 
sea-ice extent, seasonal snow duration, declining tundra 
flora) have already affected the survival of terrestrial mam-
mals inhabiting these regions (Pagano et al. 2018, Post et al. 
2019, Richter-Menge et al. 2019). The predicted warming in 
these regions, coupled with the predicted changes in annual 
precipitation (increase of > 150 mm on average under all sce-
narios) and the subsequent rise in humidity and frequency of 
rain-on-snow episodes, will further reduce food availability of 
mammal species at all trophic levels, from herbivores to car-
nivores (Gilg et al. 2009, Domine et al. 2018). Additionally, 
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mammal assemblages in the Sahara Desert, Arabic Peninsula 
and the deserts of Australia were also found to harbor low 
levels of GD. Despite being arid-adapted and exposed to less 
severe warming compared to higher latitude assemblages, 

desert mammals may already be living close to their upper 
thermal limits and the lack of GD may well hinder further 
adaptation to rising temperatures, increasing vulnerability 
and extinction risk (Vale and Brito 2015).

Figure 5. Exposure of genetic diversity (GD) across bioclimatic regions (a) cytb and (b) co1. Within each plot, the R2c value indicates the 
conditional variance explained by a linear mixed model including exposure (y-axis) as independent variable, and GD (x-axis) and biocli-
matic region (color) as fixed and random effects respectively. p-values (Plrt) indicate significance of the likelihood ratio test between the 
mixed and the simple (i.e. without the random effect/bioclimatic region) model. The error bars around the points indicate the 25 and 75 
percentiles.
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The temperate zones of North America, Europe and cen-
tral Asia, regions of intermediate levels of GD, have been 
characterized by the lowest species extinction risks glob-
ally (Urban 2015). Yet, owing to ongoing climate change, 
an accountable proportion of mammals in these regions has 
already experienced range contractions and local extirpations 
(Pacifici et al. 2017), and these negative effects are predicted 
to increase under current warming trends (Maiorano et al. 
2011). These temperate bioclimatic regions are predicted to 
experience an overall exposure in temperature change above 
2°C under the three less sustainable, but more realistic, sce-
narios SSP2-4.5, SSP3-7.0 and SSP5-8.5, indicative of the 
increased vulnerability of mammal GD in these regions.

Highly genetically diverse tropical and subtropical mam-
mal assemblages are less exposed to rising annual tempera-
tures compared to temperate and polar assemblages, yet 
many of these regions, particularly in Africa and South 
America, are exposed to annual temperature change above 
2°C. Additionally, many tropical mammal assemblages are 
predicted to experience an overall reduction in annual pre-
cipitation, particularly those occurring in the Amazon basin. 
Mammal assemblages in these regions have been reported to 
face the highest extinction risk globally (Pacifici et al. 2018), 
primarily due to simultaneous exposure of these assemblages 
to mid-21st century temperature and precipitation condi-
tions beyond their realized niche limits (Trisos et al. 2020). 
The high intraspecific mitochondrial variation identified in 
these regions may serve as evolutionary reservoir for future 
adaptation to climate change, potentially reducing extinction 
risk, yet phylogenetic constraints and niche conservatism 
may counteract the beneficial effects of high genetic variabil-
ity (Hoffmann and Sgrò 2011). The potential consequences 
of climate change impacts in GD may be even more relevant 
in those regions with disproportionally higher levels of mito-
chondrial variation, including central, eastern and southern 
Africa, and south Asia. These regions are highly exposed to 
global warming and may warrant further research and par-
ticular conservation attention.

We herein have explored the exposure of genetic diversity 
in mammals to climate change at global scale. The geography 
of species exposure to climate change is however detached 
from their sensitivity as the result of the spatial variation on 
species traits or physiological limits (Dickinson et al. 2014). 
Tropical mammal species are for example closer to experience 
climatic conditions beyond their thermal limits than high 
temperate species (Khaliq et al. 2014, Trisos et al. 2020), 
thus being potentially more vulnerable to extinction risk 
even under relatively low exposure to climate change. The 
ever-increasing availability of population level genetic data in 
conjunction with species ecological, life history and physi-
ological data will pave the road to better estimations of spe-
cies’ sensitivity and vulnerability to climate change.

Exposure of genetic diversity to land-use change

Human impacts, especially conversion and degradation 
of natural habitats, have already caused severe biodiversity 

declines across all terrestrial regions (Newbold et al. 2015, 
2016, Tilman et al. 2017, Pacifici et al. 2020). Primary vege-
tation in highly genetically diverse regions will decrease in the 
coming decades (average loss of 5–10% of their total area in 
tropical, subtropical and montane regions), although reduc-
tion of primary vegetation is also projected in low genetic 
diversity regions under all considered future scenarios. The 
loss of primary vegetation in genetically rich regions is cou-
pled with increased human activities, primarily under the less 
sustainable future scenarios (SSP2-4.5, SSP3-7.0 and SSP5-
8.5). These results suggest that the most evolutionary diverse 
terrestrial bioclimatic regions will be exposed to significant 
habitat loss, increasing species extinction risk. Tropical and 
subtropical regions have been indeed identified as the most 
exposed and vulnerable to 21st century human activities, 
such as cropland expansion and intensification (Kehoe et al. 
2017), particularly for mammal diversity (Carvalho et al. 
2019b, Powers and Jetz 2019). Although high levels of stand-
ing GD in these regions, and to a great extent a higher level of 
GD than expected given their diversity of species, may pro-
vide adaptive potential to mammal assemblages in the face 
of future climate change, it is highly unlikely that they can 
mitigate future habitat loss and human exploitation, espe-
cially among large mammals. These direct human pressures 
will probably lead to severe reductions in intraspecific genetic 
variation in the tropical and montane regions through the 
extirpation of populations with unique haplotypes, signifi-
cantly reducing the ability of mammal species to adapt to 
accelerating global change. Northern latitudes, and specifi-
cally boreal forests and taigas, which encompass ~30% of the 
global forest area, were also found to be significantly exposed 
to primary vegetation loss, without an identified increase in 
croplands. This pattern likely reflects a predicted increase in 
boreal deforestation due to logging (Gauthier et al. 2015), 
putting additional pressure, apart from climate change, to the 
already low mammal GD in this bioclimatic region.

Biases in CMIP6 models and spatial resolution 
limitations

Overall, the multi-model ensemble of the new CMIP6 GCMs 
showed similar spatial biases in annual land-surface tempera-
ture to the previous CMIP5 simulations (Flato et al. 2013). 
So far, both the previous and new generations of climate mod-
els show consistent biases in regions with steep topography 
(e.g. Himalayas and Andes), and in high latitude areas (e.g. 
Greenland and central East Siberia) where snow or ice cover 
influence the regional climate (Knutti et al. 2010, Flato et al. 
2013). These biases may result in underestimation (in the case 
of negative bias) or overestimation (in the case of positive bias) 
of the exposure of GD to temperature change. Specifically, 
for southern Greenland and parts of the Himalayas and the 
Tibetan plateau, the multi-model ensembles predict a lower 
annual temperature by mid-21st century compared to the 
baseline period under all future scenarios. Yet, recent studies 
in these regions reported ongoing warming and extensive gla-
cier retreats (Maurer et al. 2019, Richter-Menge et al. 2019), 
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suggesting that our assessments may underestimate the expo-
sure of GD to climate change in these regions. Nevertheless, 
the new CMIP6 GCMs show an overall increased sensitiv-
ity to emissions, simulating greater global warming over the 
21st century (Forster et al. 2020, Zelinka et al. 2020), and 
future work in evaluating and constraining identified biases 
(Tokarska et al. 2020) will further improve our ability to assess 
biodiversity exposure to future climate change.

Given the relatively limited availability of genetic 
sequences with spatial information at global scale, and in 
order to minimize the uncertainty in the calculations of GD 
stemming from this limitation, a relatively coarse spatial 
resolution of grid-cells was favoured over finer resolutions. 
Additionally, the theories used in Theodoridis et al. (2020) 
to model the global distribution of GD, including evolu-
tionary speed, the Red Queen and Late Quaternary climate 
stability hypotheses, invoke long-term metapopulation pro-
cesses of persistence and extinction within relatively broad 
geographic areas. On the contrary, at finer spatial resolu-
tion, e.g. intrapopulation levels across elevational gradients, 
one would need to invoke a different set of theories and 
drivers more relevant to population or site-specific genetic 
diversity, including gene flow/inbreeding, linked selection 
and recent demographic history. Thus, denser sampling of 
wild populations globally is needed to model GD at finer 
scales and better inform conservation planning and manage-
ment of the species genetic substrate. Population-specific 
genomic information is starting to unlock our potential to 
understand evolutionary responses of species and ecological 
assemblages to environmental change, including the ability 
to estimate relevant conservation metrics, such as the mag-
nitude of mutation load in wild populations or the adaptive 
genetic variation revealed using landscape genomic analy-
ses (Fitzpatrick and Keller 2015, Capblancq et al. 2020). 
While the coarse spatial grain used in our assessment cannot 
directly inform conservation strategies for GD at local popu-
lation levels, it contributes towards understanding of global 
adaptive capacity and the potential evolutionary responses of 
mammal assemblages to climate and land-use change.

Conclusion

The key role of genetic diversity to safeguard biodiversity 
under global change was early recognized by the Convention 
on Biological Diversity (CBD 1992), and it is explicitly 
acknowledged in the Aichi 2020 strategic goals, Goal C and 
targets, Target 13 (SCBD 2010). Our assessment shows that 
a large proportion of the earth’s mammal genetic diversity 
pool is predicted to experience a significant exposure to 
both climate and land-use changes. These results, coupled 
with the strong covariation between GD and phylogenetic 
diversity (Theodoridis et al. 2020), unveil the geographical 
variation of the exposure of mammal evolutionary history 
to global change, both at the intra- and interspecific levels. 
The inception of macrogenetics resulting from the avail-
ability of large-scale population-level genomic information 
(Blanchet et al. 2017), plus the accumulation of species trait 

information will soon make possible to link haplotypes and 
populations to more biologically meaningful climate and 
land-use change metrics (Garcia et al. 2014) for anticipating 
biodiversity sensitivity and vulnerability to global change.
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