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ABSTRACT

Aims The present-day biogeography of European amphibians has been

hypothesized to have arisen from range expansion and recolonization of the

northern part of the continent from southern late Pleistocene refugia, such that

northern species generally possess large ranges while southerly species are mostly

small-ranged. Here we test the hypothesis that these patterns are likely to be

underpinned by biological traits associated with dispersal ability. We do this by

analysing data for anurans and urodeles, the two main groups of European

amphibians.

Location Europe.

Methods We built a database of biological traits (body size, fecundity, life

span, habitat specialization) of European amphibians, excluding island

endemics. We mapped the basic macroecological patterns of range size and

position, and analysed the causal pathways for range size using structural

equation models (SEMs).

Results Amphibian species with a small range size are largely restricted to

areas in southern Europe associated with putative Pleistocene refugia. Those

present in northern Europe are exclusively large-ranged species whose

distributions extend all the way from southern Europe. SEMs explained 54% of

range size variation for anurans, with long life span and high fecundity being

influential explanatory variables, and explained 61% of range size variation

within urodeles, with measures of species fecundity being influential.

Main conclusions Species that have successfully recolonized the north

following deglaciation have the largest ranges for both groups of amphibians.

These large-ranged species generally possess traits that indicate the potential

for rapid range expansion, with differences apparent in the balance of traits

between anurans and urodeles. The traits linked to northern distributions (and

large range size) appear to be a mix of r and K traits, indicating that

intermediate life-history strategies have proved to be optimal for range

expansion into northern regions. These results integrate species biology with

geographical history in explaining present-day patterns of species distribution,

range size and diversity.
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INTRODUCTION

Variation in the geographical range size of species underpins

coarse-scale patterns of species richness and is linked to both

extinction risk and sensitivity to environmental change

(Brown, 1995; Gaston & Blackburn, 2000). More specifically,

small range size has been shown to be a strong predictor of

extinction risk in frogs (Murray & Hose, 2005a; Cooper

et al., 2008). Knowledge of range sizes may thus be particu-

larly important in the conservation of amphibians, which in

recent years have suffered serious declines (Houlahan et al.,

2000). Amphibians might also be particularly susceptible to

range contractions due to climate change (Ara�ujo et al.,

2006), because many species have a low dispersal ability and

respond slowly to environmental change.

It has been hypothesized that macroecological patterns in

European amphibian diversity reflect the effect of Pleistocene

glaciations (Zeisset & Beebee, 2008), which forced Europe’s

amphibians to retreat to southern refugia. This conjecture is

supported by phylogeographical studies (e.g. Rowe et al.,

2006; Wielstra et al., 2013). In addition, we note that (1) his-

torical climate stability has been found to be a better predic-

tor of amphibian distribution than current climate (Ara�ujo

et al., 2008), and (2) whereas the northern fauna is com-

posed of species with larger ranges, almost all small-ranging

amphibians are distributed in the south of the continent,

reflecting limited dispersal out of Pleistocene refugia (Sillero

et al., 2014).

Despite their relatively poor dispersal ability (Smith &

Green, 2005), amphibians are widely distributed on a global

scale. Recently, van Bocxlaer et al. (2010) suggested that the

cosmopolitan distribution of toads is the result of highly dis-

persive phenotypes that have evolved multiple times in the

history of amphibians. These phenotypes are characterized by

traits that allow individuals to move rapidly and tolerate

adverse climatic conditions. In bufonids these traits include

the presence of parotoid glands, large body size and an

aquatic–opportunistic oviposition strategy (van Bocxlaer

et al., 2010). The same set of biological traits may also be

linked to survival in multiple refugia (see Dufresnes & Perrin,

2015) and the ability to disperse out of Pleistocene refugia

and to cross dispersal barriers (L�opez-Villalta, 2012).

Taken together, these observations indicate that species-

specific traits, in combination with the geographical and

climatic history of the region, may have acted to shape mac-

roecological patterns in Europe: patterns such as the spatial

distribution of species richness and of geographical range size,

and the trait distribution of the regional species pool in

northern latitudes. The basic question, i.e. whether large-scale

properties of regional species pools are influenced mainly by

historical contingency or current environmental limitations,

remains a major challenge in ecology and biogeography.

Although various species traits may potentially affect the

geographical range size of animal species, only a few have

been thoroughly studied, including body size, local abun-

dance and dietary niche breadth – and then only for particu-

lar taxa. In a meta-analysis of 64 studies across taxa, Slatyer

et al. (2013) recently found a significant positive relationship

between range size and measures of niche breadth, including

environmental tolerance, habitat breadth and dietary breadth.

In addition, range size seems to be positively correlated with

body size and local abundance in many species of animals,

although the relationships are seldom strong (reviewed in

Gaston & Blackburn, 1996; Borregaard & Rahbek, 2010). In

addition to these general studies, a few studies of amphibians

have also related variation in geographical range size to

reproductive traits. Clutch size has been found to be posi-

tively correlated with geographical range size in frogs

(Cooper et al., 2008), and so has body size (Murray et al.,

1998). A negative correlation between egg size and range size

(Murray & Hose, 2005b) have been reported for Australian

frogs. Here, we tested the prediction that European amphib-

ian species differing in geographical range size would also

differ in those biological traits associated with dispersal

ability.

Owing to inherent differences in the body plan, reproduc-

tive mode and main mode of locomotion, the importance of

specific traits is predicted to differ between the two main

groups of European amphibians, anurans (frogs and toads)

and urodeles (newts and salamanders). Generally, European

urodeles can be regarded as K-reproductive strategists that

produce a relatively small number of eggs (tens to hundreds)

and frequently show parental care, such as wrapping individ-

ual eggs into the leaves of aquatic vegetation (e.g. species of

Triturus and Lissotriton) or guarding the eggs (e.g. Speleo-

mantes). European anurans, on the other hand, are typical

opportunists (r-strategists) that produce thousands of eggs

with little parental care (see Arnold & Ovenden, 2002).

Hence, although anurans are usually very fecund, they tend

to produce relatively small juveniles and suffer greater juve-

nile mortality than urodeles.

Additional complications include the possibility that cer-

tain traits may interact to influence geographical range size

simultaneously (Brown et al., 1996), and that the same trait

can have both positive and negative indirect effects (e.g. as

shown for body size in European passerines by Laube et al.,

2013). Thus, to understand the relationships between geo-

graphical range and traits it is important to consider multiple

traits and their interactions. We used structural equation

modelling to test the hypothesis that specific trait combina-

tions may explain which species of European anurans and

urodeles were able to disperse into and colonize northern

areas after the end of the Last Glacial Maximum (LGM).

MATERIALS AND METHODS

Data set

We used global range polygons (IUCN, 2012) to define geo-

graphical ranges (in km2) for all amphibian species occurring

within the geographical boundaries of Europe (defined as the

part of the Eurasian continent located west of the Ural Moun-

tains). The recent taxonomic revision of Speybroeck et al.
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(2010) was used to recognize species status and for nomencla-

ture. Range maps of species that deviated from this taxonomy

were modified accordingly. Taxa that occurred only in eastern

Europe and were not covered by the taxonomy of Speybroeck

et al. (2010) were recognized according to IUCN (2012).

Range extensions by means of recent reintroductions and

ranges of exotic, recently introduced species (e.g. Lithobates

catesbeianus) were excluded. We also excluded 14 species

strictly confined to islands, resulting in a list of 65 amphibian

species. For the trait analysis we excluded 11 species with

insufficient data and two klepton species, resulting in 52

amphibian species (c. 66% of the indigenous species list).

Species traits

We gathered information on species biological traits from

scientific papers, species descriptions, field guides, the IUCN

global amphibian assessment (GAA) and Amphibiaweb

(Appendix 1 and Table S1 in Supporting Information). Prior-

ity was given to the primary sources (i.e. scientific papers).

We identified four biological traits that a priori were

expected to affect range expansion ability: body size, fecun-

dity, life span and adult habitat specialization. Three of the

measured traits (body size, clutch size, adult habitat) have

previously been shown to promote range expansion of toads

(van Bocxlaer et al., 2010). We linked these traits to range

size in a hypothesized causal diagram (see Fig. S1), which

was used to specify structural equation models (SEMs). We

provide detailed justification for each variable below.

Body size

Amphibians with larger bodies have a higher relative water

storage ability (e.g. Schmid, 1965) and greater locomotor

performance (e.g. Emerson, 1978), allowing them to move

actively over longer distances. Also, body size may affect

range size via an indirect effect on fecundity (e.g. L€uddecke,

2002) and intrinsic development rate (see Morrison & Hero,

2003). A positive correlation of body size with maximum

longevity has also been reported in amphibians (Blanco &

Sherman, 2005); we modelled this relationship as a covari-

ance in our SEM (Fig. S1). We measured body size as the

maximum snout–vent length (SVL), which is the most com-

monly used proxy for body weight in amphibians. For uro-

deles there are two methods of measuring SVL; we used the

length from the tip of the snout to the posterior angle of the

cloaca (sometimes referred to as the standard length, STL;

e.g. Malmgren & Thollesson, 1999) whenever possible.

Fecundity

In general, species with high fecundity (e.g. large clutch sizes)

may be more likely to undergo passive dispersal of eggs and

larvae, and may also have a colonization advantage because

of the possibility of rapid population growth (Begon et al.,

1996). It is also possible that fecund species may be under

stronger selection for juvenile dispersal to reduce the effect of

competition among siblings. It has also been suggested that

high fecundity in frogs should predispose species for high

local abundances, which can have an indirect effect on range

size via metapopulation dynamics (Murray & Hose, 2005b).

There may be a trade-off between clutch size and the rate of

juvenile development (e.g. L€uddecke, 2002), because species

with large clutches tend to have smaller eggs (e.g. Parichy &

Kaplan, 1995). We used maximum (annual) clutch size of

eggs (or number of live young in cases of viviparity) as a

measure of fecundity for each species. Excluding strictly

viviparous species (Salamandra atra and Salamandra lanzai)

from the SEM analysis decreased model fit, but did not qual-

itatively alter the presented results (see Fig. S2). The analyses

in the main paper therefore include these species.

Life span

Species with longer individual life spans may be able to dis-

perse further in the adult stage. Long-lived amphibians

exhibit negligible senescence, with modestly indeterminate

growth and undiminished reproductive capacity (Kara,

1994). Life span may also indirectly affect range sizes via an

effect on fecundity, as long-lived species may allocate fewer

resources to yearly reproduction and have more attempts at

reproduction during their lifetime. We used a measure of

maximum age observed in the wild or in captivity, as esti-

mated from skeletochronological studies or by direct

observation.

Habitat specialization

Species with specialized habitat associations are likely to have

smaller geographical ranges (Brown, 1984). We used data on

adult habitat preference from the GAA data (IUCN, 2012),

which are categorized according to the degree of habitat special-

ization outside the breeding season. Aquatic, semi-aquatic and

terrestrial amphibian species were categorized into: (1) oppor-

tunistic (eurytopic) species that use a wide range of terrestrial

and aquatic habitats and (2) specialized (stenotopic) species

with a narrow range of environmental tolerance that depends

on a specific habitat with constant availability of water.

Statistical analyses

We conducted all analyses separately for anurans and uro-

deles. Trait variables were log10-transformed to improve nor-

mality (with the exception of habitat specialization, which is

defined on a nominal scale).

Structural equation models

We represented our a priori hypothesized causal relationships

between species traits and geographical range size as a causal

graph (Fig. S1) that then formed the basis for the SEMs. We

used the protocol described in Grace et al. (2012) to simplify

the SEM diagram to produce the final models. We examined

the available data, considered the focus of the analysis, sam-

ple size, appropriate model complexity and the need to

including latent variables. Due to the small sample size (anu-

rans n 5 28, urodeles n 5 24), we kept models simple, with

G. Trakimas et al.
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five SEM parameters and no latent variables. We included

the direct effects of life span, fecundity and body size on geo-

graphical range size, as well as the direct effects of life span

and body size on fecundity. Associations between life span

and body size were considered as co-variation. The same

SEM design was used for anurans and urodeles.

We evaluated the fit of the SEMs using several diagnostic

metrics: chi-square tests, the root mean square error of

approximation (RMSEA), the goodness-of-fit index (GFI)

and the comparative fit index (CFI). The RMSEA ranges

from 0 to 1, with lower values indicating a better fit. GFI

and CFI range from 0 to 1, with higher values indicating a

better fit. A good model fit was inferred when the chi-square

P-value was> 0.05, the RMSEA value was< 0.1, and the CFI

and GFI indices were> 0.90. Standardized path coefficients

and model fit index values were calculated using SPSS AMOS

(Arbuckle, 2008).

Phylogenetic relatedness

Because functional traits evolve gradually over evolutionary

time, the traits of related species are not independent (e.g.

Felsenstein, 1985), hence standard regression analyses have

been suggested to overestimate the degrees of freedom. This

issue arises if the dependent and independent variables in a

regression share the same autocorrelation structure. Sophisti-

cated tools exist for implementing phylogenetic structure

directly into regression analyses (e.g. Martins & Hansen,

1997) and SEMs (von Hardenberg & Gonzalez-Voyer, 2013;

Olalla-T�arraga et al., 2015). However, these tools require

branch lengths to be estimated robustly and trait definitions

to be defined for the entire (global) tree; thus it was not fea-

sible to implement these methods in a robust and transpar-

ent manner in the current study. As a crude test of whether

phylogenetic relatedness was an issue for our analysis, we fol-

lowed the protocol of Laube et al. (2013) in testing for phy-

logenetic signal in the residuals of multiple regressions of

traits against range size. For this we used the Abouheif test

(Abouheif, 1999) implemented in the R package ADEPHYLO

(Jombart et al., 2010), using 999 randomizations of the

structure of a regional amphibian phylogeny extracted from

the global species-level phylogeny by Pyron & Wiens (2011)

(all species were present in this phylogeny). No phylogenetic

signal existed in the residuals, which gives some indication

that the results were robust to phylogenetic autocorrelation.

Nonetheless, SEM models are based on multiple correla-

tions between specified traits, and thus there is a potential

for phylogenetic autocorrelation to affect the deeper relation-

ships in our SEM models, for example relationships between

body size and fecundity, even if the overall residuals are free

from autocorrelation. This means that the causal relationship

among these traits should be interpreted with caution. How-

ever, phylogenetic autocorrelation is not expected to be a

problem for the correlations between range size and the vari-

ous biological traits. Range size generally has very little phy-

logenetic autocorrelation (e.g. Brown, 1995), and for

European amphibians the majority of the species range

extents have formed within the last 10,000 years, and thus

under a much faster time-scale than that of trait evolution.

The situation where, for example, two closely related species

have similar body sizes, allowing them to attain a larger

range, is not a statistical problem in the context of phyloge-

netic autocorrelation. In our SEM analyses, the direct rela-

tionships between biological traits and range size are

generally stronger than relationships among biological traits.

RESULTS

Range size frequency distributions

The range size distributions of European amphibians were

strongly right-skewed (Fig. 1), with mean range sizes

(2.016 3 106 km2 for anurans and 1.109 3 106 km2 for uro-

deles) markedly larger than the medians (0.554 3 106 km2

and 0.164 3 106 km2, respectively). On average, anurans had

significantly larger geographical ranges than urodeles (t-test

on log10-transformed ranges, P 5 0.03). More than a quarter

of anuran species (27.8%) and more than a third of the uro-

deles (41.4%) had geographical ranges< 120,000 km2

(smaller than the area of England or Greece). (Note that had

we included the insular species, the proportion of small-

Figure 1 Frequency distributions of geographical range size (in

1,000,000-km2 bins) for (a) 36 species of anurans and (b) 29

species of urodeles in Europe.

Traits of European amphibians

Global Ecology and Biogeography, 25, 1228–1238, VC 2016 John Wiley & Sons Ltd 1231



ranged species would have increased to 36.6% and 55.3% for

anurans and urodeles, respectively.)

The position of latitudinal range margins

We found a tight link between the range position (i.e. the

position of the range margins) and the range size of Euro-

pean amphibians: species with small ranges were located in a

narrow latitudinal band around (mostly just south of) 458 N

(Fig. 2), close to the southern limit of the 0 8C annual mean

temperature isotherm during the LGM (Kim et al., 2008).

This latitudinal band includes areas implicated as climatic

refugia during the LGM, such as the Balkans, northern Iberia

and north Italy (Zeisset & Beebee, 2008). Amongst the most

widespread species, the distance from their northern range

margin to the latitude of Ice Age refugia increased approxi-

mately linearly with range size (Pearson correlation coeffi-

cient of log10-transformed> 500,000 km2 geographical ranges

versus northern range limits: r 5 0.92, P< 0.001, n 5 25).

Range extents of widespread anurans were more symmetri-

cal around the latitude of 458 N in comparison with the uro-

deles, as many large-ranged anurans have southern range

limits in North Africa, outside the study region.

Structural equation models

Amphibian species with a longer life span, higher fecundity,

larger bodies (only in anurans) and less specialized habitat

associations had larger geographical ranges. The SEM fit was

considered good for anurans (chi-square P 5 0.715,

RMSEA< 0.001, GFI 5 0.981, CFI 5 1; n 5 28) and marginal

for urodeles (chi-square P 5 0.076, RMSEA 5 0.237,

GFI 5 0.906, CFI 5 0.881; n 5 24). The SEMs explained

R2 5 0.54 and R2 5 0.61 of the variation in geographical

ranges size of European anurans and urodeles, respectively.

The SEM results were not influenced by the phylogenetic

relatedness as there were no phylogenetic signals in the mul-

tiple regression residuals (Abouheif ’s test, P 5 0.993 and

P 5 0.991 for anurans and urodeles, respectively).

In the anuran SEM, life span (maximum longevity) had

the highest positive total effect on geographical range size,

followed by smaller positive effects of body size and fecun-

dity, while habitat specialization had a small negative effect

(Table 1). Life span also had the highest direct positive effect

on range size (P< 0.001, based on the critical ratio between

the unstandardized regression weights and the maximum

likelihood estimate of the approximate standard error; see

Table S2) followed by the body size, fecundity and habitat

specialization (negative effect). The indirect effect of body

size on range size in anurans was greater than the direct

effect. Life span had a small indirect effect (Table 1, Fig. 3a).

In the urodele SEM, the same order of traits (ranked from

highest to lowest effects) was found for both the total and

direct effects on geographical range size (Table 1). Fecundity

had the highest positive effect (P< 0.001) on geographical

range size of urodeles, followed by smaller negative effects of

habitat specialization (P< 0.05) and by positive effects of life

span (Table 1, Fig. 3b). Body size of urodeles had opposing

direct (positive) and indirect (negative) effects on range size,

Figure 2 Range limit–range size plot for European amphibians

(n 5 65, island endemics excluded). Squares represent anurans,

circles represent urodeles; black-closed and grey-closed symbols

show the northern and southern limit of the species ranges,

respectively. Half-open and open symbols, respectively, show

northern and southern range limits that are outside Europe. The

dashed horizontal line represents the approximate southern limit

of the 0 8C isotherm of annual mean surface air temperature

(Kim et al., 2008) during the Last Glacial Maximum. Strips

above the graph indicate the extent of range sizes for the third

of species with the smallest ranges (open), the third with

intermediate-sized ranges (grey) and the third with the largest

ranges (black) of European anurans (A) and urodeles (U).

Table 1 The standardized structural equation modelling effects

of biological traits on (log10-transformed) range sizes of Euro-

pean amphibians (anurans n 5 28, urodeles n 5 24).

Biological traits Total effect Direct effect Indirect effect

Anurans

Body size* 0.239 0.101 0.138

Life span† 0.600 0.590 0.010

Fecundity‡ 0.177 0.177 –

Habitat specialization 20.153 20.153 –

Urodeles

Body size* 0.033 0.143 20.110

Life span† 0.277 0.157 0.120

Fecundity‡ 0.669 0.669 –

Habitat specialization 20.284 20.284 –

*Body size 5 log10 SVL (snout–vent length).
†Life span 5 log10 life span.
‡Fecundity 5 log10 clutch size.

Significance (P) values of direct effects are shown in Fig. 3 and

Table S2.
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resulting in little total effect. For urodeles, we found a strong

covariance between body size and life span in urodeles

(P< 0.05), whereas this was non-significant in anurans. For

anurans we found a strong relationship between body size

and fecundity (P< 0.001) (Fig. 3).

DISCUSSION

Our results support the idea that species-specific traits pro-

moting dispersal ability are important determinants of species

range size in European amphibians. The range size frequency

distribution is strongly right-skewed, as is common in large-

scale analyses. For European amphibians, this may indicate

that only a small number of species had the specific combina-

tion of traits necessary for range expansion and colonization

after glaciation. The strong link between species range size and

the geographical location of range limits further implies that

species traits may indirectly determine the spatial distribution

of species richness and thus play a major role in structuring

the macroecological patterns of European amphibians. Our

data showed that for the c. 75% most widespread amphibians,

the distance from the northern range margin to the latitude of

Ice Age refugia increased approximately linearly with range

size (Fig. 2). This is consistent with the conjecture that species

have acquired large ranges by range expansion out of relatively

restricted glacial refugia over the last c. 10,000 years. This

interpretation is supported by the observed asymmetry of the

north–south distributional extent in widespread urodeles.

Some work has been done for individual species of European

amphibians to establish the major post-glacial colonization

routes (Zeisset & Beebee, 2008), and further investigation

along these lines would be fruitful for testing this hypothesis.

Our interpretation ties together species traits, geographical

history and spatial distributions into a coherent and parsi-

monious framework, and posits a strong alternative to widely

cited hypotheses based on the effect on contemporary abiotic

factors for the large-scale richness patterns in European

amphibians. Specifically, these hypotheses have generally

explained the positive association between range size and

range position (essentially Rapoport’s rule; Stevens, 1989) as

an effect of range position on species traits (i.e. northern

species should be adapted to more variable climatic condi-

tions), which in turn affect species range size. One of the key

traits highlighted by our analysis, body size, is one of the

traits generally assumed to be affected by range position (as

per Bergmann’s rule; Bergmann, 1847), on the rationale that

larger-bodied populations of a species should retain body

heat more easily than small-bodied populations (an inter-

specific form of the rule has also been the subject of

discussion) and should also be able to retain fat reserves for

survival throughout the cold season (Ashton, 2002).

Because of the strong association between range position

and range size, it is very difficult to unequivocally disentangle

the direction of causality. Although we cannot use our results

to refute the classic hypotheses, we regard our interpretation,

based on regional history and considerations of species ecol-

ogy, to be a parsimonious explanation of the observed pat-

terns. We do not see any a priori reason to assume a certain

relationship between species fecundity and range position

(though they are likely to be linked in some way), and with

regard to body size, evidence is lacking to suggest that Berg-

mann’s rule generally applies to amphibians (e.g. Adams &

Church, 2008). It has even been argued that the opposite

relationship from Bergmann’s rule should be expected for

ectotherms, as they do not generate heat and small-bodied

species can warm up more quickly during short periods of

sunlight (Pincheira-Donoso et al., 2008). Olalla-T�arraga &

Rodr�ıguez (2007) reported contrasting latitudinal patterns of

Figure 3 Structural equation models representing direct and

indirect effects (standardized regression coefficients) of (a) anuran

(n 5 28) and (b) urodele (n 5 24) species traits on range size:

range size 5 log10 geographical range area; body size 5 log10 SVL

(snout–vent length); fecundity 5 log10 clutch size; life span 5 log10

life span; habitat spec., habitat specialization. Solid arrows indicate

positive relationships, dashed arrows negative relationships; curved

arrows are co-variances between exogenous variables. The

thickness of the arrows is proportional to the coefficient strength

for coefficients> 0.1 (*P< 0.05; ***P< 0.001).
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body size between anurans and urodeles in North America

and Europe (Bergmann’s rule was supported for anurans),

and suggested that the thermoregulatory abilities of anurans

should allow them to reach larger body sizes in colder cli-

mates, whereas urodeles, which have limited thermoregula-

tion, should be smaller in cooler areas. Ara�ujo et al. (2008)

also questioned whether contemporary climate is a driver of

macroecological patterns (in their case, species richness) of

European amphibians by showing that palaeoclimatic stabil-

ity explained at least as much variation in amphibian species

richness as contemporary climate did.

Nevertheless, we did not test the niche breadth hypothesis

explicitly here, and it is likely to play a contributory role in

the observed patterns (Quintero & Wiens, 2013). Overall,

our findings support the idea that species of urodeles and

anurans tolerant of a wide range of conditions (i.e. eurytopic

species) also have particular combinations of traits that

underpin their ability to (1) survive in multiple glacial refu-

gia, (2) disperse successfully out of these refugia, and (3)

thereby colonize larger territories. These suggestions are sup-

ported by observations that broad-ranged European amphib-

ians: (1) can survive in harsh environments, e.g. Rana

temporaria (Muir et al., 2014); and (2) persisted in multiple

glacial refugia, e.g. Rana arvalis, (Babik et al., 2004) and Lis-

sotriton vulgaris (Pabijan et al., 2015).

Our SEM analysis revealed that the traits that were most

important for range expansion differed between anurans

(frogs and toads) and urodeles (newts and salamanders). For

anurans, the strongest determinant of range size was adult

life span, whereas fecundity was the most important trait for

urodeles (Fig. 3). This may reflect a difference in mechanisms

for range expansion, related to different life-history strategies

for the two groups. Although many field studies, for both

anurans and urodeles, have shown that most dispersal in

amphibians happens in the juvenile stage (i.e. in the first

months after metamorphosis; Berven & Grudzien, 1990; Kup-

fer & Kneitz, 2000), it is possible that adult-stage dispersal

plays a relatively larger role in range expansion in anurans

than it does for urodeles. Also, there is need to note that the

sample size of anurans and urodeles employed in the analysis

is relatively small, thus the differences between the two models

might also be influenced by stochasticity. Our SEM results were

not affected by the phylogenetic signals; thus, the effect sizes of

the influence of traits on geographic ranges of European

amphibians were not affected by the relatedness of the species.

In addition, geographical range size may be a very labile trait,

and indeed very little phylogenetic autocorrelation is generally

found in species range size (e.g. Freckleton & Jetz, 2009).

These results also demonstrate that range expansion ability

in European amphibians is controlled by some r-strategy and

some K-strategy life-history traits, indicating that a trade-off

between these two strategies characterizes the most widespread

species. Large-ranged species were more fecund (an r-selected

trait) than small-ranged species for both anurans and urodeles,

consistent with the findings of van Bocxlaer et al. (2010) for

toads. High fecundity may increase geographical range size via

an effect on local abundance (Murray & Hose, 2005b), which

has been hypothesized to stimulate range expansion via meta-

population dynamics and rescue effects in small populations

(reviewed in Borregaard & Rahbek, 2010). High fecundity

might also be advantageous because the larger number of eggs

and larvae increases the chances of passive long-distance dis-

persal in the juvenile stage. There is some evidence for the role

of passive long-distance dispersal of larval or adult amphibians

by passive drift, floating in water currents (e.g. Johnson &

Goldberg, 1975; Smith & Green, 2006), or amphibian eggs

transported on the feet and plumage of water birds, as specu-

lated by Darwin (1859) to occur for snails.

Anurans and urodeles with larger range sizes had longer

life spans (enhanced K-strategy) than did the small-ranged

species. A long life span may enhance a species’ range expan-

sion capability, as it gives more time for active dispersal in

the adult stage and allows for more attempts at reproduction.

This possible effect of longevity on geographical range size

remains largely unexplored in the literature (but see Strona

et al., 2012). Body size would also be predicted to play a role

in range expansion, as species with larger bodies have greater

locomotor performance (Emerson, 1978; Marvin, 2003) and

can move longer distances. The second strongest total effect

in the SEM models was the weak (0.24) effect of body size

on geographical range in anurans, although the direct effect

(0.1) was weaker than the indirect effect (0.14), and the over-

all effect was insignificant. This trait well illustrates the com-

plexity of the relationship between traits of individual species

and geographical range. A positive relationship between body

size and geographical range has been reported in many taxa

(reviewed in Gaston & Blackburn, 1996), but in our analysis,

the correlations were non-significant (see Table S2) (as also

reported by Murray & Hose, 2005b). However, body size is

correlated with other species traits that were important for

geographical range. Such complexity of the drivers of geo-

graphical range was also shown recently for European passer-

ines (Laube et al., 2013), and may be a general rule.

There are other traits that could be important for deter-

mining the range expansion ability of species that have not

been considered here. One of these is the ability of some

amphibians to adapt their life history to varying environ-

mental conditions. In urodeles, paedomorphs (adults that

retain some larval characteristics and remain in a water habi-

tat) are likely to occur when aquatic conditions are favour-

able and terrestrial conditions poor (Denoel & Ficetola,

2014). Thus, the potential for developmental plasticity in

variable environments could play an important role in colo-

nization success of spatially distant and environmentally het-

erogeneous areas. Another potentially important trait is

behavioural site fidelity in adult individuals. The adult site

fidelity of amphibians varies from species that are highly

faithful (e.g. Ichthyosaura alpestris) to very vagile species such

as the large-ranged species Bufo calamita, which usually

breeds in open, temporary ponds (Semlitsch, 2008). For anu-

rans, the traits that are associated with large range size are

traits that would enhance active dispersal by adult

G. Trakimas et al.
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individuals. A longer life span allows for a longer period of

active dispersal in the adult stage and possibly more success-

ful reproductive events, enhancing lifetime fecundity.

In short, our results have clarified that biological traits of

amphibians may have interacted with each other and with the

long-term environmental history of Europe to generate the

currently observed patterns of species distribution and rich-

ness. The actual causal pathways are complex, and likely to

differ among groups with different ecologies and life-history

strategies. However, should clear patterns emerge from extend-

ing such analyses to other groups, this endeavour may pave

the way for a macroecological synthesis that integrates species

ecology, history, and geography into a coherent understanding.
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