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Universidade dos Açores, Angra do Heroı́smo,

Pico da Urze, 9700-042, Terceira, Açores,
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ABSTRACT

Aim We conducted the most extensive quantitative analysis yet undertaken of the

form taken by the island species–area relationship (ISAR), among 20 models, to

determine: (1) the best-fit model, (2) the best-fit model family, (3) the best-fit

ISAR shape (and presence of an asymptote), (4) system properties that may

explain ISAR form, and (5) parameter values and interpretation of the

logarithmic implementation of the power model.

Location World-wide.

Methods We amassed 601 data sets from terrestrial islands and employed an

information-theoretic framework to test for the best-fit ISAR model, family, and

shape, and for the presence/absence of an asymptote. Two main criteria were

applied: generality (the proportion of cases for which the model provided an

adequate fit) and efficiency (the overall probability of a model, when adequate,

being the best at explaining ISARs; evaluated using the mean overall AICc weight).

Multivariate analyses were used to explore the potential of island system

properties to explain trends in ISAR form, and to describe variation in the

parameters of the logarithmic power model.

Results Adequate fits were obtained for 465 data sets. The simpler models

performed best, with the power model ranked first. Similar results were obtained

at model family level. The ISAR form is most commonly convex upwards,

without an asymptote. Island system traits had low descriptive power in relation

to variation in ISAR form. However, the z and c parameters of the logarithmic

power model show significant pattern in relation to island system type and taxon.

Main conclusions Over most scales of space, ISARs are best represented by the

power model and other simple models. More complex, sigmoid models may be

applicable when the spatial range exceeds three orders of magnitude. With respect

to the log power model, z-values are indicative of the process(es) establishing

species richness and composition patterns, while c-values are indicative of the

realized carrying capacity of the system per unit area. Variation in ISAR form is

biologically meaningful, but the signal is noisy, as multiple processes constrain

the ecological space available within island systems and the relative importance of

these processes varies with the spatial scale of the system.
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INTRODUCTION

The small size of the island, together with its vast distance from

either the eastern or western continent, did not admit of a great

variety of animals.

(G. Forster, 1777, Book I, Chapter VIII, p. 156)

Islands only produce a greater or less number of species, as their

circumference is more or less extensive.

(J.R. Forster, 1778, Chapter V, p. 169)

In general, as sampling area increases so too does the number of

species recorded. Quantification of this pattern dates back to

at least the mid-19th century (Watson, 1835, 1859) and now

encompasses thousands of studies of a wide variety of taxa and

scales (e.g. Connor & McCoy, 1979; Rosenzweig, 1995; Lomo-

lino & Weiser, 2001; Bell et al., 2005; Drakare et al., 2006).

Indeed, the species–area relationship (SAR) is widely regarded

as one of ecology’s few laws (Schoener, 1976; Dodds, 2009).

The shape taken by SARs can be approximated by many

functions (Tjørve, 2009; Williams et al., 2009). The most

commonly invoked models, the power model (Arrhenius,

1920, 1921) and the exponential model (Gleason, 1922), were

also the first to be proposed. The power model remains the most

frequently preferred model, both for fitting curves to species–area

data and as a basis for the development of explanatory theories of

species diversity (Williams, 1943; Preston, 1962; MacArthur &

Wilson, 1967; McGuiness, 1984; Holt et al., 1999; Rosenzweig,

1995; Hubbell, 2001; Lomolino, 2001; Azovsky, 2002; Martin &

Goldenfeld, 2006; Triantis et al., 2008a, 2010; Dengler, 2009;

Harte et al., 2009; Tjørve, 2009; Williams et al., 2009; O’Dwyer &

Green, 2010; Santos et al., 2010; He & Hubbell, 2011; Kisel et al.,

2011; Rosindell & Phillimore, 2011; Sólymos & Lele, 2011).

According to Rosenzweig (1995) the ‘species–area pattern’

comprises four different SARs, as the processes determining

species richness are scale dependent (Williams, 1943; Preston,

1960; Schmida & Wilson, 1985; Rosenzweig, 1998; Whittaker,

2000; Crawley & Harral, 2001; White et al., 2010). Intriguingly,

Rosenzweig’s scale framework includes two distinctive classes

of data structures. First, two of his species–area curves, i.e.

‘point scale’ and intraprovincial, are sampling or species-

accumulation curves, plotting the accumulation of new species

as the sampling area increases (cf. type 1, 2 and 3 curves sensu

Scheiner, 2003). The second class of data structure is exem-

plified by his archipelagic and interprovincial curves, which are

tallies of the richness of each of a set of islands from a single

archipelago (or other biogeographical region). We refer to this

latter, classic type of SAR as island species–area relationships

(ISARs; cf. type IV curves sensu Scheiner, 2003). These simple

distinctions in data form remain a rich source of debate and

potential confusion, with different authors favouring alterna-

tive classifications and nomenclature of relationship types

(Lomolino, 2000; Scheiner, 2003, 2004, 2009; Gray et al.,

2004a,b; Williamson et al., 2001, 2002; Tjørve, 2003, 2009;

Whittaker & Fernández-Palacios, 2007; Dengler, 2009; Wil-

liams et al., 2009; Smith, 2010; Scheiner et al., 2011).

Within sampling or species-accumulation curves, the data

structure determines a monotonically increasing function: as

area increases, species number can only increase, or remain

constant, with each increment of area. Within ISARs, each data

point is tallied independently of every other and so the

relationship can potentially be positive, negative, humped,

neutral, or can be more complex, depending on other

controlling variables. However, in general, ISARs when fitted

statistically describe the tendency for species numbers to

increase with island area. Such analyses can be undertaken for

any system of isolates (e.g. lakes, mountain tops, forest

fragments) in which the data points are tallied independently;

but to constrain our analyses to systems of a common type, we

consider only true islands in this article.

As indicated in the quotations above, the existence and

generality of ISARs has long been discussed within island

biogeography (e.g. Darlington, 1957; MacArthur & Wilson,

1967). Yet we lack consensus concerning the importance of

individual mechanisms contributing to the pattern, or the exact

shape of the ISAR, across different spatial scales, environmental

conditions and taxa (Whittaker & Fernández-Palacios, 2007).

Conventionally, simple data transformations have typically

been employed to produce linear ISAR fits, as this makes the

relationships tractable for further analysis. By contrast, Lomo-

lino (2000) and Tjørve (2003), among others, have argued that

we should examine the fit of theoretical (mechanistic) models,

including those of more complex form. Lomolino (2000, 2001)

theorized that untransformed ISARs should exhibit a sigmoidal

form (see also Tjørve, 2009), with (1) a phase of little or no

increase in species richness across very small island areas (the

small-island effect), followed by (2) a rapid rise in richness,

with (3) a subsequent flattening towards an asymptote as the

number of species approaches the richness of the mainland

species pool, while (4) in situ speciation may contribute

significantly to elevate ISAR slope on large, remote islands

(Fig. 1a). These suggestions have proven controversial, with

considerable dispute concerning the existence of sigmoidal

ISARs, the detection of the small-island effect (e.g. Lomolino &

Weiser, 2001; Tjørve & Tjørve, 2011; Triantis & Sfenthourakis,

2011) and the proposition of an upper asymptote (e.g.

Williamson et al., 2001, 2002; Lomolino, 2002) (see discussion

in Whittaker & Fernández-Palacios, 2007).

Thirty-three years after Connor & McCoy’s (1979) seminal

review of the species–area relationship (SAR), we take

advantage of statistical, theoretical and empirical develop-

ments, to provide a general quantitative analysis of the form

taken by ISARs across island types, geographical contexts and

major taxa. To this end we amassed 601 data sets, and

employed an information-theoretic framework to compare 20

species–area functions (Burnham & Anderson, 2002; Stiles &

Scheiner, 2007; Guilhaumon et al., 2008, 2010). We pose five

fundamental questions derived from the literature cited above.

(1) Is there an overall best-fit ISAR model? (2) Is there a best-

fit family of ISAR models? (3) Is there a best-fit ISAR shape

and does it includes an asymptote? (4) Can we infer biological

processes responsible for variations in ISAR form by reference

to system properties? (5) Can the z and c parameters of the

logarithmic implementation of the power model be interpreted

biologically and ecologically?
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MATERIALS AND METHODS

The nature of the data sets

Alongside searches using general-purpose search engines, we

used two main abstracting/indexing systems – ISI Web of

Knowledge and Scopus – with a wide range of search strings.

The compilation of data sets lasted 3 years and was completed

in April 2010. More than 800 journal papers, books, doctoral

theses, online databases, reports and unpublished resources

were screened. Each possible source was checked to ensure the

following conditions applied.

1. The data sets each pertained to an area of land surrounded

by water, i.e. true geographical islands.

2. The source provided a full list of species per island, or at

least the number of species present on each island. We aimed

to restrict analysis to tallies of native species only, but in a few

cases non-natives were included (below).

3. Descriptions of data sets were sufficient to permit basic

evaluation of data adequacy so that data points/sets known to

contain significant biases could be eliminated. Of course,

perfect resolution of sampling and taxonomic uncertainty is

unobtainable in general surveys of island biotas: all such data

sets contain a certain level of error (e.g. Whittaker et al.,

2000).

4. Each data set contained at least four islands; by setting the

threshold so low, we permitted the inclusion of the Greater

Antilles, a well-studied island group from which ISARs have

been reported in the past (e.g. Losos & Schluter, 2000). Basing

studies of a relationship on such a small number of data points

can raise a number of issues related to our ability to attribute

form to the relationship (e.g. Whittaker, 2010), and so in

subsequent analyses we assessed the effect of increasing this

threshold on the results.

5. The data set extracted from a source should not be

essentially the same as previously captured from another

source. We did include some cases where, for example, data

were available from adjacent island groups and also were

collated as a regional data set, but these cases were flagged as

overlapping for further analysis.

Our compilation cannot be viewed as an unbiased selection

of the island systems of the world, as some taxa (e.g. higher

plants, birds) and some archipelagos (e.g. the Canaries) are

better studied than others, but we consider the compilation to

be a comprehensive representation of the available island

species–area data.

We retrieved 601 data sets meeting the above criteria from

312 separate sources (see Appendices S1 & S2 in Supporting

Information). Each data set included, for each island, the

taxonomic group, the number of species and island size (in

km2). The area of the islands was extracted from the respective

papers if available. Otherwise, the UNEP Islands Directory

(http://islands.unep.ch/) was used, along with other resources.

In all cases, area measurements refer to planar area, thus

ignoring topographic complexity (e.g. Triantis et al., 2008b).

Measures of latitude were based on the mean value of the

southernmost and northernmost island and were restricted to

studies with a latitudinal extent of < 7.5� (95% of the cases

used in the analyses). The vast majority of the data sets were

derived from a single archipelago, or biogeographical sub-

region, but in 21 cases the constituent islands were scattered

across a large part of the globe (Appendix S2).

The island systems were divided into: (1) systems within

inland water-bodies (55 cases, 9%), i.e. lakes, rivers, reservoirs,

hereafter inland systems; (2) oceanic (191 cases, 32%), i.e.

islands of volcanic origin, formed over oceanic plates, and

never connected to continental land masses (Whittaker &

Fernández-Palacios, 2007); and (3) continental-shelf islands

(355 cases, 59%), including continental-shelf islands and

ancient continental fragments. The few cases of island groups

with a mixed continental and oceanic origin, e.g. Japan and the

Philippines, were include in the continental-shelf category. We

also grouped studies under three taxonomic/life form headings

Figure 1 (a) The hypothetical sigmoidal form of the species–area relationship as suggested by Lomolino (2001). The main features are the

potential small-island effect on the left hand side, the presence of an asymptote as species richness reaches that of the mainland species pool,

and a secondary phase of increase in species richness (dashed line) corresponding to islands large enough to allow in situ speciation (redrawn

from Lomolino, 2001). (b) The general form of the island species–area relationship based on the results of our analysis. The dominant shape

of the relationship between species richness and area is convex without an asymptote. A sigmoid shape but without an asymptote may be

observed when the range of area considered is large.

The island species–area relationship
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(major taxon): (1) invertebrates (231 cases, 38.5%), (2)

vertebrates (219 cases, 36.5%), and (3) plants (148 cases,

25%). There were also two lichen data sets and one fungal data

set: these were excluded from subset analyses. The invertebrate

data sets were spread across a larger array of taxonomic subsets

(e.g. beetles, ants, isopods, snails) than was the case for

vertebrates, for which 179 out of the 219 cases provided data

for either birds or mammals.

The descriptors compiled for each island group/archipelago

were thus as follows: (1) Latitude, (2) Island Type, i.e. oceanic,

continental shelf and inland, (3) Major Taxon, i.e. inverte-

brates, vertebrates and plants, (4) number of islands (No. of

Islands), (5) total area (AreaTOT), (6) mean area (AreaMEAN),

(7) maximum island area (AreaMAX), (8) minimum island area

(AreaMIN), (9) the ratio of maximum to minimum island area

(AreaSCALE; i.e. AreaMAX/AreaMIN), (10) the range in island

area within the island group (AreaRANGE; i.e. AreaMAX –

AreaMIN), (11) maximum number of species for an island

(SMAX), (12) minimum number of species for an island (SMIN),

(13) the ratio between the minimum and the maximum

number of species (SSCALE), (14) the range in species number

within the island group (SRANGE), and (15) the variation of the

number of species within the island group, estimated as the

variance of species richness (SVAR). These variables encompass

two key aspects of scale: first measures of the grain and second

of the range in grain of the data sets (cf. Whittaker et al., 2001;

Drakare et al., 2006). The grain is represented by AreaTOT,

AreaMEAN, AreaMAX and AreaMIN, while the range in grain of

the data sets is represented by AreaRANGE and AreaSCALE. All

the continuous descriptor variables, apart from Latitude, were

log10-transformed to avoid the influence of extreme values and

increase normality of residuals in subsequent analyses.

Models

Numerous functions have been proposed for modelling SARs,

varying in complexity from two to four parameters. They vary

in the general form they produce, theoretical background,

origin and justification (for reviews see Flather, 1996; Tjørve,

2009; Williams et al., 2009). Several of these functions were

first collated in a paper by Flather (1996) focused on species-

accumulation curves rather than ISARs. Recently, Williams

et al. (2009) demonstrated that, after resolving problems of

mathematical similarity and synonymy, there are 16 different

functions that can be classified into nine general families, i.e. a

general form of which a number of formulas are slight variants

(see Appendix S1 in Williams et al., 2009). Independently,

Tjørve (2009, Appendix 1 therein) has recently extended his

earlier review (Tjørve, 2003), incorporating more functions.

Here we used a set of 19 functions based on the reviews of

Tjørve (2009) and Williams et al. (2009). Following the latter

we have not considered the cumulative extreme-value function

(EVF) as it requires an estimation of the total number of

species present within each study system, which was lacking in

many cases. This model is equivalent to Weibull-3 (Table 1)

when the asymptote is estimated (Williams et al., 2009). We

Table 1 The functions used in our analyses, their analytical formula, the general family they belong to, their shape, and the presence/

absence of an asymptote. S is species richness, A is area, and c, d, f, z are fitted parameters. For the functions with an asymptote, the

asymptote’s value is given by the parameter(s) in the last column of the table, i.e. d, c/f, and z/d for the different functions. Note, that the

shape for the Extended Power 1 can be either convex or sigmoid depending on the fitted parameters. For the source references for each

function see Flather (1996), Tjørve (2009) and Williams et al. (2009).

No. Function name Code Family

Number

of parameters Formula Shape type Asymptote

1 Linear linear Lin(A) 2 S = c + zA Linear No

2 Power power Pow(B) 2 S = cAz Convex No

3 Power Rosenzweig power_R Pow(B) 3 S = k + cAz Convex No

4 Extended Power 1 epm1 Pow(B) 3 S = cAzA)d Both No

5 Extended Power 2 epm2 Pow(B) 3 S = cAz)(d/A) Sigmoid No

6 Persistence Function 1 P1 Pow(B) 3 S = cAz exp()dA) Convex No

7 Persistence Function 2 P2 Pow(B) 3 S = cAz exp()d/A) Sigmoid No

8 Exponential expo Expo(C) 2 S = c + z logA Convex No

9 Kobayashi Logarithmic koba Expo(C) 2 S = c log(1 + A/z) Convex No

10 Monod monod Logis(D) 2 S = d/(1 + cA)1) Convex Yes (d)

11 Morgan–Mercer–Flodin mmf Logis(D) 3 S = d/(1 + cA)z) Sigmoid Yes (d)

12 Logistic heleg Logis(D) 3 S = c/(f + A)z) Sigmoid Yes (c/f)

13 Negative Exponential negexpo Weib(E) 2 S = d[1 ) exp()zA)] Convex Yes (d)

14 Chapman–Richards chapman Weib(E) 3 S = d[1 ) exp()zA)]c Sigmoid Yes (d)

15 Weibull-3 weibull3 Weib(E) 3 S = d[1 ) exp()cAz)] Sigmoid Yes (d)

16 Weibull-4 weibull4 Weib(E) 4 S = d[1 ) exp()cAz)]d Sigmoid Yes (d)

17 Asymptotic asymp Asym(F) 3 S = d ) czA Convex Yes (d)

18 Rational ratio Rat(G) 3 S = (c + zA)/(1 + dA) Convex Yes (z/d)

19 Gompertz gompertz Gom(H) 3 S = d exp[)exp()z(A)c))] Sigmoid Yes (d)

20 Beta-P betap Beta(I) 4 S = d[1 ) (1 + (A/c)z))f] Sigmoid Yes (d)
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applied the logistic model of Archibald (1949) in its original

form (Table 1, No. 12) and not the version requiring the total

number of species present within each study system. To these

19 functions we have added one presented by Rosenzweig

(1995), which we term the power Rosenzweig function as it is a

modified form of the power model. See Table 1 for details of

the 20 functions used.

Analyses

All analyses were run using an updated version of the

‘mmSAR’ package (Guilhaumon et al., 2010) for the R

statistical and programming environment (R Development

Core Team, 2011).

Model fitting and comparisons

The linear model was fitted using simple linear regressions, but

all other ISAR models were fitted in arithmetic space

employing nonlinear regressions by minimizing the residual

sum of squares (RSS) using the unconstrained Nelder–Mead

optimization algorithm (Dennis & Schnabel, 1983). Assuming

normality of the observations, this approach produces optimal

maximum likelihood estimates of model parameters (Rao,

1973). Regressions were further evaluated by statistical exam-

ination of normality and homoscedasticity of residuals. A

model was considered as not providing an adequate fit: (1) if

the optimization algorithm did not converge, and/or (2) the

Shapiro normality test on the residuals, or the Pearson’s

product–moment correlation coefficient between the residuals

and area was significant at the 5% level. To avoid numerical

problems (e.g. local minima) during the fitting process, we

paid particular attention to the starting values that were used

to run the optimization algorithm. We first obtained initial

values for those parameters that were directly interpretable

(e.g. an asymptote) by taking corresponding values in the data

sets (e.g. the observed maximum of species richness in the case

of an asymptote) and calculated initial values for the remaining

parameters using the standard procedures of Ratkowsky (1983,

1990). To enhance the reliability of the parameter estimations,

we ran the optimization algorithm using 1000 combinations of

starting values randomly chosen in the parameter space

relevant to each model. Among the 1001 fits, we retained the

one that minimized the RSS.

We discriminated between the different models in an

information-theoretic framework designed for the evaluation

of multiple working hypotheses (Burnham & Anderson, 2002).

This is achieved through the estimation, for each model, of its

probability of being the best at explaining the data. Basically,

we compared the fit of the ISAR models using the small-

sample corrected Akaike’s information criterion (AICc), a

modification of the AIC (Akaike, 1973) that contains a bias

correction term for small sample size, and which is preferred

when the number of free parameters, p, exceeds n/40

(Burnham & Anderson, 2002). The model with the lowest

AICc value is considered to fit the data best. We used Akaike

weights derived from the AICc (wAICc) to evaluate each

model’s probability of being the best at explaining the data. For

each data set, we obtained a model selection profile (i.e. the

vector of each model’s wAICc) and an adequate fit profile

(binary vectors, i.e. {0;1}, describing models that provided an

adequate fit) and we used these profiles to evaluate: (1) the 20

different species–area functions, (2) the nine families, (3) the

three basic shapes of the models considered, i.e. linear, convex

and sigmoid (i.e. a shape with an inflection point), and (4) the

relative probabilities of the presence/absence of an asymptote

within the range of the data.

In a separate analysis we also fitted and evaluated the

logarithmic form of the power model.

Best-fit model of the ISAR

To compare the 20 models we employed two main criteria.

First, we calculated the proportion of cases for which the

model provided an adequate fit (termed here the generality

criterion); and second, we calculated the mean AICc weight

(mean wAICc) across all data sets for which the model

provided an adequate fit. In essence, the mean wAICc index

thus measures the overall probability of a model being the best

at explaining ISARs, independently of the ability of the model

to provide adequate fits. For ease of reference we term this the

efficiency criterion.

To generate an overall ranking reflecting both generality and

efficiency of the models we standardized the generality and

efficiency values using the formula [(value of the criterion –

mean value)/standard deviation] and then summed the two

values to determine a synthetic generality/efficiency index, on

the basis of which an overall final ranking of models was

provided. Finally, although not a strict statistical criterion

(Burnham & Anderson, 2002), we also counted the cases where

each model provided the single-best adequate fit (i.e. lowest

AICc value). In an additional analysis designed to test the

sensitivity of our results to the inclusion of data sets with small

numbers of islands, we have sequentially removed data sets

with between 7 and 19 islands and have calculated Kendall’s

tau coefficients in pairwise fashion to test for differences in the

ranking of the models based on their generality and efficiency.

Best-fit family of models of the ISAR

We compared the different families by: (1) counting the

cases for which at least a single model within the family

provided an adequate fit, i.e. their generality; and (2) by

summing the wAICc for all the models within each family

and then averaging this sum across all data sets for which at

least one model of the family provided an adequate fit (i.e.

their efficiency). To address the possible influence on the

outcome of the number of models per family, we have

applied two additional comparisons: (3) standardizing the

overall ranking of the families by the number of models in

each family; and (4) using only the overall most efficient

model in each family.

The island species–area relationship
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Best-fit shape of the ISAR

Although the 20 functions are denoted as having specific

shapes (Table 1; Tjørve, 2009), the observed shape that these

functions take after fitting (i.e. estimation of parameters) can

vary according to the character of the data sets themselves. For

example, the power model, which is designated as a convex

model, can exhibit a linear fit when z = 1. Similarly, sigmoid

models can sometimes exhibit a convex shape (e.g. when the

inflection point lies outside the empirical range of island areas;

Tjørve, 2009) and sometimes a linear form, given particular

combinations of parameter values. We therefore devised a

sequential algorithm to discriminate between linear, convex

and sigmoid fitted (i.e. observed) shapes for each combination

of data set and model.

First, the algorithm compared the shape of the model with a

straight line joining the fitted values for the minimum and

maximum area of the data set. For 100 equally spaced increments

between the minimum and maximum area of the data set, if all

the differences between the number of species calculated from

the straight line projection and the fitted model were < 0.001

species, then the curvature of the shape was considered

insignificant and the fit was assigned as linear (sensitivity to

the 0.001 threshold was assessed by comparison with a larger

value; see Appendix S3.1). Second, if the fit was not linear we

discriminated between convex and sigmoid shapes by studying

the second derivative (with respect to area) of the model

functions (parameterized with the same parameter values as the

original function) to detect the presence of an inflexion point. If

the second derivative of the model changed sign, this tells us that

the fit exhibited an inflection point within the observed area

range and the shape was assigned as sigmoid (Appendix S3.1).

Additionally, we have also compared the different ISAR shapes

following the general categorization of the models proposed by

Tjørve (2009; see Table 1 herein), ignoring the fitted shape.

Asymptotic versus non-asymptotic models

We used two methods to classify models as asymptotic versus

non-asymptotic. First, we used the fitted parameters, i.e. we

classified the model as asymptotic only if the estimated value

for the asymptote was within the range of the data. In a second

more liberal analysis, we again used the general categorization

provided by Tjørve (2009; provided also in our Table 1), e.g.

considering the logistic model to be asymptotic regardless of

whether the estimated value of the asymptote fell within the

limits of the particular data set.

Geography, area and richness-based correlates of ISARs

We used constrained analysis of principal coordinates (CAP)

(Anderson & Willis, 2003; Oksanen et al., 2007) to investigate

the relationship between the taxonomy, geography, area and

richness-based descriptors of data sets and ISAR form across

all data sets. CAP is an ordination method similar to

redundancy analysis, but it allows non-Euclidean distances,

such as Jaccard or Bray–Curtis, to be used for the calculation

of dissimilarities (Oksanen et al., 2007).

CAP analysis was used to examine: (1) the variation in

model selection profiles explained by the various descriptors in

turn for best model, best family and best shape; and (2) to rank

the predictors with respect to the strength of their effect on the

variability in model selection and adequate fit profiles (i.e.

vectors of wAICc for each data set and vectors describing

models that provided an adequate fit). We used Bray–Curtis

dissimilarities to characterize pairwise dissimilarities between

the selection profiles of the data sets and Jaccard distance to

characterize pairwise dissimilarities between adequate fit

profiles, resulting in six separate CAP analyses.

To determine whether possession of an asymptote could be

explained by data set characteristics we used multiple logistic

regression (generalized linear model, GLM, with higher

probability for an asymptote scored one, otherwise scored

zero, with a binomial error term and a logit link).

For both CAP and GLM analyses we selected an initial set of

eight explanatory variables after investigating for multicollin-

earity using Pearson correlations. The selected system property

variables were: Latitude, Island Type, Major Taxon, No. of

Islands, AreaMAX, AreaSCALE, SMAX and SSCALE (Appen-

dix S3.3). The variables were ordered in the models according

to their independent contribution (greatest to least) to the

total variation in the response variable. We eliminated non-

significant terms using a backwards selection procedure, to

derive a minimal adequate model. We used the commands

‘capscale’ and ‘anova’ of the ‘vegan’ package (Oksanen et al.,

2007) and the commands ‘glm’, ‘summary’ and ‘anova’ from

the R statistical and programming environment to parame-

terize, select the models and perform analyses of deviance.

Logarithmic form of the power model

As the logarithmic form of the power function (Arrhenius,

1920, 1921; log10-transformed values of species and area) (1) is

the most frequently applied form for fitting ISARs, (2) remains

one of the few functions for which biological significance has

been assigned to model parameters, and (3) has a proposed, if

debated, theoretical basis (e.g. Preston, 1962; Connor &

McCoy, 1979; Rosenzweig, 1995; Martin & Goldenfeld, 2006),

we also report separate analyses using the logarithmic power

model to allow comparison with preceding literature.

For these analyses we followed a multiple regression

approach to investigate the factors related to the shape of the

ISAR (above).

RESULTS

Model fits and the ‘best’ ISAR model

In 551 cases of the 601 data sets compiled, at least one function

provided an adequate fit as determined by the use of the

optimization algorithm, the Shapiro normality test and/or the

Pearson product–moment correlation coefficient. However,
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the AICc could not be calculated for those data sets with fewer

than seven islands, so our subsequent analyses were based on

465 data sets, of which 75% have a total land area of

< 10,000 km2 and 79% span less than four orders of magni-

tude in area. Each major taxon is well represented, as are

continental-shelf and oceanic island systems, while there are

relatively few inland data sets (Table 2).

In 44 cases (9% of the 465 analysed), the data set was the

sum of two or more other data sets, arising either through

summing distinct but related groups of islands, or by

combining different taxa for a particular set of islands.

Although there is a level of interdependency in these cases,

sensitivity analyses showed that their inclusion did not affect

the results (not shown).

Considering the single ‘best’ model per data set, as judged by

the lowest AICc value, four models accounted for 73% of cases;

in declining order of performance – the power, linear,

Kobayashi and exponential models (Fig. 2a). The generality

criterion provided relatively small variability of values, i.e.

poor discrimination between the 20 models evaluated, with

proportions between 0.467 and 0.839 (mean value of

0.725 ± SD 0.122) of adequate fits among the 465 data sets,

with half of the models having virtually identical success rates

(Fig. 2b, Table 3). However, according to the efficiency crite-

rion, which is more discriminatory, four models account for

more than 50% of the overall probabilities of being the best at

fitting ISARs; in declining order they were the power, linear,

Kobayashi and exponential models (Fig. 2c, Table 3).

The correlation between our generality and efficiency indices

is low and statistically non-significant (Appendix S3.4). Hence,

the overall ranking of the models (Table 3), combining

standardized values of both generality and efficiency values

(see Materials and Methods), synthesizes two distinctive

aspects of model performance. To assess the robustness of

our results we also re-ran the evaluation using the uncorrected

AIC and the Bayesian information criterion (BIC). The overall

rankings of the models based on the AICc were highly

correlated (tau > 0.705, P < 0.05) with those obtained using

AIC and BIC rankings (Appendix S3.4). Similarly, we found

the overall rankings to be robust to the sequential removal of

data sets with between seven and 19 islands, although notably

Table 2 (a) The distribution of data sets across major taxon and

island type categories for the 465 data sets for which adequate fits

were obtained and which were used for subsequent analyses of best

model, best family of model, ISAR shape and presence of an

asymptote. (b) The main categories of the taxonomic and island

types included in the 449 data sets that produced significant slopes

in the additional analyses carried out for the logarithmic form of

the power model (logSpecies)logArea). Note that these analyses

are not equivalent mathematically to the nonlinear implementa-

tion of the power model reported above, and that the analyses

reported in this part of the table are entirely separate from those

reported in Tables 2a, 3 and 4.

Major taxon No. of cases Continental-shelf Oceanic Inland

(a)

Invertebrates 177 78 88 11

Vertebrates 178 113 37 28

Plants 108 74 22 12

Other 2 1 1 0

Total 465 266 148 51

(b)

Invertebrates 151 77 64 10

Vertebrates 170 110 37 23

Plants 126 91 23 12

Other 2 1 1 0

Total 449 279 125 45
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Figure 2 Comparison of the performance of the 20 island species–area relationship (ISAR) models across 465 data sets: (a) the proportion

of data sets for which each model provided the lowest small-sample corrected Akaike information criterion (AICc) value, i.e. single-best

model; (b) generality, i.e. the proportion of the data sets for which each model provided an adequate fit; and (c) efficiency, i.e. the average

AICc weight (wAICc) for the cases for which the model in question provided an adequate fit. See Table 1 for details of the models. NB

Screening out data sets with < 20 data points results in a pronounced decline in the performance of the linear model, but otherwise the

relative performance of the models remains practically the same (see text and Appendix S3).
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the performance of the linear model declines rapidly as data

sets with seven, eight and nine islands are eliminated

(Appendix S3.4 & Table S12). In each case these sensitivity

analyses indicate that the results of the overall model-ranking

index are robust to the choice of a model selection criterion

and to the inclusion of systems with comparatively small

numbers of islands (the decline of the linear model in the

rankings notwithstanding). The CAP analyses showed signif-

icant effects for some system traits, yet, in combination, system

traits explained < 11% variability in both model selection and

adequate fits profiles (Appendix S3.3).

Best family of ISAR

The power family [Pow(B)] was ranked first based on the

generality and efficiency criteria and was thus first in the overall

ranking. It was followed by the exponential family [Expo(C)],

which was also ranked second according to the efficiency

criterion. The Logis(D) family was ranked third and fourth by

the generality and efficiency criteria, respectively, and was third

in the overall ranking (Table 4a).

If the number of models included in each family is taken into

account then the overall final ranking is significantly and highly

correlated with that shown in Table 4a (Appendix S3.5).

Additionally, the results of further analyses using only the

overall most precise model in each family are consistent with

Table 4a, with the families Pow(B), Expo(C) and Logis(D)

always being the top three families. The CAP analyses for

families showed significant effects for some system traits, yet in

combination they explained < 10% variability in both model

selection and adequate fits profiles (Appendix S3.3).

Best shape of ISAR

Based on the algorithm used to detect linearity, convexity and

inflection point(s), convex models had the highest generality

and efficiency values (Table 4b). The results remain identical

when a higher threshold value (0.01 instead of 0.001) was used

to detect linearity, and almost identical when basing the

assessment on the shape of the single best model for each data

set (Appendix S3.1). Were we to follow instead the general

shape assignment of Tjørve (2009), as presented in Table 1

herein, the results would remain largely similar, with convex

models having the highest generality and efficiency values

(Appendix S3.1). Although the sigmoid shape appears almost

as often as the convex shape, its efficiency values are generally

much lower (as Table 4b), while often the estimated inflexion

point occurs outside the range of observed areas, and thus the

fitted shape is convex in form and not sigmoid.

Table 3 Model performance based on analyses of the 465 data

sets for which small-sample corrected Akaike information crite-

rion (AICc) values could be calculated. Model: models as detailed

in Table 1. Generality: the proportion of the data sets for which

each model provided an adequate fit out of the 465 cases. Effi-

ciency: the mean AICc weight (mean wAICc) for the cases for

which the model in question provided an adequate fit. Rankings

for the two criteria are presented in brackets (when two or more

models had the same criterion value, they were assigned the

highest rank, e.g. weibull3 and mmf for the generality criterion).

Model Generality Efficiency Overall value Rank

Power* 0.798 [9] 0.207 [1] 2.996 1

Koba 0.798 [9] 0.154 [3] 2.081 2

expo 0.755 [12] 0.143 [4] 1.533 3

linear 0.628 [14] 0.170 [2] 0.956 4

P2 0.839 [1] 0.057 [8] 0.723 5

monod 0.731 [13] 0.106 [5] 0.698 6

epm2 0.815 [7] 0.050 [9] 0.405 7

weibull3 0.834 [2] 0.041 [11] 0.404 8

mmf 0.834 [2] 0.040 [14] 0.391 9

heleg 0.830 [4] 0.040 [12] 0.360 10

asymp 0.794 [11] 0.043 [10] 0.115 11

ratio 0.802 [8] 0.033 [16] 0.010 12

weibull4 0.830 [4] 0.010 [19] )0.158 13

betap 0.830 [4] 0.009 [20] )0.173 14

negexpo 0.546 [18] 0.099 [6] )0.943 15

P1 0.606 [16] 0.059 [7] )1.149 16

power_R 0.600 [17] 0.030 [17] )1.709 17

chapman 0.615 [15] 0.012 [18] )1.883 18

gompertz 0.544 [19] 0.040 [13] )1.986 19

epm1 0.467 [20] 0.037 [15] )2.671 20

Overall value: the sum of the standardized values of generality and

efficiency; the sum of the overall values for all the models equals zero.

Rank: model ranking based on the overall value index.

*Note that as per Table 1, the results reported herein are for the non-

linear implementation of the power model.

Table 4 Island species–area relationship (ISAR) model family

(a), shape (b) and asymptote (c) performance based on analyses of

the 465 data sets for which AICc values could be calculated.

Column headings as given for Table 3: for groupings see Table 1.

Ranking in brackets.

No. of

models Generality Efficiency

Overall

value Rank

(a) Family

Pow(B) 6 0.959 [1] 0.338 [1] 2.990 1

Expo(C) 2 0.858 [4] 0.269 [2] 1.635 2

Logis(D) 3 0.890 [3] 0.162 [4] 0.939 3

Weib(E) 4 0.901 [2] 0.115 [5] 0.614 4

Asym(F) 1 0.793 [7] 0.043 [6] )0.821 5

Beta(I) 1 0.830 [5] 0.009 [9] )0.842 6

Rat(G) 1 0.802 [6] 0.033 [8] )0.845 7

Lin(A) 1 0.628 [8] 0.170 [3] )0.955 8

Gom(H) 1 0.544 [9] 0.040 [7] )2.715 9

(b) Shape

Convex – 0.989 [1] 0.792 [1] 2.170 1

Sigmoid – 0.826 [2] 0.114 [3] )0.719 2

Linear – 0.630 [3] 0.191 [2] )1.452 3

(c) Asymptote

Non-asymptotic – 1.000 [1] 0.825 [1] 1.414 1

Asymptotic – 0.804 [2] 0.218 [2] )1.414 2
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The CAP analysis of the wAICc values and the adequate fit

profiles for model shape showed significant effects for some

system trait variables, yet in combination the system traits

explained < 13% variation in both analyses (Appendix S3.3).

While the amount of variance explained in the CAP analyses is

low, there are significant differences in the range of island area

(i.e. the mean values of AreaSCALE) encompassed by each

system between the three shape forms, with data sets of linear

form having the lowest, and data sets of sigmoid form the

largest, range in island areas (Fig. 3).

Asymptotic versus non-asymptotic ISAR form

According to the method we used to detect the presence of an

asymptote within the range of the empirical data, the non-

asymptotic models had the highest generality and efficiency

values (Table 4c). If the shape of the best model is considered

on a case by case basis, then an asymptote is detected in 62

cases (13%), with no asymptote in 403 (87%) cases. No island

traits provided significant differentiation of the presence/

absence of an asymptote in a logistic regression analysis. Non-

asymptotic models remained predominant when classifying

shape using the general classification of Tjørve (2009) (see

Appendix S3.2)

The log–log implementation of the power model

The log–log implementation of the power model resulted in a

significant ISAR in 449 cases of the 601 original data sets

(Table 2a). Of these 449 data sets, 84% are of islands groups of

< 50,000 km2 and 73% have an AreaSCALE value of

< 10,000 km2, while the number of islands ranges from four

to 213. The ratio in richness values (SSCALE) is < 100 in 59% of

cases. The R2 for the 449 significant ISARs ranged from 0.065

to 0.993, with a mean value of 0.640 ± SD 0.204. In the

multiple regression minimal adequate model explaining var-

iation in the R2 values, only No. of Islands and SMAX were

included (R2 = 0.49, F = 70.92, P < 0.01), indicating a general

tendency for R2 values to decrease with number of islands and

to increase with maximum number of species.

Previous syntheses based on the log–log power model have

suggested that ISAR z-values typically fall within a range of

around 0.2–0.4 (MacArthur & Wilson, 1967; Connor &

McCoy, 1979; Rosenzweig, 1995), although Williamson

(1988) reported exceptions to this generalization, ranging from

0.05 to 1.132. Our analyses produced a mean of z = 0.321 ± SD

0.164, and 51% of z-values fell between 0.2 and 0.4, while only

25% of values exceeded 0.4 and the full range was from 0.064 to

1.312. Simple regressions showed that no single explanatory

variable had a coefficient of determination as high as 0.10, but

the minimal adequate model included AreaSCALE, SSCALE, Island

Type, SVAR, No. of Islands and SMAX and explained 69% of the

overall variation (F = 156.1, P < 0.01). The values of logc

ranged from )2.197 (c-value: 0.006) to 2.982 (960.157) with a

mean of 0.907 ± 0.788. The minimal adequate regression

model included AreaMAX, AreaSCALE, SMAX, SSCALE, No. of

Islands, SVAR and Major Taxon and explained 84%

(F = 276.400, P < 0.001) of the variation in logc.

There is a progressive increase in the mean z-value from

inland systems to continental-shelf and then to oceanic archi-

pelagos; but the difference is only significant between the oceanic

islands and the other two categories (Fig. 4a). Logc values show a

progressive decrease from inland to continental-shelf and then

oceanic archipelagos, with each category significantly different

from the next (Fig. 4b). The z-values progressively increase from

vertebrate to invertebrate to plant data sets, but only the

difference between vertebrates and plants is significant (Fig. 4c).

Furthermore, z-values appear to vary in relation to the range of

island areas encompassed (Fig. 5). For data sets spanning just

two orders of magnitude the mean value of z is significantly

higher than for data sets spanning more orders of magnitude of

island area (Fig. 5). The logc values increase progressively from

vertebrates to invertebrates and finally to plants, with each

category being statistically different (Fig. 4d).

DISCUSSION

Is there an overall best-fit ISAR model?

Our analyses of 601 data sets and 20 mathematical formulas

demonstrate that there is no universal best-fit island species–
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Figure 3 The distribution of the values of AreaSCALE [i.e.

log(AreaMAX/AreaMIN)] for the three ISAR shape categories, using

the shape that summed the highest AICc weight (wAICc) for each

data set. There are significant progressive increases of the mean

AreaSCALE value from linear to convex and finally to sigmoid shape

(2.185, 2.997 and 4.065, respectively; Kruskal–Wallis rank sum

statistic, n = 465: 32.900, P < 0.001). Note, that the values of

AreaSCALE within which a sigmoid shape totalled the highest

wAICc (18 cases), ranged from 2.243 to 6.153 with a mean value of

4.065 ± SD 0.21. The results remain the same if instead of the

shape that summed the highest wAICc for each data set, the ob-

served shape of the best-fitting model for each data set is con-

sidered (see Appendix S3). Furthermore, there is no

differentiation of the best shape according to the total area of the

island systems considered (see Appendix S3.1), indicating that the

pattern is robust regardless of the total area considered, i.e. small

or large island groups. Squares represent the mean value, boxes

bracket the standard error of the mean (± SE) and whiskers rep-

resent 95% confidence intervals of means (± 1.96 SE).
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area relationship model and, in many cases, there will be no

clear best model for a specific data set (Connor & McCoy,

1979; Guilhaumon et al., 2008). Tjørve (2009) noted ‘the

choice of model will, therefore, depend ultimately on the

specific purposes of the exercise’. We concur but also note the

importance of the choice of the overall analytical strategy,

which may also vary depending on the purpose of the study.

Levins (1966) has suggested that no single mathematical

model in ecology can meet all the requirements of realism,

generality and efficiency, and so some trade-off of these

properties is inevitably involved. With the notable exception of

just a few models (e.g. Archibald, 1949; Preston, 1962; May,

1975; He & Legendre, 2002; Martin & Goldenfeld, 2006)

‘realism’ cannot be rigorously assessed for most of the

functions considered herein, as an appropriate theoretical,

mechanistic background remains lacking. Thus, we have

focused our evaluation on generality and efficiency. By these

criteria we have a clear final ranking, with the power model

performing best (Table 2a). This is consistent with much

previous work cited herein but nonetheless represents the first

time that the power function’s suitability for describing ISARs

has been tested systematically against the many alternative

functions currently recognized. The power function is followed

in our ranking by other simple functions: the Kobayashi,

exponential and linear models.

In general, we may anticipate that increasing the number of

parameters will increase model flexibility, and thus the ability

to fit data sets spanning a greater range of variation in island

area (He & Legendre, 1996; Lomolino, 2000; Tjørve, 2009).

Our results indicate that the more complex models are the

most general (Fig. 2b) – but by this criterion only slightly out-

perform simpler models – and that support for sigmoid

models is at its greatest amongst those data sets with high

values of AreaSCALE (Fig. 3). However, the simpler models out-

performed the more complex ones in terms of model efficiency

and in our overall ranking.

Most of the more complex models were originally intro-

duced into the species–area literature in analyses of the species

Inland Continental shelf Oceanic

0.
2

0.
25

0.
3

0.
35

0.
4

0.
45

z

(a)

Inland : 0.285 ± 0.02
Continental  shelf : 0.3 ± 0.008
Oceanic : 0.379 ± 0.017

Inland Continental shelf Oceanic

0.
4

0.
6

0.
8

1
1.

2
1.

4
1.

6
Lo

gC

(b)

Inland : 1.333 ± 0.092
Continental  shelf : 0.966 ± 0.049
Oceanic : 0.616 ± 0.058

Plants Invertebrates Vertebrates

0.
26

0.
3

0.
34

0.
38

z

(c)

Plants : 0.355 ± 0.015
Invertebrates : 0.323 ± 0.014
Vertebrates : 0.287 ± 0.01

Plants Invertebrates Vertebrates

0.
4

0.
8

1.
2

1.
6

Lo
gC

(d)

Plants : 1.628 ± 0.065
Invertebrates : 0.738 ± 0.045
Vertebrates : 0.524 ± 0.048

Figure 4 Comparisons of z and logc values for the main taxonomic groups and island types, for the logarithmic form of the power

function. (a) Comparison of z-values across the three main island types. The value for oceanic islands is higher than the two other categories

(Kruskal–Wallis rank sum statistic, n = 449: 16.133, P = 0.0003). (b) The logc values by contrast show a progressive decrease from inland to

continental-shelf and then oceanic archipelagos (Kruskal–Wallis rank sum statistic, n = 449: 32.130, P < 0.0001), with each category

significantly different from the next. (c) The comparison of z-values for the main taxonomic groupings show that plant and invertebrate data

sets have higher z-values than vertebrates but only the difference between plants and vertebrates is significant (Kruskal–Wallis rank sum

statistic, n = 447: 14.104, P = 0.0009). (d) The logc values increase progressively from vertebrates to invertebrates and finally to plants, with

each category being statistically different from each other (Kruskal–Wallis rank sum statistic, n = 447: 150.262, P < 0.0001). Squares

represent the mean value, boxes bracket the standard error of the mean (± SE) and whiskers represent 95% confidence intervals of means

(± 1.96 SE).
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accumulation curve (Flather, 1996): a very different type of

construct. Our results indicate that in the absence of a specific

theoretical justification for doing otherwise, the start point in

ISAR analyses should be to consider four competing simple

models, i.e. the power, Kobayasi, exponential and linear

models, especially if the spatial range of the values included is

less than four orders of magnitude of island area.

Is there a best-fit family of ISAR models?

Judged at the level of model ‘families’, our findings were

broadly consistent with the individual-model-based analyses in

that the three best-performing families were the power

[Pow(B)], exponential [Expo(C)] and Logistic [Logis(D)]

families (Table 4). As the best-performing model within the

power family is the power model itself, which has just two

parameters, and as the exponential family contains only simple

functions, and as the best model within the logistic family is

the two-parameter monod model, it follows that these family-

level analyses again affirm the preference for simple over

complex models.

The linear family, represented by a single model, has a high

score for efficiency, but it comes low on the family ranking

because it has low generality (Tables 3 & 4, and see Fig. S6 in

Appendix S3). This paradox is explained in large part by the

decreasing performance of the linear model as the number of

islands in a data set increases (Table S12 in Appendix S3).

Indeed, a linear ISAR appears most characteristic of data sets

with a low number of islands, spanning low ranges of area,

such that the linear ISAR slips from fourth ranked when

considering 465 data sets containing seven or more islands, to

15th ranked when restricting the analyses to the 340 data sets

containing 10 or more islands (Fig. 3; and see Table S12 in

Appendix S3).

Is there a best-fit ISAR shape and does it includes

an asymptote?

There has been considerable debate as to the shape taken by

ISARs, whether they exhibit convex or sigmoid forms and

whether ISARs reach an asymptote or not (e.g. Connor &

McCoy, 1979; Lomolino, 2000, 2002; Williamson et al., 2001;

Dengler, 2009; Scheiner, 2009; Tjørve, 2009). Resolving these

debates is important to understanding the mechanisms

controlling the species richness of isolates.

Our analyses show only weak support for sigmoid ISARs.

While we found that at least one of the fitted models exhibited

a sigmoid shape in 371 cases out of the 465 data sets, the

efficiency values were really low (i.e. mean wAICc for sigmoid

models = 0.11 compared with 0.79 for convex models:

Table 4b). Moreover, if we were to attribute a sigmoid shape

only when this was the form of the overall best model, then a

sigmoid shape is observed in just 26 cases (5.5%). The most

common shape observed was the convex upwards, a shape

typically produced by the simpler models, including the

models proposed earliest (Table 2; Arrhenius, 1920; Gleason,

1922).

Williams (1943) may have been the first to note that the

slope of the species–area relationship changes with geograph-

ical scale (see also Preston, 1960). This notion was codified in

Rosenzweig’s (1995) scale-structured model of species–area

relationships, in which he proposed four different biogeo-

graphical scales of relationship, from point to interprovincial.

Our analyses support the proposition that different functions

or shapes of ISAR may exhibit scale-dependency (cf. He &

Legendre, 1996; Whittaker, 2000; Whittaker & Fernández-

Palacios, 2007). The ‘best’ shape is often linear for data sets of

very few islands, spanning a small range of area values, and

progressively as we move towards coarser scales, convex shapes

and finally more complex sigmoid forms become more

frequent (cf. Connor & McCoy, 1979; He & Legendre, 1996;

Whittaker & Fernández-Palacios, 2007; Figs 1a & 3, Table S12

in Appendix S3).

Contributing factors to this tendency might in theory

include the occurrence of a small-island effect across the

smallest islands and the effect of in situ cladogenesis producing

steep slopes across remote islands of the largest areas (Fig. 1).

Thus, a sigmoid curve can sometimes be present, especially

when more than three or four orders of spatial magnitude are

included. However, sigmoid models performed poorly overall

(Table 4) and were found to be ‘best’ in just 5.5% of cases,

while few fitted sigmoid models bear much resemblance to the

idealized depiction shown in Fig. 1a. Hence, overall, we may

conclude that the majority of ISARs are best described as

having a convex (upwards) shape.

1 2 3 4 5 6 7
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15
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35

0.
4

0.
45

0.
5
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Figure 5 Comparison of the z-values for the main orders of

magnitude of AreaSCALE included in the present study. For data

sets spanning just two orders of magnitude the mean value of z is

0.438 ± SD 0.216, significantly higher than for all other categories,

which exhibit z-values close to 0.3 or even lower (Kruskal–Wallis

rank sum statistic, n = 439: 47.828, P < 0.0001). Note that the

categories 100–101 and 107–108 were not considered due to their

small sample size: four and six cases, respectively. However, if

category 100–101 is merged with 101–102 and category 107–108

with 106–107, the results remain identical (see Appendix S3.5).

The logarithm of orders of scale magnitude is presented.
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Next we turn to the issue of the asymptote. Lomolino (2000,

2002) argued that isolated faunas are ultimately derived from a

limited pool of species and therefore that the ISAR should level

off, asymptotically approaching that maximum value of rich-

ness. This was challenged by Williamson et al. (2001), who

argued that because both species number and area are finite, the

mathematical function describing the ISAR must be limited at

both ends and thus there is no theoretical case for the

relationship to reach an upper asymptote. Our analyses provide

only limited support for asymptotic ISARs. Although 374 data

sets can be fitted with a model exhibiting an asymptote, the

efficiency values are typically very low compared with those of

adequately fitting non-asymptotic models (0.218 vs. 0.825).

Moreover, if the shape of the best model is considered in each

case, then an asymptote is detected in only 62 cases (13%).

Interestingly, an asymptote was detected in combination with a

sigmoid ISAR form in just 10 cases (2%; Appendix S3.2), while

the other 52 cases were in combination with convex shapes.

Based on the very wide sample of published data sets analysed

herein we are thus unable to affirm the proposition that when

sampled over a full array of island areas, the overall form of the

ISAR should be sigmoidal, with an upper asymptote: if such

patterns exist they have rarely been sampled.

In conclusion, the convex shape is the most common form,

even when a large spatial window is involved. Thus, convex

models, without an asymptote, should generally be preferred

for fitting ISARs, while consideration may be given to fitting

sigmoid models when the spatial range is around, or exceeds,

three orders of magnitude (Figs 1b & 3).

Can we infer biological processes responsible

for variations in ISAR form by reference

to system properties?

The dynamic relationships between immigration, speciation

and extinction, and how their rates vary in time and space are

fundamental to an understanding of ISARs, as recognized in

the equilibrium theory of island biogeography (MacArthur &

Wilson, 1967). However, numerous biological mechanisms

and theories have been proposed to explain features of ISARs

(Whittaker & Fernández-Palacios, 2007, pp. 87–88; and see

Schmida & Wilson, 1985; Rosenzweig, 1995; Turner & Tjørve,

2005). The different mechanisms are not mutually exclusive

and may operate individually or in combination (Connor &

McCoy, 1979; Kohn & Walsh, 1994; Rosenzweig, 1995; Ricklefs

& Lovette, 1999; Triantis et al., 2003).

We currently lack a consensus concerning how individual

factors and mechanisms contribute to ISAR form across

different spatial and temporal scales, environmental conditions

and taxa. For instance, the role of isolation is generally

regarded as integral to the understanding of ISAR form, as

evident in systematic variation in z-values of the power model

between our three broad island categories (Fig. 4, and see e.g.

MacArthur & Wilson, 1967; Rosenzweig, 1995; Triantis et al.,

2008a), but isolation frequently does not have an important

role in richness variation within a single archipelago. Similarly,

at larger scales, differences in the rate of energy capture across

a set of islands and – at even coarser scales – evolutionary

history/independence are expected to play significant roles in

shaping species richness and modifying ISAR form (Fig. 6). At

finer scales, by contrast, mechanisms such as habitat diversity,

random placement, and area-based incidence functions more

frequently feature in interpretations of variation in island

species richness (see Whittaker & Fernández-Palacios, 2007).

The explained variation in species richness can be increased

by the inclusion into models of variables other than area,

representing for example, habitat diversity, energy flow, system

age or isolation (Kalmar & Currie, 2006; Whittaker et al.,

2008). However, our general ability to fit statistically signif-

icant models for the ISAR is consistent with the notion that

area is the best general proxy for the available ecological space

(sensu Gillespie, 2007) provided by an island (Fig. 6). Our

Figure 6 Schematic interpretation of how causal mechanisms may vary as system scale increases. (a) Factors that influence species richness

across scales of space. Darker areas indicate scales of greater influence (see also Schmida & Wilson, 1985; Turner & Tjørve, 2005). The effect

of energy input and evolutionary history are expected to affect species richness across the whole spectrum of spatial scale, but at the larger

scales their contribution is anticipated to become dominant. The habitat diversity effect, although present across scales, is expected to be

reduced at larger scales. At finer scales, mechanisms such as random placement and incidence functions are expected to have greater

importance assigned. (b) The relationship between ecological space and area, and the inferred possible effect of each of the factors to the

relationship. The spatial scale and the possible extent of the influence of each factor on the relationship between ecological space and area

(length of the arrows) are theoretical approximations, used as a working hypothesis.
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results (especially those arising from the CAP analysis) show

that while the ISAR form for a particular data set cannot be

predicted a priori based on the characteristics of the data set

itself, nonetheless a significant if small amount of the variation

in ISAR form can be attributed to specific system properties. In

particular, there is a degree of scale and system dependence in

the relationship between species richness and area (cf. Rosen-

zweig, 1995; Whittaker, 2000; Whittaker et al., 2001).

In essence then, we retain our focus on island area, and are

able to recognize emergent patterns in ISAR form because,

despite some independent variation in other factors, area, to a

large degree, captures multiple correlated variables that

together determine the available ecological space (Gillespie,

2007). In using the term ecological space, we are giving

expression to the idea that there is some variation in the

capacity for richness that is not fully captured by area alone.

Ecological space thus encompasses the combination of abiotic

environmental conditions (including area, elevational range,

and climatic capacity for productivity) and biotic conditions

(including the historically determined species pool and the

prevailing propagule rain) that constrain actual levels of island

diversity (e.g. Rosenzweig, 1995; Whittaker et al., 2001, 2008;

Whittaker & Fernández-Palacios, 2007; Losos & Ricklefs, 2009;

Rabosky, 2009; Ricklefs, 2009).

Figure 6 provides a schematic interpretation of how our

findings might relate to the above ideas and mechanisms. A

strong correlation between species richness and area should be

considered as an indication of area effectively capturing the

overall characteristics establishing ecological space and thus

species richness in the region, and not a priori a direct or an

indirect effect of area. In such cases area will most probably be

highly correlated with other variable(s) establishing species

richness in the system. On the other hand, a low correlation of

species richness with area indicates that area is decoupled from

the (other) major variables that determine the occupied

ecological space (e.g. Wright, 1983; Triantis et al., 2003).

Can the parameters of the logarithmic

implementation of the power model be interpreted

biologically and ecologically?

The abiding interest in the power model owes much to

Preston’s (1962) derivation of the canonical value of z = 0.262,

based on the assumption of a lognormal distribution of

abundance and the subsequent biological interpretation of

variation in both the z and c parameters of the power model.

Despite much attention to these parameters, their biological

significance has been questioned, notably by Connor & McCoy

(1979, p. 815), who concluded that ‘… we are sceptical that

any biological significance can be attached to these parameters

and recommend that they be viewed simply as fitted constants

devoid of specific biological meanings’ (see also Williamson,

1988; contrast with Sugihara, 1980).

The z-values describe the rate of accumulation of species

with the increase of area in the logarithmic space. In general,

higher values correspond to more isolation (Fig. 4; cf.

MacArthur & Wilson, 1967). However, z-values are not merely

responsive to geographical distance but may vary as a function

of an array of other system properties and specific biological

processes. For example, in an inland water system of really

small islands, with a high degree of nestedness and close to the

mainland, for which theory would predict a low value of z (e.g.

Rosenzweig, 1995), the rate of species increase from the

smallest to the largest island can sometimes be extremely high,

as shown by Nilsson & Nilsson’s (1978) study of strictly

terrestrial plants for which z = 0.72. Given such variation from

the general trends reported herein, it is clearly necessary to

exercise caution in offering biological interpretation of

parameter values. However, neither is it an entirely stochastic

pattern, as differing rates of extinction, immigration and

speciation combine to produce significant emergent trends (cf.

Wilson, 1969; Rosenzweig, 1995; Triantis et al., 2008a; Whit-

taker et al., 2008; Kisel et al., 2011). In an island group and for

a specific taxon with hardly any limitations of dispersal, the

increase of species with area will be low and certainly, on

average, lower than in a system, for the same taxon, where

most of the species originate from in situ speciation. The

species overlap will tend to be higher in the first case and thus

the z-values lower. As Triantis et al. (2008a) have shown, if

only the single-island endemic species are considered, a high

z-value can be anticipated: higher than 0.6 and often close to

unity [as postulated for Rosenzweig’s (1995) interprovincial

SAR]. Hence, we suggest that a general pattern exists relating

the z-value of the ISAR with the dominant processes of species

addition. As we move from speciation-dominated systems

(usually oceanic islands) to immigration–extinction dynamics

(e.g. continental-shelf islands) and then to low-dispersal

limitation systems (e.g. inland islands, which are typically

close to their potential species pool), we will in general observe

lower values of z. This generalization is supported by the values

for the different island types (oceanic, continental-shelf and

inland islands) considered here (Fig. 4a), and broadly supports

earlier syntheses by e.g. Preston (1962) and MacArthur &

Wilson (1967).

As depicted in Fig. 5, the mean value of z is significantly

higher for data sets spanning just two orders of magnitude of

AreaSCALE, than for all other data sets. The inclusion of more

orders of magnitude of island area leads to a progressive

reduction of z-values. This could be an explanation for the

general tendency for reported z-values to cluster around 0.2–

0.4. When more than two orders of magnitude are included in

the system under study, the probability of more processes

being involved in establishing species richness for specific

scales of the overall spatial scale considered is high; thus they

cluster around the values observed for the archipelagic scale,

i.e. z of 0.2–0.4 (Rosenzweig, 1995), which is the intermediate

state between high and low species overlap, with each of the

processes responsible for adding species to islands playing a

role.

In terms of the c-values, ‘the politely ignored’ parameter of

the species–area relationship (Gould, 1979), MacArthur &

Wilson (1967) limited themselves to broad generalizations,
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suggesting that fitted values will depend on the population

density and the innate species diversity of the taxon, the

environmental carrying capacity, and the isolation of the

system. In our analyses, we detected two main patterns. First,

the logc values decreased progressively from inland to conti-

nental-shelf to oceanic systems (Fig. 4). This is predicted by

island theory because with increasing distance from the

possible species pool, dispersal is expected to be reduced and

thus fewer and fewer ‘sink species’ (sensu Rosenzweig, 1995)

will be able to sustain presence through supplementary

immigration (the rescue effect sensu Brown & Kodric-Brown,

1977). Thus, in the most isolated islands, which are usually

oceanic islands, we would expect fewer species than for the

continental-shelf and inland archipelagos (MacArthur &

Wilson, 1967). Additionally, a speciation-dominated island

would be expected to have fewer species than a dispersal-

dominated island of equal size because speciation needs larger

areas to produce the same species numbers as dispersal (e.g.

Heaney, 2000; Kisel & Barraclough, 2010). Second, logc values

generally increase from vertebrates to invertebrates and finally

to plants. The lower values for vertebrates are consistent with

the general expectation that they require more space to sustain

viable species populations than plants or invertebrates. We

might have anticipated that invertebrates would have the

highest logc values, given the small body size of many species

and the density at which invertebrates can often occur; the

intermediate mean value obtained may reflect the taxonomic

and trophic variation captured within the invertebrate data sets

in the analysis. The high logc values of plants indicate that,

being autotrophs, they are on average able to pack in more

species per unit area in small islands than do animals, and may

also reflect superior mechanisms (e.g. dormancy) for persisting

in patchy or ephemeral populations.

In terms of geographical context, some studies using nested

designs have reported a relationship between z-values and

latitude (e.g. contrast Lyons & Willig, 2002; Qian et al., 2007).

However, in our analyses of ISARs we failed to find a

latitudinal effect, either in respect of z or logc values (cf.

Connor & McCoy, 1979). Hence, climatic effects with regard

to these parameters are either weakly reflected by latitude or

are intertwined with other system variables so as to prevent

their emergence (cf. Kalmar & Currie, 2006).

CONCLUSIONS

Overall, our analyses confirm that the shape of the ISAR is

scale dependent. We conclude that over most scales of space,

island species–area relationships are best represented by simple

models. While, the form of the ISAR varies considerably

between study systems, some part of this variation can

reasonably be related to the array of previously identified

mechanisms and processes that constrain the ecological space

available within an island system (Fig. 6) and the geographical

context within which the archipelago is located. Thirty-three

years after Connor & McCoy’s (1979) landmark analysis, we

offer a different and cautiously positive answer to the question

of whether biological significance can be assigned to the

parameters of the best general ISAR model: the power model.

Z-values are indicative of the process(es) establishing species

richness and composition patterns, while c-values are indica-

tive of the realized carrying capacity of the system per unit

area. Notable general trends are that c-values vary with system

type and major taxon, and that z-values increase as we switch

from considering systems with high species overlap to systems

with low species overlap (cf. Rosenzweig, 1995).
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