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 Marine eutrophication and hypoxia caused by excess nutrient availability is a growing environmental problem. In this
study, we explore marine nitrogen enrichment in the context of Absolute Environmental Sustainability Assessment
(AESA), a method combining life cycle assessment (LCA) with environmental boundaries aiming to compare environ-
mental impacts from an activity (product or system) with the safe operating space (SOS) for the activity. Specifically,
we aim to increase the spatial resolution and improve life cycle impact assessment (LCIA) models for marine eutrophi-
cation for use in AESAs. By estimating a proxy of the areal extent of eutrophication and hypoxia in coastal largemarine
ecosystems (LME), we increased model resolution from 66 LMEs in the original LCIA method to 289 coastal LME
subsegments and updated relevant LME parameters to the new scale (residence time, bottomwater volume, reference
O2 concentration, primary production rates and depths). The new method was tested and validated by comparing the
global and spatially differentiated occupation of SOS by global nitrogen emissions with observations and it showed an
improved ability to identify critical areas where the SOS is exceeded, in accordance with observations of hypoxic
events. Despite limitations such as the estimation of benthic zone volume and low spatial differentiation of environ-
mental boundaries, the method can be used by AESA and LCA practitioners wishing to assess the impact of nitrogen
release on marine eutrophication with a higher and more relevant spatial resolution.
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1. Introduction

Hypoxia is an escalating environmental problem affecting the world's
coastal waters, with severe consequences for marine life (Diaz and
Rosenberg, 2008; Vaquer-Sunyer and Duarte, 2008; Zhang et al., 2013;
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Breitburg et al., 2018; Le Moal et al., 2019; Malone and Newton, 2020).
The number of sites where hypoxia has been reported has been increasing
exponentially over the last century (Vaquer-Sunyer and Duarte, 2008).
This trend is expected to continue, due to the combined effects of eutrophi-
cation (i.e. excess nutrient availability, increasing production of organic
matter and oxygen demand of coastal systems) and global warming (in-
creasing respiratory oxygen demand and reducing oxygen solubility and
ventilation in coastal waters) (Vaquer-Sunyer and Duarte, 2008).
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In this study, we focus on oxygen depletion caused by excess nitro-
gen availability, which is primarily a consequence of human activities
such as fertilizer application, agricultural nitrogen fixation, sewage
discharges and deposition of NOx emissions from fossil-fuel combustion
(Sobota et al., 2013; Beusen et al., 2016). We examine marine eutro-
phication in the context of Absolute Environmental Sustainability
Assessment (AESA), which is a method aiming to support decision-
making in the context of sustainable development. AESA methods com-
pare emissions and associated environmental impacts from an activity
(product or system) with an environmental safe operating space (SOS)
assigned to the activity. The SOS is delimited by environmental bound-
aries such as the Planetary Boundaries (Rockström et al., 2009; Steffen
et al., 2015). AESA aims to assess whether the environmental impact
of an activity remains within the assigned share of SOS (SoSOS).
AESAs attempt to cover all potentially relevant impacts on the environ-
ment, including marine eutrophication (Bjørn et al., 2020a). An AESA
method consists of four main steps: i) identifying environmental bound-
aries, ii) calculating SOS based on the environmental boundary and
reference levels, iii) calculating environmental impacts from emissions,
caused by the studied activity and iv) comparing environmental impacts
to SOS assigned to the studied activity (Bjørn et al., 2020a).

A substantial limitation of AESA methods is the current application of
globally representative average boundaries for non-global processes such
as nutrient emissions (Ryberg et al., 2016; Nash et al., 2017) in spite of
the known regional variability in ecosystem sensitivities. A recent AESA
study developed a spatially resolved method for quantifying impacts of
nitrogen emissions on marine eutrophication in relation to the SOS
in coastal water (Bjørn et al., 2020b). However, the spatial resolution of
the model for coastal water was too coarse in the sense that exceedance
of local scale SoSOS (particularly for areas close to shore) might be
“hidden” by the inherent averaging of impacts over large marine areas.
Moreover, it was assumed that natural oxygen conditions, required to esti-
mate the SOS, correspond to an oxygen saturation of 100 % in the benthic
zone. This conditionwould require full vertical mixing between surface and
bottom layer, which is not always the case in coastal areas (e.g., Breitburg
et al., 2018).

The AESA method of Bjørn et al. (2020b) builds on the life cycle im-
pact assessment (LCIA) method of Cosme and Hauschild (2017). An
LCIA method links emissions from a studied anthropogenic system
with impact on the chosen indicator for an environmental impact cate-
gory (e.g. global warming or marine eutrophication) using characteriza-
tion factors (CF). A CF represents the environmental fate, exposure
and effect of an elementary flow in the environment (Hauschild and
Huijbregts, 2015).

The LCIA method of Cosme and Hauschild (2017) is recognized as the
best available LCIA method for marine eutrophication as it fills previously
existing gaps in the characterizationmodel (Morelli et al., 2018).Moreover,
Fig. 1. Themethodological basis for developing and validating the spatially differentiate
emitted to coastal water (black arrows in characterizationmodel illustration), while in a
in the different environmental compartments (grey dotted arrows in the illustration of t
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it is recommended by the United Nations' Global Guidance on Environmen-
tal Life Cycle Impact Assessment Indicators as the most suitable method
for marine eutrophication (UNEP, 2019). However, the method has
some limitations (refer to (Morelli et al., 2018, Bjørn et al., 2020b) for
a full overview). For example, water residence time in the coastal zone
relies on literature values and estimations that are uncertain and yet
crucial for the estimated size of the FF used in the LCIA method (Cosme
and Hauschild, 2017).

In this study, we aim to improve the LCIA models for marine eutrophi-
cation for use in AESAs. Taking the AESA method by Bjørn et al. (2020b),
building on the LCIA method by Cosme and Hauschild (2017) (hereafter
referred to as the “original method”), as a starting point, we

1) modify the model resolution to a scale that better aligns the geographi-
cal scale of the environmental problem in question, i.e. eutrophication
and hypoxia.

2) update relevant parameters to the new scale (residence time, bottom
water volume, reference O2 concentration, primary production rates
and depths), thereby also improving parameters that have been high-
lighted as uncertain in the original method, and.

3) test and validate the method by comparing the global and spatially dif-
ferentiated predicted occupation of SOS for global nitrogen emissions
with observations of actually occurring oxygen depletion. Apart from
its relevance for AESA, a spatially refinedmethodwill also advance con-
ventional LCIAmodelling in general helping to close a knowledge gap in
existing LCIA methods (Morelli et al., 2018).
2. Methods

Fig. 1 summarizes the methodological basis for developing and
validating the spatially differentiated marine eutrophication AESA
method. The original LCIA method links emission of dissolved inorganic
nitrogen (DIN) (including NO3

−, NO2
− and NH4

+) with its impact in
different environmental compartments (soil, freshwater and marine
water) based on a characterization model. Focusing onmarine eutrophi-
cation, we further developed the underlying method by increasing the
spatial resolution and updating relevant parameters. We demonstrated
and validated the method by comparing occupation of SOS by global
nitrogen emissions with areas where hypoxia has been observed and
seafloor O2 levels based on data from World Ocean Atlas (WOA) 2018
(Garcia et al., 2019).
2.1. Method development

Table 1 gives an overview of the primary model parameters, the spatial
resolution and sources for each of the model components of our method.
d marine eutrophication AESAmethod. Note that, in this study, we only look at DIN
full AESA study, one would look at the DIN emitted from human activities ending up
he characterization model in the left side of the figure).



Table 1
Overview of the primary parameters of themodel components (fate factor (in characterizationmodel), exposure factor (in characterizationmodel) and safe operating space),
their spatial resolution and sources, and parameters used for model segmentation. * Aggregated from native resolution to subsegments.

Parameter Value Unit Resolution Description Source (reference or calculation)

Characterization model - fate factor
Ƭfw 0.02 ↔ 22.41 [year] 1/8 degree* Freshwater residence time (Liu et al., 2019)d

λd 0.31↔ 1.79 [year−1] 1/8 degree* Denitrification rate Equation S15 from Cosme et al. (2018) as a function of residence
time of Liu et al. (2019)

Characterization model - exposure factor
C:N 5.681 [kg C (kg N)−1] Global Based on molar mass ratio: 106 ×

M(C)/16 × M(N)
Stoichiometry of the photosynthesis equation (see Cosme et al., 2015)

O2:C 3.468 [kg O2 (kg C)−1] Global Based on molar mass ratio: 138 ×
M(O2)/106 × M(C)

Stoichiometry of the respiration equation (see Cosme et al., 2015)

PPPot 0.342 ↔ 2.220 [−] 1 degree* Primary production potential PPPot = PPsubsegment/PPaverage (PPsubsegment rates from
Sathyendranath et al. (2019)d

fPPsink 0.150 ↔ 0.670 [−] Climate zone Sinking fraction of mismatched
PP biomass

(Cosme et al., 2015)

fPPgrz 0.330 ↔ 0.850 [−] Climate zone Fraction of PP biomass grazed by
zooplankton in the photic zone

fPPgrz CZ = 1 − fPPsink (Cosme et al., 2015)

fSPingest 0.643 [−] Global Averaged fraction of grazed
biomass ingested and not lost by
sloppy feeding by secondary
producers (SP)

(Cosme et al., 2015)

fSPassimil 0.300 ↔ 0.900 [−] Climate zone Assimilation efficiency (Cosme et al., 2015)
fSPegest 0.100 ↔ 0.700 [−] Climate zone Fraction of organic carbon

egested by SP
fSPegest = 1 − fSPassimil (Cosme et al., 2015)

fplfish 2E−04 ↔ 1.000 [−] Large marine
ecosystem
(LME)

SP consumption by planktivorous
fish

(Cosme et al., 2015)

fAVTgrz 0.033 ↔ 0.085 [−] Climate zone Fraction of organic carbon
transported by active vertical
transport

fAVTgrz CZ = 0.10 × fPPgrz CZ × fSPinges (Cosme et al., 2015)

fPPsinkGZ 0.023 ↔ 0.101 [−] Fraction of the PP biomass that is
consumed during sink

fPPsinkGZ = 0.15 × fPPsink (Cosme et al., 2015)

fPPsinkNG 0.900 ↔ 0.978 [−] Climate zone Fraction of the sinking PP biomass
that is not grazed

fPPsinkNG = 1 − fPPsinkGZ (Cosme et al., 2015)

fFPleach 0.280 [−] Global Fraction of organic carbon
leached from SP faecal pellets

(Cosme et al., 2015)

fFPsinkGZ 0.007 ↔ 0.017 [−] Climate zone Grazing pressure on faecal pellets fFPsinkGZ = 0.20 × fPPsinkGZ (Cosme et al., 2015)
fFPsinkNG 0.708 ↔ 0.715 [−] Climate zone Fraction of organic carbon sinking

as faecal pellets
fFPsinkNG = (1 − fFPleach) × (1 − fFPsinkGZ) (Cosme et al., 2015)

fSPmort 0.290 [−] Global Fraction of predation mortality
defining SP carcasses

(Cosme et al., 2015)

fSPcarc 0.000 ↔ 0.290 [−] LME PP's biomass in SP carcasses fSPcarc = fSPmort × fplfish (Cosme et al., 2015)
Zmean 14.8 ↔ 183.9 [m] 1/8 degree* Mean depth of subsegments (Liu et al., 2019)
ZAVT 10 [m] Global Vertical distance covered by diel

migrant copepods
(Cosme et al., 2015)

Zphotic 12 ↔ 68 [m] Subsegment LME photic depth adapted from
Longhurst provinces

(Cosme et al., 2015)

Zaphotic 1 ↔ 149.1 [m] Subsegment Depth of aphotic zone Zaphotic = Zmean − Zphoticb

UPP 150 [m d−1] Global Sinking velocity of phytodetritus
and marine snow

(Cosme et al., 2015)

USP 200 [m d−1] Global Sinking velocity of marine snow
and SP faecal pellets

(Cosme et al., 2015)

fBRmarsnow 0.130 [d−1] Global Bacterial respiration rate on
sinking marine snow

(Cosme et al., 2015)

fBRsinkSPaphotic 0.001 ↔ 0.097 [−] Subsegment Bacterial respiration rate on
sinking faecal pellets egested in
the aphotic zone

fBRsinkSPaphotic = fBRmarsnow/USP × (Zmean − Zphotic)

fBRsinkPP 0.013 ↔ 0.159 [−] Subsegment Respiration of sinking organic
carbon from PP

fBRsinkPP = fBRmarsnow/UPP × Zmean

fBRsinkSP 0.010 ↔ 0.120 [−] Subsegment Respiration of sinking organic
carbon from SP

fBRsinkSP = fBRmarsnow/USP× Zmean

BGE 0.573 ↔ 0.633 [−] Subsegment Bacterial Growth Efficiency Refer to equation 21 of Cosme et al. (2015). Based on PP rates from
Sathyendranath et al. (2019)

fBRbott 0.367 ↔ 0.427 [−] Subsegment Fraction of organic carbon
respired at the bottom

fBRbott = 1-BGE

fAVToc 0.003 ↔ 0.487 [−] Subsegment Organic carbon transported by
active vertical transport

Refer to equation 14–19 of Cosme et al. (2015).

Safe operating space
B 0.44 ↔7.67 [mg L−1] Climate

zone/globalc
Boundary for minimum O2

concentration
Based on Bjørn et al. (2020b) and Breitburg et al. (2018) with
modificationsc

R 0.71 ↔12.15 [mg L−1] 1 degree* Reference for
natural/preindustrial O2

concentration

Estimated by subtracting the historical changes in O2 concentration
in bottom oceans simulated by six Coupled Model Intercomparison
Project (CMIP6) modelsa from present day observations (Garcia
et al., 2019).

(continued on next page)
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Table 1 (continued)

Parameter Value Unit Resolution Description Source (reference or calculation)

VolBZ 2.4 × 109↔ 3.3 × 1012 [m3] Subsegment Volume of the benthic zone where
O2 depletion is critical

Area of subsegment x benthic zone height (0.22 ∗ depth of water
column)

Segmentation and method validation
PP 98.17 ↔ 636.52 [g C m−2 year−1] 1/8 degree* Primary production rate (Sathyendranath et al., 2019)
Nriver 0.0 ↔ 4.6 × 109 [kg year−1] 1/2 degree* Nitrogen loads from river (Beusen et al., 2016)
Natm 1.4 × 103 ↔ 1.4 × 108 [kg N km−2 year−1] 2 × 2.5

degree*
Nitrogen loads form atmospheric
deposition

(Ackerman et al., 2019)

a The historical changes are calculated as the difference between themulti-model average of 2001–2020 and themulti-model average of 1850–1869. The following CMIP6
Earth system models have been used: CanESM5, CNRM-ESM2–1, GFDL-ESM4, MIROC-ES2L, MPI-ESM1–2-HR, UKESM1–0-LL.

b Where aphotic depth was calculated to be <0, a minimum of 1 m aphotic depth was assumed.
c Areas that pertain to naturally occurring oxygen minimum zones (OMZ) (coastal LME (cLME) #2, 3, 4, 11, 13, 28, 32, 34 and subsegment #29.1), have a differentiated

boundary based on Gallo and Levin (2016) (refer to Section 2.3 for details).
d For subsegments # 62.1, 62.2 and 62.3, CRT from (Liu et al., 2019) was not available, hence residence time for LME 62 of (Cosme et al., 2018)was used. For subsegments

#61.1, 61.2 and 61.3, PP rates are assumed equal as the one for LME 61 of (Cosme et al., 2015), as there is only PP data for small parts of the cLMEavailable in Sathyendranath
et al. (2019) (as most of the cLME is ice). Using the average of these few data points creates heavily overestimated average PP.
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2.1.1. Spatial segmentation
Hypoxia resulting directly from human activities is mainly a prob-

lem in coastal waters (Bjørn et al., 2020b; US EPA, 2021). Therefore,
the first step in creating suitable model resolution was to restrict the
66 large marine ecosystems (LMEs) in the original LCIA model to the
200 m isobath LME i.e. their coastal parts (cLME) (Fig. 2a). Limiting
the original LMEs to their coastal parts more than halved the aver-
age size of the segments from 1.27 × 106 km2 to 5.6 × 105 km2.
While bringing the model closer to the spatial scale of the problem in
question, the size of the cLMEs may still be too large to be relevant for
the specific impact category. The relevant size of the model segments
was therefore further investigated by examining coastal nitrogen trans-
port patterns.

The transport of nitrogen and associated concentrations of dissolved
oxygen (DO) as well as the spatial extent of eutrophication and hypoxia,
depend on various local or regional factors such as advection, air-sea
exchange, photosynthesis and chemolithotrophic production (Eldridge
and Roelke, 2010). Our model is a regional-scale model with a global
coverage building on a relatively simple model structure, compared to
more complex regional marine eutrophication models (e.g., Pätsch and
Kühn (2008)). Hence, it was not deemed feasible to define the segments
considering complex local physical processes and dynamics (see further
discussion in Section 3.3). We estimated a relevant size of the model
segments by calculating the global average spatial extent for observed
large-scale eutrophication events caused by anthropogenic nitrogen emis-
sions. We used high primary production (PP) rate fields (Sathyendranath
et al., 2019) associated with large nitrogen emission fluxes (Beusen et al.,
2016) to indicate how far an nitrogen emission can propagate in the coastal
segment, to determine a proxy for the spatial extent of eutrophication. A
high PP rate was defined as an annual average rate of >1563 mg C/m2/d
(corresponding to a rate two times the global average coastal PP rate),
and a large emission as an emission larger than 280 kt/year (corresponding
to a point emission contributing with >50 % of the global average
Fig. 2. Spatial segmentation in the Gulf of Mexico (LME 5) from LME scal
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emissions to a cLME). Thirteen high PP fields and associated emission
points were identified using these criteria, and an arithmetic average area
of the high PP fields was calculated. Each cLME segment was then divided
by this average area, dictating the number of subsegments necessary for
each cLME in order to keep the size of all subsegments similar to size of
the average high PP field (Fig. 2b) (see Supporting Information (SI)-2
for further details).

2.1.2. Calculating marine eutrophication impacts from nitrogen emissions to the
coast

As previously mentioned, this work takes the global spatially differenti-
ated marine eutrophication characterization model by Cosme et al. (2017)
as a basis. A characterization model calculates CFs as the product of a fate
factor (FF), exposure factor (XF), and effect factor (EF) respectively, linking
the emission of a substance with its impacts in an impact pathway (Fig. 3).
The impact pathway describes the cause-effect chain linking environmental
drivers (e.g. tomato cultivation) to pressures (e.g. emission of N) and
exchanges resulting in changed environmental states (e.g. reduced O2

concentration in bottom waters) and effects (e.g. loss of marine species
richness).

In this study, we consider the cause-effect chain until reduced O2 con-
centration in bottom waters and use this as the environmental impact indi-
cator for nitrogen emissions. I.e. we do not include the final effect in terms
of possible species loss in the environment, as this would add further uncer-
tainty to the model.

The CFs of the characterization model express the proportional change
in environmental impact per change in quantity of environmental interven-
tions (Hauschild and Huijbregts, 2015). In the case of nitrogen emissions
and their impact in subsegments of cLMEs, the environmental impact is
expressed as shown in Eq. (1):

EIi; j;ss ¼ CFi; j;ss �Mi: j ð1Þ
e to coastal LME scale (cLME) (a) and from cLME to subsegments (b).



Fig. 3. Illustration of the impact pathway of waterborne nitrogen (N) to hypoxia-relatedmarine eutrophication impacts, showing themodelling components of the fate factor
(FF) and ecosystem exposure factor (XF). The figure is modified from Cosme et al. (2017), excluding the effect factor (EF) and damage factor (DF), as these factors are not
considered in the present study.
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where EIi, j, ss [kg O2] is the environmental impact in subsegment ss (kg O2

removed from coastal benthic zone) from a nitrogen emission to compart-
ment i (e.g. soil, air, freshwater shed or coast) in region j. Mi,j [kg N/year]

denotes the emission flux of DIN to compartment i in region j. CFi,j,ss

kgO2
kgN
year

� �
is the characterization factor calculated by Eq. (2):

CFi; j;ss ¼ FEi; j;ss � FFss � XFss ð2Þ

where FEi,j,ss
kgNss
kgNi,j

h i
is the fraction exported from compartment i (e.g. a

freshwater shed) in region j to subsegment ss. The fate factor, FFss
kgNss
kgNss
year

� �
,

describes the amount of timeDIN stays in the subsegment (i.e. the residence

time of the DIN). XFss kgO2
kgN

h i
is the ecosystem exposure factor, translating

presence of DIN in the coastal water subsegment to a decrease in oxygen
in the benthic zone.

In the elaboration of FFss, the removal processes by advection (λa
[year−1]) and denitrification (λd [year−1]) are considered as first order
removal processes. Cosme et al. (2018) suggest that the advection removal
coefficient of DIN corresponds to the inverse of the freshwater residence
time (Ƭfw), i.e. λa ¼ 1

Ƭ fw
year½ � and that FFcLME can be written as:

FFcLME ¼ 1
λa þ λd

ð3Þ

Adopting the freshwater residence time concept as an expression for
nitrogen removal by advection is inspired by e.g. Dettmann (2001). The
residence time concept involves the assumption that all water exchanges
(inputs to and outputs from the coastal subsegment) are reflected in this
value. See further details on considerations and assumptions on the mass
flow balance underlying Equation 3 in SI-1.

In this study, we approximate Ƭfw to the coastal residence time (CRT)
parameter from Liu et al. (2019), which is defined as “the elapsed time
since a parcel of source water enters the coastal domain (defined by the
200-m isobath) before it exits to the open ocean while allowing excursions
across the coast-ocean boundary” (Liu et al., 2019). The CRT is calculated
for each subsegment and is modelled considering a depth and area-
weighted average age concentration of an ideal tracer (i.e. a tracer that is
not degraded). Hence, only the advective forces influencing the age of the
tracer are considered. Liu et al. (2019) provide a high-resolution age
concentration dataset (1/8 degree resolution). The 1/8 degree resolved
CRT data was aggregated into the 289 cLME subsegments.

The CRT in Liu et al. (2019) reflects the time a water parcel has spent in
the entire water column of coastal area. Ideally, it should reflect the
residence time in the euphotic zone of the subsegment only, where nitrogen
is used in phytoplankton production since this is a perquisite for the oxygen
depletion that may cause hypoxia. We assume that the CRT is indeed
5

representative for the residence time in the euphotic zone, considering a
water parcel spends more time in the part of the shelf closest to land than
the part close to the ocean boundary (Liu et al., 2019). Shallow water
depths close to land, in general, result in the entire or most of the water
column being within the euphotic zone. In the original method by Cosme
and Hauschild (2017), operating with the whole LME segment and not
only the coastal part, the above assumption would be too imprecise consid-
ering that some LMEs are up to 500 m deep. We believe, however, that this
assumption is appropriate at the spatial scale used in our method.

TheXFss kgO2
kgN

h i
considers plankton growth, the sinking of organicmatter

and the decrease in dissolved oxygen owing to bacterial degradation of the
organic matter as is calculated by Eq. (4):

XFss ¼ PPpot �
�
f PPsink � f PPsinkNG � 1− f BRsinkPPð Þ þ fPPgrz � f SPingest

�
�

1− f BRsinkSPð Þ � 1− f AVTgrz
� �

� 1− f plfish
� �

� 1− f SPcarcð Þ

� f SPegest � f FPsinkNG þ 1− f AVTgrz
�
� f SPcarc �

�
1− f FPsinkGZ

� ��
þ f AVTgrz � f AVToc � 1− f BRsinkSPaphot

� ��
� f BRbott � O2 : Nð Þ

ð4Þ

Refer to Table 1 for an overview of the model parameters and (Cosme
et al., 2015) for further details. In the original XF model, six of 30 parame-
ters were LME-specific, and the remaining parameters were either
expressed at the level of climate zone or global scale. We updated all
LME-specific parameters to subsegment scale.

2.1.3. Identification of environmental boundaries and calculation of safe
operating space

The environmental boundary forms the basis for calculating the SOS in
an AESA assessment. The environmental boundary determines what can be
considered a “safe” distance from a threshold or dangerous level of human
pressure on the environment (Vea et al., 2020). We applied two environ-
mental boundaries for minimum O2 concentration in the assessment
based on three different boundary approaches (Table 2). Boundary 1 is
based on differentiated O2 levels for five climate zones from Bjørn et al.
(2020b) (4.25–7.67 mg/l) (hereafter referred to as boundary approach
A), except for oxygen minimum zones (OMZ) where a concentration
based on Gallo and Levin (2016) is applied (0.44 mg/l) (hereafter referred
to as boundary approach C). Boundary 2 is a global boundary based on
Breitburg et al. (2018) (2mg/l) (hereafter referred to as boundary approach
B), except for OMZwhere boundary approach C is applied. OMZ are persis-
tent oxygen-depleted areas, and in areas where the OMZ contact the bot-
tom, the benthic species are adapted to lower oxygen concentrations
(Diaz et al., 2013). According to Diaz et al. (2013) and Gallo and Levin
(2016), cLME #2, 3, 4, 11, 13, 28, 32, 34 and parts of cLME 29 pertain to
naturally occurring OMZ (refer to Table S3 (SI-2) for an overview
of cLME numbers and names). The boundary approach of these areas (ap-
proach C) was defined according to the O2 tolerance level in OMZ habitats



Table 2
Overview and analysis according the framework proposed in Vea et al. (2020) of boundaries approaches forming boundary 1 (approach A+ C) and boundary 2 (approach
B + C).

Framework
component

Boundary approach A (from Bjørn et al. (2020b)) Boundary approach B (from Breitburg et al.
(2018)a)

Boundary approach C for OMZ areasb (from Gallo and
Levin (2016))

1: Objective Avoid harmful effects on coastal species and shift from
an aerobic to a persistent anaerobic sediment state.

Avoid hypoxia at a level at where fisheries
collapse.

Avoid hypoxia at a level at where fish inhabitants
disappear

2: Boundary principle Threshold Threshold Threshold
3: Impact and accepted
levels

Level where maximum of 5 % of species display a
low-level toxic effect

Level at below fisheries collapse (Renaud,
1983, Vaquer-Sunyer and Duarte, 2008)

Level at below fish species adapted to OMZ disappear

4: Scientific estimate • Response variable and location on impact pathway:
toxic response where maximum of 5 % of species
display a low-level toxic effect (impact)

• Control variable and location on impact pathway: O2

concentration corresponding to the “lowest--
observed-effect-concentration” (LOEC) (state)

• Spatial differentiation: Differentiated across five
climatic zones

• Temporal dynamics: Not considered
• Indicator interaction: Not considered

• Response variable and location on impact path-
way: Disappearance of shrimps and bottom
water fish (Renaud, 1983)

• Control variable and location on impact path-
way: O2 concentration (state) corresponding
to the level where fisheries collapse

• Spatial differentiation: Global
• Temporal dynamics: Not considered
• Indicator interaction: Not considered

• Response variable and location on impact pathway:
Disappearance of fish (average of 41 species)

• Control variable and location on impact pathway: O2

concentration (state) corresponding to the level
where fish disappears

• Spatial differentiation: for OMZ areas only
• Temporal dynamics: Not considered
• Indicator interaction: Not considered

5: Uncertainty principle The boundary is placed at the threshold value; hence
no “safe distance” from threshold and precautionary
principle is applied for the final definition of the
boundary. However, the method underlying the
estimation of the threshold itself (species sensitivity
distribution) handles uncertainties and variabilities
in data points statistically and tends to include a
certain amount of precaution (Belanger et al.,
2017). Moreover, the method is based on the most
sensitive species and is thus considered
precautionary.

The boundary is placed at the threshold value;
hence, no “safe distance” from threshold and
precautionary principle is applied for the final
definition of the boundary. The uncertainty
principle underlying the threshold itself is not
explicitly stated, however, considering that it
is based on the response of only two species
and that is it below the empirical sublethal and
lethal O2 thresholds for half of the species
tested in Vaquer-Sunyer and Duarte (2008), it
is not considered precautionary.

The boundary is placed at the threshold value; hence,
no “safe distance” from threshold and precautionary
principle is applied for the final definition of the
boundary. Considering that it is based on the average
O2 concentration across 41 different fish species, it
can be considered more protective than boundary 2
but less than boundary 1.

a This boundary is the conventional definition to designate waters as hypoxic (Vaquer-Sunyer and Duarte, 2008).
b Areas that pertain to naturally occurring oxygenminimum zones (OMZ) (cLME#2, 3, 4, 11, 13, 28, 32, 34 and subsegment #29.1), have a differentiated boundary based

on Gallo and Levin (2016).
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where demersal fish species thrive. We estimated this by assuming that the
tolerance level corresponds to the minimumO2 levels observed in the OMZ
where fish species are adapted to lower oxygen levels. This data was
retrieved from Gallo and Levin (2016), including only the instances
where the minimum depth of the OMZ is <200 m (41 data points in
total), in order to exclude open ocean OMZ. This yielded an average O2

tolerance level of 0.44 mg/l for OMZ subsegments. See SI-4, Table S8 for
details.

To ensure transparency and consider the suitability and possible draw-
backs of the selected boundary approaches, we analysed them according to
the framework in Vea et al. (2020) (Table 2). The framework suggests five
components that should be considered when developing or adopting envi-
ronmental boundaries (refer to Table 2 for an overview and Vea et al.
(2020) for a detailed description of the framework and each component).

As seen in Table 2, boundary approach A and B differ in terms of all
boundary components, except for the boundary principle, where both
boundaries are based on a threshold value. Firstly, they have different over-
all objectives, where approach A has a more precautionary nature, aiming
to prevent harmful effects, while approach B has the more broad objective
of avoiding fisheries collapse. The difference is further reflected in their
respective response variables and level of accepted impacts and, finally,
the value of the control variable (O2 concentration in bottom waters)
which is 2.1–3.8 times higher and more protective for approach A than B.
Similar observations are addressed in Vaquer-Sunyer and Duarte (2008),
where they showed that empirical hypoxia thresholds vary greatly across
marine benthic organisms and that the conventional definition of 2 mg/l
is below the empirical sub-lethal and lethal O2 thresholds for half of the
species tested. Breitburg et al. (2018) also argue that, although the 2 mg/l
threshold is useful as a generic threshold, a more appropriate approach is
to define hypoxia as oxygen levels sufficiently low to affect key or sensitive
species. Boundary approach A accounts for spatial differentiation in terms
of species sensitivity in different climate zones and is altogether considered
more suitable for an AESA study on marine eutrophication impacts than B.
However, to ensure feasibility for model validation (see Section 2.2) and to
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test the influence of the boundary selection on the overall conclusion,
boundaries from both studies were considered in this study. Boundary
approach C applied for OMZ, differs from A and B considering all boundary
components, except the boundary principle. It is, however, most similar to
B, where the objective for both approaches B and C is to avoid that fish
species disappear. The level of precaution of approach C can be considered
as lying between the two other approaches. Boundary approach C is based
on the average of 41 fish species, hence more cautious than B, which is
based on two species only, but less cautious than A, which is based on the
most sensitive species. Despite the different rationale behind boundary C
for OMZ, we consider it better to use it in combination with approach
A and B than to not account for spatial differences in adaptation of OMZ
O2 levels at all.

For each subsegment, a SOS was calculated as the absolute difference
between the boundary (B) (i.e. boundary 1 or 2) and natural reference
value (R) (Ryberg et al., 2018; Bjørn et al., 2020b):

SOS ¼ R−B;B < R SOS ¼ 0;B≥R ð5Þ

R represents natural conditions, i.e. the O2 concentration in the benthic
zone before large-scale anthropogenic changes to the nitrogen cycle took
place. In cases where B ≥ R, the SOS is zero, as the level of oxygen is
already below the boundary. Data on preindustrial O2 concentration was
estimated by subtracting the historical changes in O2 concentration in
bottom water simulated by six CMIP6 models (CanESM5, CNRM-ESM2–1,
GFDL-ESM4, MIROC-ES2L, MPI-ESM1–2-HR, UKESM1–0-LL) from present
day observations from the WOA, 2018 (Garcia et al., 2019). The historical
changes are calculated as the difference between the multi-model average
of 2001–2020 and the multi-model average of 1850–1869.

In order to express the SOS inmetrics compatible with the characteriza-
tion model, we converted the SOS from a concentration (in mg/l) to coastal
subsegment compartment mass (kg O2/subsegment). For the conversion,
we estimated total volume of the benthic zone in each subsegment.
Where Bjørn et al. (2020b) assumed a generic benthic zone height of



Table 3
Comparison of statistics of FFs and XFs derived in this study and Cosme et al. (2018)
and Cosme et al. (2015).

FF (kgNsubsegment /kg Nemitted ×
year−1)

XF (kgO2/kgN)

This
study

(Cosme et al.,
2018)

This
study

(Cosme et al.,
2015)

Min 0.02 0.03 0.52 0.45
Max 2.81 2.8 11.85 15.94
Average 0.57 0.74 3.48 6.17
Spatial variabilitya 181 93 23 35.42

a Calculated as the maximum value divided by the minimum value.
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20m (as suggested by Cosme et al. (2017)), we accounted for spatial differ-
ences, relating benthic zone height with total water column depth. For
some shallow coastal areas such as the Kattegat region of LME 22 (average
depth of 23 m (Oceana, 2014)), assuming a depth of the benthic zone of
20 m is inappropriate. Benthic zone height of 20 m is originally from
Doray et al. (2009) and indicates where bentho-pelagic species are most
likely to occur in the Bay of Biscay. Ideally, benthic zone height should be
defined based on site-specific physical parameters influencing the condi-
tions, i.e., turbidity, temperature and density that make the benthic bottom
zone habitable for bentho-pelagic species. For example, Caballero-Alfonso
et al. (2015) defined the bottom layer relevant for hypoxia in the Baltic
Sea based on pycnocline depth (where the density gradient is the largest
in thewater column). No studywas foundwith data on physical parameters
such as pycnocline depths applicable to estimate site-specific coastal
benthic zone heights with global coverage. Therefore, we differentiated
the benthic zone height (h) according to total water column depth (d):

h ¼ 0:22� d ð6Þ

The factor 0.22 is the average ratio between benthic zone height and
total water column estimated from 38 and 33 data points from the Gulf of
Mexico (Obenour et al., 2013) and Baltic Sea (Caballero-Alfonso et al.,
2015), respectively. Differentiating the original generic benthic zone
depth according to total water column depth is the best approach consider-
ing the current data availability. However, when such data become
available, they can easily be introduced used to further improve the
model (see Section 3.3 for further discussion). A list of reference values,
benthic zone depths and calculated SOS for all compartments and locations
is available in SI-4, Table S4.

2.2. Sustainability assessment and method validation

The method was validated by comparing the occupation of SoSOS for
environmental impacts on marine eutrophication of global nitrogen
emissions with observations of occurrences of hypoxia from Breitburg
et al. (2018) and seafloor O2 levels based on data from WOA 2018
(Garcia et al., 2019). As we in this paper study the nitrogen emissions
from all global activities, we assign 100 % of the SOS to these activities.
Hence, the SoSOS simply equals the total SOS, and we will refer to it as
SOS hereafter. Ideally, the method should predict high occupations of
SOS in areas where hypoxia is observed. Environmental impacts (EI) were
calculated according to Eq. (1), considering total global nitrogen emission
fluxes to the marine compartment (kg/year) from rivers (Beusen et al.,
2016, data from year 2000) and atmospheric deposition (Ackerman et al.,
2019, data from year 2016). The sum of emission fluxes to each cLME
subsegment was calculated using the spatial join function in ArcGIS Pro
v2.6.2 (ERSI, 2021). Tabulated emission fluxes and associated EI per
cLME subsegment can be found in SI-4, Table S4. The occupation of SOS
(occ.SOS) was calculated according to Eq. (7) for each cLME subsegment:

occ:SOS ¼ EI
SOS

ð7Þ

2.3. Sensitivity and uncertainty assessment

The sensitivity of the updated model parameters (residence time,
bottom water volume, reference O2 concentration and XF) was tested.
Note that the individual parameters of the XF were not tested, as this was
already tested in Cosme et al. (2015). The sensitivity was calculated as
normalized sensitivity coefficients (Scoef) with 25%perturbation of selected
parameters (p) (Ryberg et al., 2015):

Scoef ¼ Δocc:SOS
occ:SOSo

=
Δp
po

ð8Þ
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where po denotes the original input parameter value, Δp the difference be-
tween the default input parameter and the perturbed input parameter,
occ. SOSo the original occupation of SOS, and Δocc. SOSo the difference
between occ. SOSo and the occupation of SOS calculated for the perturbed
input parameter. The sensitivity of a parameter is considered medium if
the subsegment average |Scoef| ≥ 0.3 and large if the largest |Scoef| ≥ 0.5
(Ryberg et al., 2015). We conducted a qualitative uncertainty analysis
discussing limitations of the study considering the uncertainty of
the model parameters.

3. Results and discussion

3.1. Spatial differentiation, fate and exposure factors

Following the segmentation procedure described in Section 2.1, we
divided the global cLMEs into a total of 289 subsegments (SI -2, Fig. S3).
This rendered subsegments with an area similar to the global average
areal extent of marine eutrophication estimated in this study (in the range
of 81,368 km2 +/− 50 %), except for segment 10, 60, 64 and 65, for
which the size of the cLME was already below the range and no
subsegmentation was needed. Refer to SI-2 for more details and an
overview of number of subsegments per cLME and SI-4, Table S5, for an
overview of the area of each subsegment.

Fate and exposure factors were calculated for all 289 cLME subsegments
(SI-4, Table S6 and Table S7). The average FF is 0.57 ranging from 0.02 to
2.81 kg Nsubsegment/kg Nemitted × year−1, similar to the FF in (Cosme et al.,
2018) 0.74 (0.03–2.8). The spatial variability between the highest and
lowest FF is large relative to the one in Cosme et al. (2018) (181 versus
93) as seen in Table 3.

Low fate factors (below 0.1) are observed in several subsegments
located in the West coast of South America (#11.1, 11.2, 13.3), Northwest
and East coast of Africa (#27.2, 27.2, 28.2, 30.1, 30.2, 30.3, 31), Caribbean
Sea (#12.1–12.6), South West of Europe (#24.6, 25, 26.1), Southeast U.S.
Continental Shelf (#6.1), Greenland Sea (#19.1), Faroe Plateau (#60),
Hawaii (#10), Aleutian Islands (#65), Arabian Sea (#33.2, 32.5, 32.4),
Bay of Bengal (#34.1, 34.3), Sulu-Celebes Sea (#37.1, 37.2) and
Indonesian Sea (#38.7) (white subsegments in Fig. 4). The low FFs reflect
short residence times in these areas. In contrast, we observe high FF
(above 1.5) in all subsegments of the Baltic Sea (#23.1, 23.2, 23.3, 23.4,
23.5), North Australian Shelf (#39.6, 39.7, 39.8, 39.9), Hudson Bay
Complex (#63.2, 63.6, 63.7, 63.11, 63.12), reflecting higher persistence
of nitrogen in these areas (subsegments with the two darkest tones of
blue in Fig. 4). Spatial variability between subsegments within cLMEs is
on average 2.8, hence relatively small compared to the variability in FF
across all subsegments at the global scale (181 as of Table 3). It is largest
for cLME 32 with FFs ranging from 0.13 to 1.11 for subsegments #32.8
and 32.2, respectively, with a variability of 14.2. Note that subsegments
pertaining to cLMEs #10, 23, 61, 62, 63, 64 are inland seas, island chains,
or heavily ice-covered systems for which the estimated residence times,
that are the basis for the FF, are uncertain (Liu et al., 2019).

The FFs derived in this study are not directly comparable with those
from Cosme et al. (2018), as they represent the persistence, or the length
of time a nitrogen load stays in the coastal part of the LME only and not



Fig. 4. Spatial distribution of FF (kgNsubsegment /kg Nemitted × year−1). Refer to Fig. S3 (SI -3) for subsegment number for each subsegment.
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the whole LME segment as in Cosme et al. (2018). However, if we average
the FFs of each subsegment derived in this study over their respective
cLMEs, we observe a similar pattern where the FFs for the Baltic Sea,
Black Sea, Hudson Bay Complex, Arabian Sea and Yellow Sea (#23, 62,
63, 32, 48) rank high in both studies and Caribbean Sea, Agulhas Current
and Southeast U.S. Continental Shelf (#12, 3 and 6) rank low. We also
observe discrepancies in particular for Sulu-Celebes Sea, Central Arctic
Ocean and Antarctic (#37, 64 and 61), which rank high in Cosme et al.
(2018) but low in this study, and Gulf of Thailand, Celtic-Biscay Shelf and
Scotian Shelf (#35, 24 and 8) that rank low in Cosme et al. (2018) but
high in this study. For #61 and 64 the discrepancy can be due to the high
uncertainties entailed to these areas as explained above. For the remaining
areas, it can be due to high uncertainties in Cosme et al. (2018), where FFs
were estimated based on different studies applying contrasting methods
and definitions for estimating residence time.

The average XF in this study is 3.48 ranging from 0.51 to 11.72
(kg O2/kg N) with a spatial variability of 23, where Cosme et al.
(2015) showed similar XFs (average 5.17 (0.45–15.94)), and a some-
what larger spatial variability (35.4) (Table 3). As shown in Cosme
et al. (2015), PPPot have the largest sensitivity for the XF model (a sen-
sitivity coefficient of 0.92), and can to a high extent explain the spatial
distribution of XFs displayed in Fig. 5. Largest XFs (>9) are observed for
subsegments in the Black Sea (#62.3), Kara Sea (#58.2) and Laptev Sea
Fig. 5. Spatial distribution of the XF (kg O2 /kg N). Refer to Fi
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(#57.4, 57.6, 57.7) and smallest XF (<1) in Insular Pacific-Hawaiian
(#10), Caribbean Sea (#12.1–12.4), around the northern part of the
Australian Shelf (#40.1., 40.2, 40.4, 39.7, 39.8, 39.9, 45.1, 45.3,
45.4,), East Brazil Shelf (#16.1, 16.2). Comparing with Cosme et al.
(2015), XFs for cLME #10, 40, 16, 45, 12 rank among the five lowest
in both studies and #23 and 28 rank among the 10 highest. Large
discrepancies are observed for e.g. LME #64 (ranking as the lowest in
Cosme et al. (2015) and as the 8th highest in this study) and #59 (rank-
ing as number 56 in Cosme et al. (2015) and 9 in this study). For #64 the
XF is likely overestimated in our study, as there is only PP data for small
parts of the cLME (as most of the cLME is ice). For #59 the reason can be
that our study only operates with the coastal part of the LME and PPpot
averaged for the whole LME is lower than for the cLME.

3.2. Occupation of safe operating space of global emissions

The occupation of SOS for current global nitrogen emissions, applying
Boundary 1 and 2, is displayed in Fig. 6. Tabulated results of global nitrogen
emissions from rivers and atmospheric deposition to each subsegment can
be found in Table S4 (SI-4) along with their occupation of SOS. The SOS
is exceeded for 12 subsegments (#5.3, 48.1, 48.4, 14.12, 52.2, 36.1, 62.1,
22.6, 23.2, 47.1, 52.1 and 48.3) and the occupation is high (>60 %) in
five subsegments (#52.4, 47.4, 48.5, 27.2 and 17.3), when applying
g. S3 (SI -3) for subsegment number for each subsegment.



Fig. 6. Occupation of SOS applying Boundary 1 (a) and Boundary 2 (b). Refer to Fig. S3 (SI -3) for subsegment number for each subsegment.
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Boundary 1 (red and orange subsegments in Fig. 6a). When applying
Boundary 2, the SOS is exceeded in seven subsegments (#62.3, 47.5,
23.5, 48.1, 48.4, 62.2, 23.4) and the occupation is high (>60 %) in three
(#14.12, 36.1 and 23.1) (red and orange subsegments in Fig. 6b).
For some subsegments, the natural levels (R) are lower than the boundary
(23 and 1 subsegments for Boundary 1 and 2, respectively). For example,
subsegment #23.5 (Baltic Sea) has an estimated preindustrial O2

concentration of 4.24 mg/l, which is lower than Boundary 1 applied for
this region (i.e. 7.67 mg/l for subpolar climate zone). For these
subsegments, the SOS was set to zero (grey and labeled as “Not applicable”
in Fig. 6).

Fig. 7 shows a comparison between the occupation of SOS in the
original method operating with a spatial scale of 66 LMEs (a) and our
method (b), together with maps of seafloor O2 levels based on data from
WOA 2018 (Garcia et al., 2019) (c) and observed hypoxic events (d).
Areas where the methods (Fig. 7a and b) indicate critical low oxygen
zones (i.e. high occupation of SOS) in accordance with data from WOA
and observed hypoxic events (Fig. 7c and d) are marked with solid black
line in Fig. 7a and b. Both methods capture the observed low O2 levels
and high occupation of SOS in cLME 23, 47 and 48.

However, there are several areas where our method shows exceedance
or high occupation of SOS in accordancewithWOAand observational data,
where the original method does not. Areas where the original model fails to
capture areas of low oxygen indicated in Fig. 7c and d are marked with a
dotted line in Fig. 7a. For instance, around the Arabian sea (#32.8), Bay
of Bengal (#34.2), West Coast of America (#4 and 11.2 marked as “not
applicable” in our method, as the preindustrial levels were already below
the boundary), the Red Sea (#62), Northeast coast of Africa (#31 and
32.5), and Northern part of the Gulf for Mexico (#5.3). This indicates
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that our method is better at predicting low O2 levels because its resolution
is closer to the spatial scale of eutrophication based oxygen declines. For
example, about 70 % of the river flux to the Gulf of Mexico (cLME #5)
comes from the Mississippi River located in the northern part of the Gulf
(subsegment #5.3). According to observations in Fig. 7d, the majority of
hypoxic events are located here. The potential contribution to hypoxia
from this point emission is not captured in the original method, as the
impact from the emission is diluted over the volume of the whole LME.
This indicates that the environmental mechanisms and impacts caused by
a point source occur in areas smaller than the full LME, which was the
basis for the original method. In Gulf of California and the coastline of
Peru (subsegment #4 and #13.3), our model also fails to capture the
areas of low oxygen indicated in Fig. 7c and d (stippled line in Fig. 7a and
b). However, these areas are OMZ where we used a boundary lower than
2mgO2/l (0.4mgO2/l). Hence, themaps of Fig. 7c and d indicating critical
areas below 2mg O2 /l are not comparable with the models for these areas.
Refer to Section 2.1 for explanation and rationale for a differentiated
boundary for OMZ.

Finally, there are some areas where there is inconsistency between
Fig. 7c and d, where one map indicates critical O2 zones and the other
does not. This may be due to uncertainties underlying these maps such as
lack of observational data in developing countries (Breitburg et al., 2018),
which may be the case for the Southwest coast of Africa (subsegment
#29.2). Fig. 7d includes observed seasonal hypoxic events where Fig. 7c
shows the yearly average O2 concentration only, which can explain the
discrepancies at e.g. the Southwest and Southeastern coast of Australia
(#43.1, 42.2 and 42.3). Moreover, some areas may be subject low nitrogen
emissions not leading to observed hypoxic events or low occupation of SOS,
despite that these areas have naturally low oxygen concentrations. For



Table 4
Normalized sensitivity coefficients of CRT, volume, O2 reference and XF.

Parameters Normalized sensitivity coefficients

Average Min Max

O2 reference 2.00 0.84 3.98
XF 1.00 1.00 1.00
Volume 0.80 0.80 0.80
CRT 0.62 0.10 0.97

Fig. 7.Occupation of SOS using the original method in Bjørn et al. (2020b) (a) compared to this study (b) (both using 2mg/l as boundary for all subsegments for comparative
purposes except for OMZ using 0.4 mg/l boundary), c) Seafloor O2 levels in coastal zones based on data from WOA 2018 (Garcia et al., 2019) and d) Coastal sites where
anthropogenic nutrients have exacerbated or caused O2 declines to < 2 mg liter−1) (red dots), as well as ocean oxygen-minimum zones at 300 m of depth (blue shaded
regions). The map in Fig. 7d is from Breitburg et al. (2018). Refer to Fig. S3 (SI -3) for subsegment number for each subsegment. Areas where the methods (Fig. 7a and
b) indicate critical low oxygen zones (i.e. high occupation of SOS) in accordance with data from WOA 2018 and observed hypoxic events are marked with solid black
line. Areas where the models fail to show low oxygen zones indicated in Fig. 7c and d are marked with a stippled line. Areas where the models fails to show low oxygen
zones indicated in either Fig. 7c or 7d are marked with a dotted line.
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example, Oyashio Current and Aleutian Islands (subsegments #51 and 65)
show low occupation of the SOS (below 1 %) in Fig. 7a and b, no observed
hypoxic events in Fig. 7d, but low oxygen concentrations in Fig. 7c. In these
areas, our data show low natural oxygen levels (3.8 mg/l for #51 and
2.8 mg/l for #65), hence in accordance with Fig. 7c. However the nitrogen
loads to these cLMEs are also very small (only 5.5 % and 0.2 %) of the
average cLME nitrogen load), hence they are not shown as critical oxygen
areas with high occupation of SOS in our model. Areas where the models
do not indicate high occupation of SOS and low oxygen areas, shown in
either Fig. 7c or 7d, are marked with a dotted line in Fig. 7a and b.

3.3. Method limitations and future research needs

We found that the results have a high sensitivity for all tested parame-
ters (Table 4), with highest sensitivity to the O2 reference level followed
by XF, volume and CRT.

The O2 reference was estimated based on observations of current O2

levels from WOA 2018 (Garcia et al., 2019) and historical changes in O2

concentration in bottom oceans simulated by six CMIP6 models. The
WOA data is relatively coarse (1 degree) and is not resolved on fine-scale
coastal features. Moreover, there is uncertainty regarding historical O2

level changes, simulated by the six numerical models. Numerical models
tend to simulate a decline in the total global ocean oxygen equal to only
about half of the most recent observation-based estimates. Moreover, they
predict different spatial patterns of oxygen changes, in particular, in the
tropical thermocline (Breitburg et al., 2018). However, as we apply
an average of simulations of six models, the uncertainty is considered
acceptable.

The most sensitive parameter of the XF model was in Cosme et al.
(2015) shown to be the PPpot. The PP rates we used were in the original
source estimated by translating remotely sensed surface ocean optical prop-
erties to PP. Translating these observations into PP is not straight forward
(Gregg and Rousseaux, 2019; Sathyendranath et al., 2019). For example,
an important factor for estimating phytoplankton is photo-adaptation,
which is difficult to estimate from ocean color satellite observations
(Gregg and Rousseaux, 2019). Moreover, the resolution is relatively low
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to represent detailed dynamics in coastal areas (1 degree). Future method
improvements should aim to obtain data on PP with less uncertainty and
higher resolution. For example, Mattei and Scardi (2021) updated and
improved a global dataset on marine phytoplankton primary production,
handling missing data and adding variables related to primary production,
which were not present in the original datasets. When available, the
method presented in this study could be updated using the new data.

The volume applied to estimate the SOS was based on the area of the
subsegments and benthic zone depth. Differentiating the benthic zone
depth according to total water column depths is the best approach consid-
ering the current data availability. However, this is a simplified and generic
approach not considering spatial differences in the ratio between the
benthic zone and total water column depth. When data on physical param-
eters such as the pycnocline depths applicable to estimate site-specific
coastal benthic zone heights with global coverage is available, future
improvements of the method should focus on this. Despite having the
lowest average sensitivity of the variables tested, the sensitivity of the
CRT is also high. Even though the parameter has uncertainties entailed as
discussed in Section 3.1, it is considered the currently best available data
with a global coverage and high resolution.

Although not explicitly tested in the sensitivity analysis, we showed in
Section 3.2, that the selection of boundaries delimiting the SOS has a
high influence of the results and, for some subsegments, natural levels are
lower than the boundary delimiting the SOS, making the method not appli-
cable for these areas. We accounted for higher tolerance of low O2 levels in
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OMZ, however, there are also other areas where O2 levels are naturally low
due to, for example, high residence times. The spatial differentiation of the
boundaries should increase in order to account for different O2 tolerance in
such areas aswell. Moreover, boundary approach C used forOMZ should be
revised and be based on the same principles as the boundary approaches it
was combined with. For example, for boundary approach A from Bjørn
et al. (2020b) it should be based on LOEC concentrations.

Acknowledging that there are spatial differences in terms of the areal
extent of eutrophication, dictated by variations in the physical transport
mechanisms, we used a global average areal extent across large-scale events
for the segmentation. Obtaining spatially differentiated segments describ-
ing areal extent of nitrogen transport from a point source would require
high resolution spatial data describing local effects such as transport
flows and directions influencing freshwater plume structures. These local
effects associated with regions of freshwater influence from rivers and
local point sources could be addressed with high resolution CRT fields.
However, CRTs with sufficiently high resolution to describe these local
effects (higher than applied in this study, i.e., 1/8 degree) is currently not
available with global coverage for coastal segments.

We have shown that the resolution of our method allows for identifying
critical areas where the SOS is exceeded, in accordance with observations
and hence caters to the modelling of environmental mechanisms involved
in the marine eutrophication impact pathway. However, for determining
the optimal resolution, one must consider the purpose of the study. For an
LCA or AESA study, we argue that our model is sufficiently resolved since
a higher resolution would be less compatible with the resolution of typical
life cycle inventory (LCI) data used in such studies. The geographical
resolution of LCI data e.g. from the ecoinvent database (Wernet et al.,
2016), is available at state, country or continent or global level. Further
research should test our method and its resolution in a case study consider-
ing whether and how CFs could be aggregated to match LCI data with a
coarser spatial resolution.

Our study shows that substantial improvements in the impact assess-
ment of marine eutrophication can be obtained by increasing the spatial
resolution, and we hope that this can inspire to improve LCIA methods of
other impact categories as well by updating their spatial resolution to a
more relevant one. We also encourage the LCIA and AESA community to
use our method validation as inspiration to a more general validation of
LCIA methods with measurements, which is often lacking, to improve the
overall credibility of the impact assessment in LCA.

4. Conclusions

This study substantially improves LCIA and AESA of marine eutrophica-
tion bymodelling impacts at relevant spatial scales and by refining the LCIA
model with updated and spatially representative data. We increased the
model resolution from 66 LMEs to 289 coastal LME subsegments represent-
ing the geographical scale of eutrophication and hypoxia, and updated
relevant parameters to the new scale (residence time, bottom water
volume, reference O2 concentration, primary production rates and depths).

A model validation comparing model outputs with observations of
hypoxic events showed that our method is able to better predict areas
with critical oxygen concentrations. Despite its limitations, the method
can be used by AESA and LCA practitioners that wish to assess impact on
marine eutrophication with a higher and more relevant spatial resolution.
We believe that the improved estimates of marine eutrophication impacts
from human induced nitrogen emissions can support more informed and
better decisions for managing nitrogen and reducing emissions to within
a sustainable level.
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