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A B S T R A C T

Identifying the key factors driving invasion processes is crucial for designing and implementing appropriate
management strategies. In fact, the importance of (model-based) prevention and early detection was highlighted
in the recent European Union regulation on Invasive Alien Species. Models based on abundance estimates for
different age/size classes would represent a significant improvement relative to the more usual models based
only on species’ occurrence data. Here, we evaluate the relative contribution of different environmental drivers
to the spatial patterns of abundance of several height classes (or life-stages) of invasive tree populations at the
regional scale, using a data-driven hierarchical modelling approach. A framework for modelling life-stages to
obtain spatial projections of their potential occurrence or abundance has not been formalized before.

We used Acacia dealbata (Silver-wattle) as a test species in northwest of Portugal, a heavily invaded region,
and applied a multimodel inference to test the importance of various environmental drivers in explaining the
abundance patterns of five plant height classes in local landscape mosaics. The ensemble of height classes is
considered here as a proxy for population dynamics, life-stages and age of adult trees. In this test with A.
dealbata, we used detailed field data on population height structure and calibrated an independent model for
each height class. We found evidence to support our hypothesis that the distribution of height classes is mostly
influenced by distinct factors operating at different scales. The spatial projections which resulted from several
height class models provide an overview of population structure and invasion dynamics considering various life-
stages, that is widely used in biodiversity and invasion research.

The approach proposed here provides a framework to guide forest management to deal more effectively with
plant invasions. It allows to test the effects of key invasion factors (depending on the focal species and on data
availability) and supports the spatial identification of suitable areas for invasive species’ occurrence while also
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accounting for the structural complexity of invasive species populations, thereby anticipating future invasion
dynamics. The approach thus constitutes a step forward for establishing management actions at appropriate
spatial scales and for focusing on earlier stages of invasion and their respective driving factors (regeneration
niche), thereby enhancing the efficiency of control actions on major forest invaders.

1. Introduction

Biological invasions, i.e. the spread of alien species, can cause se-
vere ecological damages and financial costs (Vilà et al., 2010). Invasive
plants, particularly trees, have major implications for forest manage-
ment (Silva and Marchante, 2012) and can substantially alter ecosystem
and landscape processes, such as fire regimes (Brooks et al., 2004) and
nutrient cycles (Marchante et al., 2008). Invasions can introduce new
internal feedback mechanisms (Gaertner et al., 2014) or disrupt the
balance of existing feedbacks in ecosystems (sensu Bennett et al., 2005).
These effects will depend on the spatial distribution and residence time
of invaders (Castro et al., 2005), and on the interplay between biotic
(Martínez et al., 2010) and abiotic drivers (Herrero-Jáuregui et al.,
2012), many of which are strongly scale dependent (McGill, 2010).

Understanding the drivers and patterns of invasion processes is
crucial for designing and implementing appropriate management stra-
tegies (Brundu and Richardson, 2016). There is a growing need to
predict invasions at finer spatial scales (Fernandes et al., 2014) so as to
effectively support different types of intervention, from early detection
to management of well-established invaders (van Wilgen et al., 2011).
The importance of prevention and early detection was highlighted in
the recent European Union regulation on Invasive Alien Species (IAS;
EU No 1143/2014). Besides defining coarse climatic envelopes for in-
vasive species (Brundu and Richardson, 2016; Pino et al., 2005), fine-
scale species distribution modelling and prediction requires including
local environmental and habitat factors (Vicente et al., 2011; Fernandes
et al, 2014), as well as linking correlative models to demographic
variables or demography-based population models (Kueffer et al.,
2013). The management of invasions will then benefit from better
knowledge and more informative predictions (Chornesky et al., 2005;
Genovesi and Monaco, 2013).

In the case of alien trees, zooming below the species level (e.g., to
different management-relevant categories such as life-stages/height
structures of populations/stands) could be very useful for forest inva-
sion management, since the structural characteristics of populations of
invasive species will have strong effects on invasion dynamics and on
the properties of invaded ecosystems (e.g. Call and Nilsen, 2003; Vilà
et al., 2011; Valladares et al., 2014). Specific control treatments might
be better targeted if the factors driving the presence of specific age or
height classes of invasive trees are weighted. For example, predicting
the distribution of young life-stages can facilitate early detection and
more effective control of invasive species (Di Stefano et al., 2013;
Gurevitch et al., 2011; Elith, 2016; Hui and Richardson, 2017). Models
based on abundance estimates for different life-stages/height structure
classes will therefore represent a significant improvement on the most
usual models which are based on presence/absence data of species in-
dependent of age/size classes. Also, since the importance of factors
influencing species distribution differs across scales (Rouget and
Richardson, 2003; Vicente et al., 2011, 2014), models should be cali-
brated and tested at different spatial resolutions and extents (Gurevitch
et al., 2011; Elith, 2016; Hui and Richardson, 2017). This way, forest
planning instruments will be an even more effective and important tool
in controlling invasive trees at both the stand and the landscape levels
(Sitzia et al., 2016), especially in the case of species like Acacia deal-
bata, whose spread seems to be reduced by maintaining or facilitating
closed canopy and dense forest cover (Hernández et al., 2014; Silva and
Marchante, 2012).

The silver wattle (Acacia dealbata Link) is one of the most wide-
spread woody plant invaders in southern Europe (Sheppard et al.,

2006). The success of A. dealbata as an invader has been attributed to
multiple biological and ecological characteristics of the species, in-
cluding phenotypic plasticity, adaptability to disturbance and change-
able conditions, positive feedbacks with fire occurrence, production of
large long-lived seedbanks, and resprouting ability (Lorenzo et al.,
2010; Gibson et al., 2011). As with other invasive trees, the occurrence
of this species in invaded regions can range from small and localized
areas in initial invasion stages, to large areas where native vegetation
and managed forest stands have been entirely replaced by A. dealbata
scrub or woodland (Lorenzo et al., 2012). Depending on abiotic and
biotic conditions, local invasion dynamics, and management history,
the species may be represented by individuals in a wide range of size
and age classes in a given landscape mosaic. This makes A. dealbata a
good candidate for testing the novel modelling approach that differ-
entiates factors that influence the invasion process and their scale-de-
pendence in different stages of the plant’s life cycle (Buhle et al., 2005;
Souza-Alonso et al., 2013).

Species distribution models (SDMs) have a long history of applica-
tions in ecology and management (e.g., Petitpierre et al., 2012; Vicente
et al., 2011). However, SDM-based studies have focused almost ex-
clusively on the static distributions of the adult niche (i.e. adult in-
dividuals’ distribution) of the species (sensu Grubb, 1977). Considering
different age classes becomes particularly important for applying SDMs
in a time of rapid environmental changes, including climate and land
use changes, as adult trees might have regenerated under a very dif-
ferent climate decades ago, and possibly also under different habitat
conditions. Thus, current environmental variables might explain the
regeneration niche well, but not necessarily the adult niche, and adult
individuals can persist across a wider range of environmental condi-
tions than seedlings or young individuals occurring in the ‘regeneration
niche’ (sensu Grubb, 1977). Therefore, considering both the “adult” and
the “regeneration” niches in models can more accurately identify the
environmental factors underlying the potential distribution of in-
dividuals in the several age classes of long-lived organisms.

Here we address this challenge by evaluating the relative con-
tributions of different environmental drivers to the spatial patterns of
abundance of several height classes of invasive tree populations at the
regional scale, using a data-driven hierarchical modelling approach. We
used A. dealbata as a test species in northwestern Portugal, a heavily
invaded region (Vicente et al., 2010, 2011). We applied an information-
theory approach (multimodel inference) to test the importance of en-
vironmental drivers in explaining the abundance patterns of several
plant height classes in local landscape mosaics. To explore the size- and
scale-dependence of invasion factors, we formulated two general re-
search hypotheses to be tested under this multimodel inference fra-
mework. The first hypothesis relates the diversity of invasion factors to
Acacia life-stages. The regional distribution of various life-stages, re-
presented by different Acacia height classes, is known to be associated
with distinct sets of prevailing environmental factors (Kempes et al.,
2011; Lasky et al., 2013). Since invasion patterns in the test area are
strongly constrained by climate (Vicente et al., 2010, 2011), we ex-
pected that the abundance of younger life-stages would be explained by
one or few major drivers (namely climate). Once established, Acacia
trees can then cope better with climate conditions and their inter-an-
nual variations, but to reach adulthood they will have to endure the
effects of other survival filters throughout their establishment and
growth. Thus, we expect that more factors (namely those related to
habitat conditions and landscape processes) would be needed to ade-
quately predict the abundance of older plants.
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Our second hypothesis advocates that the main factors underlying
the distribution of each height class are influenced by the extent of the
study area and are scale-dependent (Vicente et al., 2014a). The effects
of factors acting at different spatial scales have been demonstrated
before in the study area at the species level, for the invasion by multiple
alien plants (Vicente et al., 2010) and specifically by A. dealbata
(Vicente et al., 2011). Building on the same rationale as for the first
hypothesis and on the selective role of habitat filtering (Lasky et al.,
2013; Richardson et al., 2000), we expected that regional factors
(namely climate) would be more important for seedlings and saplings,
especially across larger spatial extents, since younger plants are more
sensitive to frost or drought than older plants. In contrast, local factors
would hold the highest explanatory power for trees (e.g. due to habitat
filtering; Lasky et al., 2013) as well as for smaller spatial extents (where
landscape factors tend to override the effects of climate; Vicente et al.,
2010).

2. Methods

2.1. Study area and test species

The study area is located in northwestern Portugal (Fig. 1) and is
heavily invaded by alien plants (Vicente et al., 2010). It covers
3462 km2 at the westernmost transition between the Temperate-
Atlantic and the Mediterranean regions of Europe (Mesquita and Sousa,
2009). The area is topographically heterogeneous, with elevation ran-
ging from sea level in the west to 1450m above sea level in the eastern
mountains, resulting in marked variations of environmental conditions.
Mean annual temperature ranges from about 9 °C to about 15 °C, and
the mean total annual precipitation varies between about 1200mm in
the lowlands to about 3000mm in the eastern mountain tops. The to-
pographic and climatic heterogeneity of the area leads to a wide variety
of land-uses and vegetation types, ranging from annual crops and pas-
tures to planted pine or eucalypt stands and natural oak forests.

Acacia dealbata (silver wattle; Fabaceae) is a tree species native to
southeastern Australia and Tasmania (Lorenzo et al., 2010). It can grow
up to 15m (www.invasoras.pt), and the typical time to maturity is

usually less than 4 years. It presents a long lifespan for acacia species,
exceeding 20 years (Boland et al., 1984). The species was introduced to
Europe around 1800 (Ellena et al., 2008) and was planted as an orna-
mental in the 19th century in many areas of southern Europe (Sanz-
Elorza et al., 2004), including Portugal (Alves, 1858). Since then, it has
become very common in Mediterranean countries where it occurs as an
invader in disturbed forests, scrublands (Lorenzo et al., 2010) and
margins of roads and water courses. A. dealbata has a high colonizing
ability and the capacity to produce large numbers of long-lived seeds
(Gibson et al., 2011), the germination of which is stimulated by fire.
Invasive populations usually form dense thickets, and have the capacity
to replace native vegetation by inhibiting its regeneration after dis-
turbance (e.g., through competition for resources, by allelopathic in-
terference and also due to vigorous re-sprouting or coppicing after
cutting; Lorenzo et al., 2010; Le Maitre et al., 2011). The species is
widespread in the study area and is projected to expand its current
distribution under future climate and land-use scenarios (Vicente et al.,
2011).

2.2. Sampling strategy and Acacia population data

The population structure dataset for A. dealbata was collected
through field surveys between January and March 2013, during the
flowering period of the species. Surveys were done in 0.04 km2

(200× 200m) grid cells. To select the cells to be surveyed, we first
used a coarse-grained occurrence dataset (Vicente et al., 2013) to ca-
librate a generalized linear model for A. dealbata (with 1 km2 resolu-
tion) which was projected for the study area. In this 1 km2 resolution
model, climatic variables (minimum temperature of the coldest month,
and summer precipitation) were used as the only environmental pre-
dictors, since these are the primary determinants of woody alien in-
vasions at a regional scale in the study area (Vicente et al., 2010). Grid
cells predicted as suitable for the species occurrence by the 1 km2 model
(with binarization threshold maximizing the percentage of presences
and absences correctly predicted; Liu et al., 2005) were then stratified
based on the percentage of land covered by planted forest stands (3
classes obtained by natural breaks) and on landscape edge density (3

Fig. 1. The study area in northwestern Portugal, showing the main land cover categories (http://ftp.igeo.pt/e-IGEO/egeo_downloads.htm) (left), its location in the
Iberian Peninsula (top right), and southwestern Europe (bottom right).
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classes obtained by natural breaks) to capture the main compositional
and structural landscape gradients of the area (9 final strata; see
Fernandes et al., 2014; Appendix 1). We then used an equal-stratified
sampling design to randomly select 21 plots of 0.04 km2 size in each
stratum (21 * 9=189 plots). The final dataset used for model fitting
included 187 records (two plots were not surveyed due to their in-
accessibility).

For each 0.04 km2 cell, the number of A. dealbata individuals across
five height classes was calculated as the proportion of individuals per
height class (summing 1 for each sampling) multiplied by the total
estimated number of individuals in the population. The later was re-
corded based on standard abundance classes (1, 2–10, 11–50, 51–100,
101–500, 501–1000,> 1000) since the exact number of individuals
was often impossible to estimate with a reasonable surveillance effort.
The sampling was performed using a fixed-time sampling approach
(about 30min per cell, sufficient to fit each cell into one A. dealbata
abundance class and to estimate the proportions of the several height
classes). Five height classes (A–E) were established and associated to
the individuals age (e.g. seedlings matches to first year regeneration
and saplings to second year), seed production (e.g. only individuals
with more than 2m were able to produce seeds), on the available
management options to control or eradicate the individuals, and on the
plant response to different management options: A:< 0.5m (seed-
lings); B: 0.5–2m (saplings); C: 2–5m (small trees); D: 5–10m (medium
trees); and E:> 10m (large trees)). The numbers of individuals of the
five A. dealbata height classes per cell were used as response variables
for each of the five SDMs calibration.

2.3. Predictor variables

Predictor variables for model calibration were selected based on the
factors that have been previously reported in the literature as potential
determinants of the phenology and distribution of A. dealbata, and also
from previous research on alien plant invasions in the test region

(Lorenzo et al., 2010; Vicente et al., 2010, 2011, 2013). To avoid
multicollinearity, only predictors with a pairwise Spearman correlation
lower than 0.6 (e.g., Elith et al., 2006) and generalized Variance In-
flation Factor (VIF) lower than 5 (Neter et al., 1983) were considered.
In the case of correlated pairs of variables, we chose the variable with
the ‘a priori’ most direct ecological effect on plant species distribution.

These analyses yielded a final set of 25 environmental variables (at
0.04 km2 resolution) to fit the models: four climatic variables (mean
annual temperature, minimum temperature of coldest month, annual
precipitation, and precipitation seasonality), four land cover/landscape
composition variables (percentage cover of broadleaf forests, artificial
forests, built up areas, and scrub and sparse vegetation), four landscape
structure variables (mean shape index, mean perimeter-area ratio,
number of patches, and patch size standard deviation), four geological
and soil variables (percentage of granites, schist, anthrosols, and lep-
tosols), four variables expressing dispersal corridors (river density, road
density, distance to main rivers, distance to main roads), four landscape
complexity variables (local Shannon diversity of: aspect, geology, alti-
tude, and land-use), and finally one variable expressing the fire regime
(number of fires between 1990 and 2013).

Generalized Linear Models (GLMs) were fitted separately for the
abundance of the different height classes of A. dealbata, using the R
software (R Core Team, 2016). The number of individuals of each class
was used as the response variable in GLMs with Poisson error dis-
tribution and log link function (Vincent and Haworth, 1983; Guisan and
Zimmermann, 2000). Up to second-order polynomials (linear and
quadratic terms) were allowed for each predictor in the GLMs, with the
linear term being forced in the model each time the quadratic term was
retained. The procedure was adapted from Burnham and Anderson
(2002) and Wisz and Guisan (2009).

2.4. Analytical framework: hypotheses and competing models

Since A. dealbata is known to be sensitive to severe and prolonged

Table 1
Competing models, scale of predictors used in each model, and supporting literature references (M8 null model, an intercept model, assumes that all locations have
the same abundance of A. dealbata individuals).

Competing models Resolution of spatial structure (based on
Vicente et al., 2014)

Predictors References

M1 - Climate Coarse AMT (annual mean temperature)
TMN (minimum temperature of the coldest
month)
APR (annual precipitation)
PSE (precipitation seasonality)

Pino et al., 2005
Godoy et al., 2009

M2 – Geology/Soils Medium pGra (percentage of granite)
pSchi (percentage of schists)
pAnt (percentage of anthrosols)
pLep (percentage of leptosols)

Rose and Hermanutz, 2004
Dufour et al., 2006

M3 – Dispersal corridors Medium dRoad (density of roads)
dRiv (density of rivers)
distRo (distance to main roads)
distRi (distance to main rivers)

(Procheş et al., 2005; Minor et al., 2009; Säumel and
Kowarik, 2010)

M4 - Complexity Fine SWIasp (local variation of aspect)
SWIlit (local variation of lithology)
SWIalt (local variation of altitude)
SWIlu (local variation of land-use)

Holmes et al., 2005
Dufour et al., 2006

M5 - Landscape structure Fine MSI (mean shape index)
MPAR (mean perimeter-area ratio)
NumP (number of patches)
PSSD (patch size standard deviation)

Le Maitre et al., 2004
Dufour et al., 2006
Foxcroft et al., 2007

M6 - Landscape composition Fine pNFo (% cover of natural forest)
pBUp (% cover of built up areas)
pAFo (% cover of forest stands)
pSSV (% cover of shrubs and sparsely
vegetation)

Pino et al., 2005
Song et al., 2005

M7 - Fire regime Fine NFir (number of fire occurrences
1990–2013)

Keeley et al., 2005

M8 – Null model Burnham and Anderson, 2002
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frost (Lorenzo et al., 2010), we expected climate to act as a strong
primary gradient determining the spatial pattern of tree individuals of
each height class, masking the effect of other gradients. For this reason,
we used a spatially nested approach (see Vicente et al., 2010) to assess
the relative importance of locally acting environmental gradients (such
as land cover, soil and geology; see also Carl et al., 2016). First, a model
using the total information of A. dealbata individuals (sum of the
number of individuals sampled in the field, regardless of height class,
per cell) was calibrated only with climate predictors (annual mean
temperature, minimum temperature of coldest month, annual pre-
cipitation, and precipitation seasonality). The spatial projection of that
model was then used to sub-sample the study area. Sub-sampling was
done by using the quartiles of predictions from the climate-based
model, and resulted in areas that are progressively more homogeneous,
smaller, and with higher predicted A. dealbata densities. In this way we
tested the effects of other factors on those areas that are climatically
more prone to invasion, allowing more local gradients acting in the A.
dealbata height classes to be detected, as described in Vicente et al.
(2010).

Seven models translating hypothesized effects of specific ecological
factors were established for each height class based on combinations of
predictor types (Table 1; see Appendix 2 for details about competing
models and their ecological rationale). Assuming that all locations and
all height classes have the same numbers of individuals, a null model
(intercept-only model) was included in all analyses (see Table 1) to test
whether the selected competing models were better than a model
considering the absence of effects from the environment (i.e., whether
the models used as hypotheses are in fact more reliable than an inter-
cept model; Burnham and Anderson, 2002). Ranking the importance of
competing models should provide insight into the specific responses of
different A. dealbata height classes to environmental gradients, thereby
allowing to test our general hypothesis (1). To address our general
hypothesis (2), each group of predictors (and thus the associated
model) was classified as coarse-, medium-, or fine-scale (Table 1) based
on the resolution of its characteristic spatial structure (a proxy for the
scale of influence on invasion patterns; Vicente et al., 2014).

This set of competing models was developed within a multimodel
inference framework (MMI; Burnham and Anderson, 2002) to assess
how well each model was supported by the data. We used a particular
implementation of the Akaike Information Criterion (AIC; Akaike,
1973) for small sample sizes (AICc, Shono, 2000); this is recommended
when the ratio between n (the number of observations used to fit the
model) and K (the number of parameters in the largest model) is lower
than 40 (Shono, 2000; Burnham and Anderson, 2002). Therefore, be-
cause of the small sample size, we limited the maximum number of
predictors per model to four. To overcome dependence on sample size
and allow comparability among models, we calculated the AICc dif-
ference (Δi =AICc initial−AICc minimum) for each candidate model to
rank the candidate models (Burnham and Anderson, 2002). From the
Akaike differences (Δi), we derived Akaike weights (wi), interpreted as
the likelihood that a candidate model will be the best approximating
and most parsimonious model given the data and set of models. These
weights, scale between zero and one, representing the evidence for a
particular model as a proportion of the total evidence supporting all
models.

We averaged all competing models weighted by their wi and used
the averaged model for spatial prediction (Burnham and Anderson,
2002). The average model of each height class was spatially im-
plemented using the raster calculator in the ArcGIS Spatial Analyst
extension (ESRI, 2015). Finally, to achieve realistic predictions based
on height class transitions for A. dealbata, the spatial projections from
each height class were spatially overlaid with the ones for the im-
mediately smaller class. We assumed that A. dealbata individuals of a
given height class can only be present in a given area if the area was
also predicted as suitable for the immediately smaller class, re-
presenting the current niche under environmental conditions where the
species could complete its life cycle.

Therefore, for each height class, besides the projection for the whole
study area (‘predicted area’), a projection is also presented for those
areas predicted as suitable simultaneously for both the focal height
class and the proximate smaller class (‘filtered area’).

Table 2
Results of information-theoretic-based model selection and multimodel inference Akaike weights (wi) and adjusted deviance explained (adj.D2), for the five A.
dealbata height classes in the full area (Full; 187 plots used to fit the model); note that the Akaike weights (wi) always sum up to 1. The best model for each height
class is highlighted with grey shading. For further information see Appendices 3 to 7.
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3. Results

3.1. Height classes and A. dealbata invasion drivers (hypothesis 1)

The distribution of the various height classes of A. dealbata was
found to be related to different sets of environmental factors (Table 2),
thus confirming our hypothesis 1. Still, the most parsimonious model to
explain the abundance of A. dealbata for the three classes representing
smaller plants (i.e. Seedlings, Saplings, and Small trees) was the one
based on climate (M1). The most important climatic variables for
Seedlings and Saplings were precipitation seasonality and annual pre-
cipitation, whereas annual mean temperature and minimum temperature of
the coldest month were the most important for Small trees. Conversely,

geology attained the best fit for Medium trees (M2), with percentage of
schists as the most important predictor. The number of Large trees was
best explained by landscape composition (M6), mainly by the percentage
cover of natural forest and percentage cover of shrub sparsely vegetation.
The models based on landscape complexity (M4), landscape structure
(M5), dispersal corridors (M6) or fire regime (M7) were not selected for
any of the height classes, nor was the null model (M8). Climate, geology
and land cover thus seem to explain the abundance distribution of the
various height classes for the test species across the whole study area
(Table 2). An increased model accuracy (adj.D2 – adjusted variance –
Table 2) was found from smaller/younger (Seedlings – 0.651, Saplings –
0.640, and Small trees – 0.643) to taller/older classes (i.e. Medium –
0.727, and Large trees – 0.797).

Fig. 2. Spatial predictions from average models for the five response variables, i.e. abundance (number of individuals) of (a) Seedlings, (b) Saplings, (c) Small trees,
(d) Medium trees, and (e) Large trees. Predictions are represented for the predicted area in all cases (color+ grey scales). Color scales represent the filtered area (i.e.
the area predicted as suitable for the modelled A. dealbata height class and for the immediately smaller height class) and grey scales represent areas predicted as
suitable only for the modelled class. The map in (f) represents the total number of predicted height classes that coexist in each grid cell. For each height class,
numerical results are presented for the predicted area and for the filtered area (number of km2) as well as the percentage (%) of the predicted area corresponding to
the filtered area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The spatial predictions from average models for the five A. dealbata
height classes and for the full area (Fig. 2) reflect the prevailing influ-
ence of distinct invasion drivers. Spatial predictions for Seedlings,
Saplings and Small trees reflect the fact that they primarily respond to
climatic factors (Fig. 2, a–c), whereas predictions for Medium trees and
for Large trees express the fact that they are more responsive to the
presence of specific bedrock types or land cover classes, respectively
(Fig. 2, d and e). A complex spatial pattern of potential invasion
emerged, with prevalence of Seedlings, Saplings and Small trees in low-
mid elevation areas, where climatic conditions are more favorable
(Fig. 2, a–e). Medium trees prevail in areas where schist prevails, and
Large trees are predominant in areas where production forest stands are
the main land cover type. The number of height classes represented in
each grid cell ranges from one to five, with many local landscapes
(0.04 km2) across the study area hosting four or even all five classes
(Fig. 2, f). An increase of the predicted area and a decrease of the fil-
tered area were observed from smaller to taller A. dealbata height
classes (Fig. 2).

3.2. Scale dependence of tree invasion factors (hypothesis 2)

The abundance distribution of the various height classes was ex-
plained by factors structured at different spatial scales, and those fac-
tors were often influenced by the spatial extent of model calibration
(Fig. 3), providing support to our hypothesis 2. For smaller plants
(Seedlings, Saplings and Small trees) the relative importance of inva-
sion factors differed with the spatial extent (and total environmental
heterogeneity) of the study area, with the importance of coarse- and
medium-scale factors decreasing (and the importance of fine-scale
factors increasing) towards smaller (and more homogeneous) study
areas (Fig. 3). Medium and Large trees showed consistent selection of
environmental factors along all four nested areas, but they differed in
terms of spatial scale: Geology (medium-scale) for Medium trees, and
Landscape composition (fine-scale) for Large trees.

4. Discussion

4.1. Height class dependence of tree invasion drivers

Modelling life-stage or size-class transitions is of foremost im-
portance for management. Species distribution models are easy and fast
to implement, calibrate and project, and are thus widely regarded as
robust tools to assist in prevention and early detection of new invasive
plant species (Vicente et al., 2011; Petitpierre et al., 2012; Fernandes
et al., 2014). Static models further allow a straightforward prediction of
species occurrence areas under discrete current and future environ-
mental conditions (Guisan and Thuiller, 2005; Elith and Leathwick,
2009).

However, most studies that apply species distribution models only
consider and predict the occurrence of species based on presence-ab-
sence or abundance data. Even if useful for prevention measures (an-
ticipation or early detection of invasions; e.g. Petitpierre et al., 2012),
such model outputs are often of limited use in guiding local-scale
management actions, as they do not consider the population dynamics
of the invader. Our proposed modelling approach provides a way of
approach to overcoming this key limitation. To our knowledge, a fra-
mework of modelling life-stages or size-classes to obtain spatial pro-
jections of their potential occurrence or abundance has not been for-
malized before.

In this test with Acacia dealbata, we used detailed field data on
population height structure and calibrated an independent model for
each of the several height classes (a proxy for population dynamics, life-
stages and age of adult trees). We found evidence to support our hy-
pothesis that the distribution of different height classes is influenced by
distinct factors (see Table 1). Also, the spatial projections of the dif-
ferent models for the different height classes (see Fig. 2) provide an
overview of population structure and dynamics in different stages of
invasions, while maintaining a relatively straightforward modelling
technique that is widely used in biodiversity and invasion research. By
building models for the different height or age classes, our approach
avoids the problem of using only presence-absence data for adult

Fig. 3. Scales of spatial structure/influence (coarse-, medium-, and fine-scale) and associated models (M1-M6; competing models representing environmental factors)
selected by multimodel inference for each A. dealbata height class (Seedlings, Saplings, Small trees, Medium trees, and Large trees) for each nested area/extent (full
area, area above the first quartile, area above the second quartile, and area above the third quartile). Horizontal grey bars represent the expected patterns based on
the research hypothesis and on previous research.
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individuals, which are affected by the history of the invasion process.
Moreover, combining spatial projections of size-class models to predict
their potential occurrence, including those of earlier life-stages, can
provide useful insights on future dynamics of invasions.

The increased model accuracy (adj.D2 presented in Table 2) from
smaller/younger (i.e. Seedlings, Saplings, and Small trees) to taller/
older classes (i.e. Medium and Large trees) may be interpreted as ex-
pressing the effect of the ‘filter’ hypothesis described by Richardson
et al. (2000), in which older adult trees have to withstand the effects of
a larger number of environmental filters in order to survive, compared
to younger life-stages. Thus, using the same set of environmental
variables to model different life-stages should result in an increase of
model accuracy towards older life-stages, as those models represent
better the realized niche for the species in the invaded range. It is im-
portant, however, not to neglect the effect of the environmental data
grain, since younger classes might require more precise climate data,
with higher spatial resolution and from the particular year of estab-
lishment (i.e. considering year-to-year climate variability). The effects
of other drivers and processes of invasion dynamics (e.g. propagule
pressure, introduction history, residence time) should also be con-
sidered depending on the focal species and on data availability.

4.2. Scale dependence of tree invasion factors

We also found evidence to support our hypothesis that the effects of
invasion factors on Acacia height classes are scale-dependent. This
connection of invasion factors to spatial scales had been observed in the
study area for the test Acacia species and for invasibility by multiple
species (Vicente et al., 2010, 2011), but had never been tested for age/
height classes of a focal species.

The scale-dependence was confirmed based on two sets of results.
First, when analyzing the whole study area, the scale of the most im-
portant factors (Vicente et al., 2010, 2014a) differed among height
classes (cf. Fig. 3), with coarse-scale factors being more important for
younger life-stages (i.e. seedlings/saplings) and medium to fine-scale
factors more important for adult trees (habitat filtering; González et al.,
2010). The fact that the distribution of young A. dealbata plants (i.e.,
Seedlings, Saplings and Small trees) was essentially explained by cli-
mate (coarse-scale factor) can be explained by the fact that climate is a
primary environmental gradient and a fundamental driver of biodi-
versity patterns (García-Valdés et al., 2015). It is also a major factor
shaping the geographic distribution of alien invaders at a regional scale
(Vicente et al., 2010, 2014b; Petitpierre et al., 2012). Minimum tem-
peratures are known to control habitat invasibility by frost-sensitive
alien invaders, which is the case with A. dealbata (Pino et al., 2005).
Summer drought stress is also recognized as a strong mediator alien
invasions in Mediterranean ecosystems (Godoy et al., 2009). Successful
establishment and growth into mid-large trees then involves an addi-
tional set of environmental filters acting in climatically suitable land-
scapes, with geology/soil conditions (medium-scale) and landscape
composition (fine-scale) holding the highest importance for A. dealbata
at least in the study area. The fact that the distribution of Large trees is
mostly determined by landscape composition could be related to the
availability of suitable habitats and with landscape barriers to dispersal
of Acacia (Torimaru et al., 2013; García-Valdés et al., 2015) of adult
individuals in forest ecosystems. Overall, our results seem to suggest
that models were able to assess both the “adult” and the “regeneration”
niches of A. dealbata, highlighting the environmental factors underlying
the potential distribution of the several age classes (Grubb, 1977).

Second, the relative importance of the several factors was influ-
enced by the spatial extent of the study area (cf. Fig. 3; Vicente et al.,
2014a). This pattern was observed for Seedlings, Samplings, and Small
trees, which were mainly constrained by a coarse-scale factor (climate)
across larger study areas, and by fine-scale attributes (geology, dis-
persal corridors, and landscape complexity) in when smaller (and cli-
matically more homogeneous) areas were tested, consistently with

previous research on invasion factors in the region (e.g. Vicente et al.,
2010). As expected, having endured the filtering effect of a wider range
of environmental factors (Richardson et al., 2000), and being influ-
enced by factors structured at finer scales, Medium and Large trees
showed no significant scale-dependence of invasion factors.

4.3. Outlook: towards improved management of tree invasions

Managing alien plant invasions in forest ecosystems is a challenging
endeavor due to the multiscale processes acting upon life-stages, across
space and along time (Souza-Alonso et al., 2013; Caplat et al., 2014;
Reyer et al., 2015; Brundu and Richardson, 2016). Prevention and
early-detection at younger life-stages are the most cost-effective op-
tions, compared to species control at later life-stages and/or large in-
vaded areas, since managers can more easily manage species with small
population sizes and invasion levels. However, these life-stages are the
most difficult to detect in the landscape, which means that modelling
outputs become a very important tool to support early-detection by
focusing search efforts. When the species is already present and has
spread, populations must be managed differently according to their life-
stage(s); individuals with distinct sizes and phenological characteristics
require different approaches to maximize management success (Buhle
et al., 2005; Wilson et al., 2011).

Results from the application of a novel modelling approach to ad-
dress life-stage population structure of the widespread alien invasive
tree A. dealbata show that management must be tailored to consider
distinct life-stages, spatial scales and extents. Scale dependence of in-
vasion factors is especially important for earlier life-stages (Seedlings,
Saplings, and Small trees). Effective management at those early stages
of invasion must consider the effect of regional conditions (i.e., cli-
matic, geological) on habitat suitability, but must also give attention to
major dispersal corridors (i.e. rivers and roads) which are well-known
drivers of invasion (Vicente et al., 2014b). Moreover, silvicultural
treatments have been suggested for the control of other invasive trees
through forest management and within the EU 1143/2014 regulation
framework. In the specific case of the Acacia dealbata, the spread of this
invasive tree can be buffered by maintaining or facilitating closed ca-
nopy and dense forest cover (Hernández et al., 2014; Silva and
Marchante, 2012).

The approach proposed here provides a framework to guide forest
management to deal more effectively with plant invasions. It provides
the spatial identification of suitable areas for invasive species occur-
rence while also accounting for the structural complexity of invasive
populations, thereby anticipating future invasion dynamics. The ap-
proach thus constitutes a step forward for focusing management actions
at appropriate spatial scales (Fernandes et al., 2014) and prioritizing
attention on earlier stages of invasion and their respective driving
factors, thereby enhancing the efficiency of control actions targeted at
major forest invaders (Pyšek and Richardson, 2010).

5. Conclusions

The pilot application of a novel modelling framework to Acacia
dealbata in northwest Portugal revealed that the regional distribution
different height classes can be influenced by distinct sets of environ-
mental factors (Kempes et al., 2011; Lasky et al., 2013). From the
projection of our results in the geographical space it was also possible to
perceive a different spatial mosaic pattern for each height class. Areas
where suitable climatic conditions, geological and soil characteristics,
and dispersal corridors (both rivers and roads) were present (corre-
sponding to the central vertical belt of the study area) correspond to
areas of highest concern in the study-site, because all height classes of
A. dealbata were predicted to occur (cf. Fig. 2). Our results also con-
firmed the hypothesis of scale-dependence of tree invasion factors,
considering the scale of influence of those factors, density of stands and
also the extent of the study area. The main factors underlying the
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distribution of the several A. dealbata height classes show a scale-de-
pendent behavior reflecting the importance of different management
strategies for different height classes as well as dense vs. low density
Acacia stands.
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Appendix 1. Sampling design stratification

Variables and classes used in the equal-stratified sampling design.

Variable type Variable Breaks Classes

Landscape structure Edge density between land cover patches Natural breaks 0.004–0.008
> 0.008–0.016
> 0.016–0.0215

Landscape composition Percentage of artificial stands Natural breaks 0–20
>20–60
>60–100

Appendix 2. Ecological rationale of the competing models

Competing models with their ecological rationale to test the role of environmental drivers explaining different height classes of Acacia dealbata
populations.

Competing
models

Name Rationale

M1 Climate Minimum temperatures control habitat invasibility by frost-sensitive alien invaders (Pino et al., 2005), and summer drought stress controls
alien invasion in Mediterranean ecosystems (Godoy et al., 2009).

M2 Geology Susceptibility to invasion is pre-determined by bedrock geology (Rose and Hermanutz, 2004), and different bedrock types support distinct
landscape units in the region, thus providing different sets of habitats for alien invaders. Also, more alien invaders can find suitable conditions
in landscapes with greater soil diversity (Dufour et al., 2006)

M3 Dispersal corridors The spread of invaders is often facilitated by natural corridors as rivers (Procheş et al., 2005; Minor et al., 2009; Säumel and Kowarik, 2010)
M4 Landscape com-

plexity
The local diversity of terrain morphology controls species richness, since more complex terrain usually provides a wider diversity of habitat
types (Dufour et al., 2006). Topographic diversity is also related to local hydrographic networks, thus controlling alien invasion in riparian
habitats (Holmes et al., 2005)

M5 Landscape struc-
ture

Landscape invasibility is controlled by patch shape and size, since these determine ecotone density and diversity (Le Maitre et al., 2004; Dufour
et al., 2006). The density of the local hydrographic network is related to landscape fragmentation, which provides more opportunities for local
survival and dispersal (Foxcroft et al., 2007)

M6 Landscape compo-
sition

Land cover/-use controls alien invasion since it determines suitable habitat availability, and man-made habitats have been shown to provide
suitable conditions for more invasive species (Song et al., 2005). Also, more alien invaders can find suitable conditions in landscapes with
greater compositional diversity (Pino et al., 2005)

M7 Fire regime Fire is a common source of disturbance in Mediterranean areas and influences population dynamics of invasive plants (Keeley et al., 2005)
M8 Null model A null model was included in all procedures in order to test how the competing models are better than a model that considers the absence of

effect (Burnham and Anderson, 2002)

Appendix 3. Multimodel inference results for Acacia dealbata seedlings

Results of information-theoretic-based model selection based on the Akaike information criterion for seedlings number (number of Acacia
dealbata individuals with height< 0.5 m), detailing number of model parameters (k; linear and polynomial terms of variables and intersect), the
small-sample bias-corrected form of Akaike’s information criterion differences (Δi), Akaike weights (wi), and adjusted deviance explained (adj.D2),
for each of the four areas: full area (Full; 187 plots used to fit the model), area above the first quartile (> 1st Q; 168 plots used to fit the model), area
above the second quartile (> 2nd Q; 84 plots used to fit the model), and area above the third quartile (> 3rd Q; 69 plots used to fir the model). Note
that the Akaike weights (wi) always sum up to 1.
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Seedlings

Full area >1st Q >2nd Q >3rd Q

k adj.D2 Δi wi adj.D2 Δi wi adj.D2 Δi wi adj.D2 Δi wi

M1 – climate 10 0.651 0.000 1.000 0.618 0.000 1.000 0.115 1736.547 0.000 0.636 19.968 4.613E−05
M2 - geology 10 0.150 3138.644 0.000 0.176 1611.416 0.000 0.643 0.000 1.000 0.378 93.605 4.719E−21
M3 – dispersal corridors 10 0.135 6529.572 0.000 0.137 5472.602 0.000 0.077 3059.103 0.000 0.834 0.000 1.000
M4 – landscape complexity 10 0.107 4828.024 0.000 0.097 3964.408 0.000 0.188 1551.773 0.000 0.308 116.226 5.778E−26
M5 – landscape structure 10 0.082 5149.510 0.000 0.087 4104.417 0.000 0.182 1050.205 8.932E−229 0.113 137.018 1.766E−30
M6 – landscape composition 10 0.198 3501.129 0.000 0.197 2663.454 0.000 0.125 405.028 1.120E−88 0.170 137.352 1.494E−30
M7 – fire regime 4 0.041 7004.853 0.000 0.169 5909.888 0.000 0.040 3072.732 0.000 0.114 151.788 1.095E−33
M8 – null model 4 0.002 7195.339 0.000 0.048 4788.511 0.000 0.022 2723.809 0.000 0.008 147.086 1.150E−32

Appendix 4. Multimodel inference results for Acacia dealbata saplings

Results of information-theoretic-based model selection based on the Akaike information criterion for saplings number (number of Acacia dealbata
individuals with height between 0.5 and 2m), detailing number of model parameters (k; linear and polynomial terms of variables and intersect), the
small-sample bias-corrected form of Akaike’s information criterion differences (Δi), Akaike weights (wi), and adjusted deviance explained (adj.D2),
for each of the four areas: full area (Full; 187 plots used to fit the model), area above the first quartile (> st Q; 168 plots used to fit the model), area
above the second quartile (> 2nd Q; 84 plots used to fit the model), and area above the third quartile (> 3rd Q; 69 plots used to fir the model). Note
that the Akaike weights (wi) always sum up to 1.

Saplings

Full area > 1st Q >2nd Q >3rd Q

k adj.D2 Δi wi adj.D2 Δi wi adj.D2 Δi wi adj.D2 Δi wi

M1 – climate 10 0.640 0.000 1.000 0.600 0.000 1.000 0.041 1555.496 0.000 0.093 960.161 3.190E−209
M2 - geology 10 0.155 2650.665 0.000 0.168 1640.129 0.000 0.241 906.995 1.118E−197 0.177 1380.605 1.605E−300
M3 – dispersal corridors 10 0.085 5312.080 0.000 0.095 4465.241 0.000 0.170 2195.886 0.000 0.280 688.733 2.777E−150
M4 – landscape complexity 10 0.183 2236.357 0.000 0.168 1589.984 0.000 0.688 0.000 1.000 0.746 0.000 1.000
M5 – landscape structure 10 0.102 3597.920 0.000 0.123 2691.615 0.000 0.327 506.167 1.223E−110 0.308 654.260 8.496E−143
M6 – landscape composition 10 0.247 3372.919 0.000 0.239 2720.475 0.000 0.365 1461.517 4.322E−318 0.391 1351.240 3.819E−294
M7 – fire regime 4 0.058 4936.105 0.000 0.139 4140.491 0.000 0.126 2337.228 0.000 0.121 2032.230 0.000
M8 – null model 4 0.025 5879.540 0.000 0.042 4850.803 0.000 0.011 2732.256 0.000 0.014 2679.880 0.000

Appendix 5. Multimodel inference results for Acacia dealbata small trees

Results of information-theoretic-based model selection based on the Akaike information criterion for small trees number (number of Acacia
dealbata individuals with height between 2 and 5m), detailing number of model parameters (k; linear and polynomial terms of variables and
intersect), the small-sample bias-corrected form of Akaike’s information criterion differences (Δi), Akaike weights (wi), and adjusted deviance
explained (adj.D2), for each of the four areas: full area (Full; 187 plots used to fit the model), area above the first quartile (> 1st Q; 168 plots used to
fit the model), area above the second quartile (> 2nd Q; 84 plots used to fit the model), and area above the third quartile (> 3rd Q; 69 plots used to
fir the model). Note that the Akaike weights (wi) always sum up to 1.

Small trees

Full area >1st Q >2nd Q >3rd Q

k adj.D2 Δi wi adj.D2 Δi wi adj.D2 Δi wi adj.D2 Δi wi

M1 – climate 10 0.643 0.000 1.000 0.219 98.677 3.737E−22 0.157 1384.646 2.128E−301 0.059 791.120 1.623E−172
M2 – geology 10 0.227 497.442 9.590E−109 0.699 0.000 1.000 0.751 0.000 1.000 0.297 149.206 3.983E−33
M3 – dispersal corri-

dors
10 0.160 2676.412 0.000 0.170 2282.191 0.000 0.105 1567.971 0.000 0.185 828.632 1.161E−180

M4 – landscape com-
plexity

10 0.203 1388.220 3.560E−302 0.182 1136.211 1.883E−247 0.322 683.705 3.430E−149 0.255 485.376 3.998E−106

M5 – landscape stru-
cture

10 0.115 1355.956 3.610E−295 0.126 911.085 1.447E−198 0.297 212.036 9.056E−47 0.784 0.000 1.000

M6 – landscape com-
position

10 0.242 1453.317 2.607E−316 0.226 1180.966 3.601E−257 0.382 731.826 1.219E−159 0.328 494.972 3.298E−108

M7 – fire regime 4 0.083 2828.173 0.000 0.065 2391.751 0.000 0.114 1638.909 0.000 0.112 1179.555 7.293E−257
M8 – null model 4 0.036 3588.450 0.000 0.021 2715.260 0.000 0.030 1273.455 2.970E−277 0.002 1438.950 3.435E−313

Appendix 6. Multimodel inference results for Acacia dealbata medium trees

Results of information-theoretic-based model selection based on the Akaike information criterion for medium trees number (number of Acacia
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dealbata individuals with height between 5 and 10m), detailing number of model parameters (k; linear and polynomial terms of variables and
intersect), the small-sample bias-corrected form of Akaike’s information criterion differences (Δi), Akaike weights (wi), and adjusted deviance
explained (adj.D2), for each of the four areas: full area (Full; 187 plots used to fit the model), area above the first quartile (> 1st Q; 168 plots used to
fit the model), area above the second quartile (> 2nd Q; 84 plots used to fit the model), and area above the third quartile (> 3rd Q; 69 plots used to
fir the model). Note that the Akaike weights (wi) always sum up to 1.

Medium trees

Full area >1st Q >2nd Q >3rd Q

k adj.D2 Δi wi adj.D2 Δi wi adj.D2 Δi wi adj.D2 Δi wi

M1 – climate 10 0.256 176.227 5.406E−39 0.320 512.860 4.304E−112 0.120 1138.963 4.756E−248 0.126 758.359 2.111E−165
M2 - geology 10 0.727 0.000 1.000 0.712 0.000 1.000 0.737 0.000 1.000 0.692 0.000 1.000
M3 – dispersal corri-

dors
10 0.126 1703.277 0.000 0.129 1789.194 0.000 0.101 1205.030 2.143E−262 0.102 816.240 5.699E−178

M4 – landscape com-
plexity

10 0.149 1154.109 2.446E−251 0.128 1310.574 2.585E−285 0.202 860.714 1.254E−187 0.227 580.993 6.903E−127

M5 – landscape stru-
cture

10 0.113 1376.919 1.014E−299 0.140 1403.186 2.004E−305 0.299 656.690 2.521E−143 0.273 432.591 1.159E−94

M6 – landscape com-
position

10 0.212 1059.074 1.059E−230 0.195 1218.101 3.110E−265 0.311 597.991 1.406E−130 0.334 345.288 1.051E−75

M7 – fire regime 4 0.093 2057.328 0.000 0.077 2105.907 0.000 0.205 1397.444 3.540E−304 0.197 1005.696 4.129E−219
M8 – null model 4 0.025 2198.718 0.000 0.004 2174.471 0.000 0.073 1439.988 2.045E−313 0.026 1173.810 1.29E−255

Appendix 7. Multimodel inference results for Acacia dealbata large trees

Results of information-theoretic-based model selection based on the Akaike information criterion for large trees number (number of Acacia
dealbata individuals with height> 10m), detailing number of model parameters (k; linear and polynomial terms of variables and intersect), the
small-sample bias-corrected form of Akaike’s information criterion differences (Δi), Akaike weights (wi), and adjusted deviance explained (adj.D2),
for each of the four areas: full area (Full; 187 plots used to fit the model), area above the first quartile (> 1st Q; 168 plots used to fit the model), area
above the second quartile (> 2nd Q; 84 plots used to fit the model), and area above the third quartile (> 3rd Q; 69 plots used to fir the model). Note
that the Akaike weights (wi) always sum up to 1.

Large trees

Full area > 1st Q >2nd Q >3rd Q

k adj.D2 Δi wi adj.D2 Δi wi adj.D2 Δi wi adj.D2 Δi wi

M1 – climate 10 0.374 400.886 8.886E−88 0.299 437.113 1.207E−95 0.106 777.686 1.342E−169 0.096 731.225 1.646E−159
M2 – geology 10 0.485 29.280 4.384E−07 0.488 13.900 0.001 0.415 248.663 1.008E−54 0.356 281.940 5.992E−62
M3 – dispersal corridors 10 0.229 623.605 3.854E−136 0.227 599.719 5.918E−131 0.294 436.665 1.512E−95 0.275 404.591 1.394E−88
M4 – landscape com-

plexity
10 0.432 152.870 6.378E−34 0.451 98.139 4.886E−22 0.503 84.465 4.556E−19 0.502 58.411 2.072E−13

M5 – landscape struc-
ture

10 0.289 485.478 3.799E−106 0.287 464.358 1.464E−101 0.380 291.366 5.378E−64 0.361 273.648 3.786E−60

M6 – landscape compo-
sition

10 0.797 0.000 1.000 0.794 0.000 0.999 0.853 0.000 1.000 0.841 0.000 1.000

M7 – fire regime 4 0.204 732.148 1.038E−159 0.194 728.507 6.401E−159 0.210 690.551 1.119E−150 0.187 651.061 4.207E−142
M8 – null model 4 0.012 1525.913 0.000 0.007 1164.592 1.293E−253 0.049 672.712 8.366E−147 0.017 878.397 1.813E−191
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