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The global long-term decline of migrant birds represents an important and challenging
issue for conservation scientists and practitioners. This review draws together recent
research directed at the Afro-Palaearctic flyway and considers its implications for conser-
vation. The greatest advances in knowledge have been made in the field of tracking.
These studies reveal many species to be highly dispersed in the non-breeding season,
suggesting that site-level conservation at a small number of locations will almost certainly
be of limited value for most species. Instead, widespread but ‘shallow’ land-sharing solu-
tions are likely to be more effective but, because any local changes in Africa will affect
many European populations, any impact will be extremely difficult to detect through
monitoring in the breeding grounds. Targeted action to boost productivity in Europe
may help to halt declines of some species but reversing declines for many species is also
likely to require these ‘shallow’ land-sharing approaches in non-breeding areas. The
retention or planting of native trees in the humid and arid zones within Africa may be a
generic conservation tool, especially if planting is concentrated on favoured tree species.
Overall, and despite a growing knowledge, we remain largely unable to progress beyond
general flyway-level actions, such as maintaining suitable habitat across an increasingly
anthropogenic landscape for generalists, targeted site-based conservation for specialists
and at stop-over sites, protection of species from hunting, and individual species-level
solutions. We remain unable to assess the cost-effectiveness of more specific conservation
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action, mainly because of uncertainty around how migrant populations are affected by
conditions during passage and on the non-breeding grounds, as well as around the effi-
cacy of implementation of actions, particularly in non-breeding areas. For advances in
knowledge to develop and implement effective conservation, scientific approaches need
to be better integrated with each other and implemented across the full annual cycle.
However, we urge the immediate use of available scientific knowledge rather than wai-
ting for a complete understanding, and that any action is combined with species monito-
ring and adaptive management across the flyway.

Keywords: connectivity, dispersal, East Atlantic flyway, tree establishment, trial solutions.

Migrant birds have been in decline in flyways
across the globe for decades (Robbins et al. 1989,
Berthold et al. 1998, Sanderson et al. 2006, Studds
et al. 2017, Rosenberg et al. 2019). But their com-
plex annual life cycles, with long migration routes
and a dependence on different sites at different
times of the year, makes the diagnosis of their
declines and subsequent conservation action partic-
ularly challenging. Developing and implementing
cost-effective solutions to arrest, and ultimately
reverse, population declines of any species usually
requires knowing whether insufficient breeding
success or survival is responsible, and their environ-
mental causes. Intensive studies of single species, or
single sites, have produced such information for
only a small number of migrant bird species, partic-
ularly waders and raptors, but very few of the small
migrant passerines (but see, for example, Marra
et al. 1998, 2015, Kamp et al. 2015), particularly
within the Afro-Palaearctic flyway (Vickery &
Adams 2020).

In an earlier synthesis of factors driving the
declines of Afro-Palaearctic migrants, Vickery
et al. (2014) concluded that, although our
knowledge of declining species is generally better
in the breeding than the non-breeding season,
significant gaps exist throughout the annual cycle
for many species. On the breeding grounds,
degradation of breeding habitats emerged as a
key factor, particularly within agricultural and
woodland or forest habitats. In the non-breeding
areas, the interacting factors of anthropogenic
habitat degradation and changing climatic condi-
tions, particularly drought in the Sahel zone,
appeared to be the most important factors. Four
priority research areas were identified to address
the declines: (1) use of new and emerging track-
ing technologies; (2) detailed field studies of
migrant birds in sub-Saharan Africa; (3) use of
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survey and demographic data from the European
breeding grounds; and (4) use of remote sensing
earth observation data of land cover change in
sub-Saharan west Africa in relation to migrant
bird populations.

In the 8 years since that review, populations of
Afro-Palaearctic migrants have continued to
decline. There have been advances in all four areas
and yet that knowledge has not contributed to the
development of new policies to address declines.
In this paper, we assess knowledge acquired since
2014 in the light of the needs of conservation pol-
icy and action for the Afro-Palaearctic flyway.
First, we provide up-to-date population trend data
for Afro-Palaearctic migrant birds derived from
Europe-wide survey and census data. Second, we
assess progress in each of the four key areas identi-
fied by Vickery et al. (2014) and how this knowl-
edge informs conservation. Finally, we derive
recommendations for future conservation science,
policy and practice for migrant birds in the Afro-
Palaearctic flyway.

We searched Web of Science and Google Scho-
lar for papers matching key search terms in either
‘Topic’ (title, abstract, author key words and Key-
words Plus) or ‘All Fields’, with a publication date
of 2014 onwards. Different search terms were
used for different sections of our review (see
Appendix S1 for details), but they generally
included ‘Afro-Pal(a)earctic’ OR individual species
names (common name OR scientific name) AND
other broad terms, e.g. ‘Africa’, ‘migration’, ‘land
cover’, ‘tracking’, ‘demography’, OR more specific
terms, e.g. individual tracking methods or demo-
graphic parameters. Returned papers were assessed
for relevance based on their abstracts, and refer-
ence lists of included papers were checked to
ensure no relevant literature had been missed by
the online searches.
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POPULATION TRENDS OF AFRO-
PALAEARCTIC MIGRANT BIRDS AND
POTENTIAL DRIVERS OF THOSE
TRENDS

We define Afro-Palaearctic migrants as species in
which at least part of the population moves
between breeding areas in the Palaearctic region
and non-breeding grounds in sub-Saharan Africa
each year (as defined in Vickery et al. 2014 and fol-
lowing the classification of BirdLife Interna-
tional 2004). Breeding population data are available
for a subset of 62 species of long-distance migrants
in Europe (Brlik et al. 2021: https://pecbms.info/).
The aggregate population trajectory of this group in
Europe, derived from the Pan-European Common
Bird Monitoring Scheme (PECBMS: Brlik
et al. 2021), was significantly negative between
1980 and 2017 (Fig. la: long-term change
—26.7 &£ 5.2% standard error (se), P < 0.01),
whereas the trend for residents and short-distance
migrants combined was stable (Fig. la: long-term
change —3.0 + 1.9% se, not significant). These
trends are significantly different from each other
(trend difference —0.0071 4+ 0.0013 se, P < 0.05).
Population trends of long-distance migrants that
predominantly winter in arid northern Sahelian and
Sudan savannah zones (Fig. 2) show a significantly
different pattern from those that winter in the
humid, more tropical southern areas (Figs 1b and 2:
trend difference —0.008 + 0.004 se, P < 0.05).
Birds wintering in the arid zone fell in abundance
between 1980 and 2017 (long-term change
—39.5 4+ 12.1% se, P < 0.01), especially early in the
time series, and their populations are now much
depleted when compared with the baseline of 1980.
Over the same period, birds wintering in the humid
tropics of West and Central Africa and wet-season
savannahs of southern Africa have also fallen in
abundance  overall (change —15.7 &+ 4.1%,
P < 0.01), but the pattern appears different with
the declines starting later. Overall, these analyses
suggest a continuing long-term downward trend in
the abundance of long-distance migrant birds in
Europe compared with other bird groups. They also
suggest that, although both the arid-zone wintering
and humid and southern-zone wintering species
have declined, that trend has flattened for arid-zone
species.
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Figure 1. Aggregate multi-species indices for widespread and
common European (a) long-distance migrants (62 species: cir-
cles) and short-distance migrants and resident breeding birds
(108 species: triangles), and (b) long-distance migrants spend-
ing the non-breeding season predominantly in the arid zone
(22 species: circles) and humid and southern zones (29 spe-
cies: triangles) of Africa. Horizontal dashed lines mark index
values of 100 and 50. Trend data from 1980 to 2017 come
from 28 countries covered by the Pan-European Common Bird
Monitoring Scheme (Brlik et al. 2021: https:/pecbms.info/).
Statistically smoothed indices are derived using the Multi-
Species Indices Tool (MSI-tool: Soldaat et al. 2017) and fixed
to a value of 100 in 1980 with grey-shaded 95% confidence
limits. We also used the MSI-tool to test for significant differ-
ences in trend slopes and statistical change points in the
slopes based on Monte Carlo procedures (Soldaat
et al. 2017). The predominant non-breeding zone of long-
distance migrants in Africa is classified broadly as either ‘arid’
or ‘humid & southem’ following the studies of Hewson and
Noble (2009), Thaxter et al. (2010) and Ockendon
et al. (2012). For full details see Table S2.

© 2023 British Ornithologists' Union.
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Figure 2. Climate zones of Africa and the western Palaearc-
tic: Koppen-Geiger climate classifications for the present day
(1980-2016) are from Beck et al. (2018). First-level classifica-
tions are shown except for the ‘arid’ category, which has been
subdivided using level 2 categories to make the distinction
between desert climate and the Sahel, which has a steppe cli-
mate.

Vickery et al. (2014) reported that information
on potential factors impacting migrants was avail-
able for 48% of species in the breeding season and
27% during the non-breeding season (n = 126 spe-
cies). To assess whether this has changed, we
reviewed literature published between 2014 and
2021, and we assessed the extent to which they
provided evidence for factors operating during the
breeding and non-breeding seasons (see Table S1).
The evidence was categorized following Vickery
et al. (2014) as strong (population-level effect),
moderate (affecting survival or breeding success)
or weak (influenced habitat selection only) and the
strongest level identified for each species in each
season was assigned to that species. Several studies
suggest that population-level effects in the

© 2023 British Ornithologists' Union.

non-breeding season are based on correlations
between population change and broad measures of
environmental conditions in Africa. The term
‘strong evidence’ in relation to these studies may
be misleading given the spatial variation in envi-
ronmental parameters across Africa and the lack of
data on non-breeding distributions (Beresford
et al. 2019) but we continue to use this term for
consistency.

Knowledge about factors that may affect
migrant birds has increased in both seasons
(Fig. 3), across a broad range of habitats and par-
ticularly in the non-breeding season; information
now exists for 51% of species versus 29% previ-
ously (Table S1). However, it is important to note
that, as previously, very few of these studies have
generated new empirical data from the non-
breeding grounds. The majority are large-scale cor-
relations of breeding population data with environ-
mental variables derived from non-breeding
grounds.

In their review, Vickery et al. (2014) concluded
that the most important factors driving declines on
the breeding grounds were linked to anthropogenic
habitat change, particularly within farmland. There
was relatively little evidence for other factors, such
as climate change and hunting. This overall assess-
ment remains unchanged; of 103 breeding season
studies published since 2014, 61% (n = 63) have
considered habitat preferences and/or land-use
change, and only 15% (n = 15) of studies have
linked climatic variables to demographic parame-
ters, even though widespread population responses
to climate change are reported (e.g. Pearce-Higgins
& Crick 2019). Two important areas, however,
have advanced: first increasing evidence of wide-
spread insect declines in Europe, a key food
resource for many Afro-Palaearctic migrants, and
second the large scale and impact of legal and ille-
gal hunting.

Insect populations are declining globally, with a
number of large-scale studies suggesting dramatic
declines in the total biomass and abundance of
entire insect assemblages (e.g. Dirzo et al. 2014,
van Klink et al. 2020). For example, it has been
estimated that 67% of monitored invertebrate pop-
ulations globally show mean abundance declines of
45% (Dirzo et al. 2014). In Europe, declines of
terrestrial insect abundance have averaged c.9%
per decade since the 1960s, and have accelerated
since 2005 (van Klink et al. 2020). National and
regional studies have reported similar results for
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Figure 3. Summary of the extent of evidence available in 2014 and 2021 in relation to environmental factors likely to influence popu-
lation trends of 126 Afro-Palaearctic migrant species during the breeding and non-breeding seasons. For each species, evidence
from published studies catalogued in Table S1 was categorized as either ‘strong’ (a population-level effect), ‘moderate’ (effects on
survival or breeding success) or ‘weak’ (an effect on habitat selection). The strongest level identified for each species in each season
was assigned and the total number of species in each level was counted.

the insect communities as a whole (e.g. Germany
(Hallmann et al. 2017a, Seibold et al. 2019, or key
taxonomic groups (e.g. micro moths (Valtonen
et al. 2017) and butterflies Thomas et al. 2004). It
should be noted, however, that other long-term
studies, both in Europe (Macgregor et al. 2019),
and North America (Crossley et al. 2020), have
found no consistent trends across invertebrate tax-
onomic groups. Although no studies actually show
a direct effect on birds, a number have suggested
that declines in insect populations may have con-
tributed to parallel declines in insectivorous birds,
including migrants, (e.g. Bowler et al. 2019; Hall-
mann et al. 2017b). Insect declines have been
reported globally including in tropical regions
(Outhwaite et al. 2022 although, little data exists
for trends of invertebrates in most of Africa
(Sénchez-Bayo & Wyckhuys 2021). Though these
studies show no direct effect on birds, a number
have suggested that declines in insect populations
may have contributed to parallel declines in insec-
tivorous birds, including migrants.

Hunting has been identified as an important dri-
ver of declines in some species of Afro-Palaearctic
migrants, although the demographic impact of

legal and illegal killing on bird population size is
difficult to determine because of uncertainty over
the estimates of the numbers killed and the flyway
population size. However, hunting of European
Turtle Dove Streptopelia turtur has been shown to
be unsustainable under all realistic estimates of bag
size and demographic parameters (Lormee
et al. 2020) and measures to regulate bag size have
proved to be ineffective (Moreno-Zarate
et al. 2021). Similarly, by identifying the origin of
breeding populations, Jiguet et al. (2019) were
able to show that legal hunting of Ortolan Bunt-
ings Emberiza hortulana in France was unsustain-
able. Furthermore, although there are several legal
quarry species, there is also widespread illegal kill-
ing of many Afro-Palaearctic migrants. Reviews of
illegal hunting in the Mediterranean and Middle
East (Brochet et al. 2016, 2019) estimate that tens
of millions of birds of hundreds of species may be
killed or taken illegally every year (11-36 million
in the Mediterranean alone). The potential impact
of such illegal killing has been illustrated in the
East Asian—Australasian flyway, where the recent
widespread decline of the once-abundant Yellow-
breasted Bunting Emberiza aureola has been

© 2023 British Ornithologists' Union.
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associated with increased trapping of songbirds
across Asia (Kamp et al. 2015).

RECENT ADVANCES IN KNOWLEDGE
AND UNDERSTANDING FROM THE
USE OF NEW AND EMERGING
TRACKING TECHNOLOGIES

The ability to track individual birds throughout
their annual migratory cycle has the potential to
link life cycle events to populations and population
trends. Since the publication of Vickery
et al. (2014), we have identified 216 papers related
to the tracking of Afro-Palaearctic migrants (see
Supplementary information for the complete refer-
ence list of tracking studies, Appendix S3). Before
the current review, stable isotopes were frequently
used to elucidate patterns of connectivity of Afro-
Palaearctic migrants (e.g. Hobson et al. 2014) but
their resolution and accuracy for this purpose is
such that conclusions may be superseded by even
preliminary tracking (Burgess et al. 2022) and they
have provided no significant recent advances.
Nonetheless, where it is necessary to assign individ-
uals within a breeding population to divergent
migratory groups, these methods may still be valu-
able, especially combined with other approaches
(e.g. Liedvogel et al. 2014). In the future, recently
developed ‘genoscaping’ methods may provide a
higher-resolution alternative to isotopes for connec-
tivity studies (e.g. Bay et al. 2021).

Tracking studies provide information on migra-
tion routes and strategies, and the location of win-
tering and stopover sites. This is fundamental
information for conservation, helping to identify
potential threats and drivers of decline (Rodriguez-
Ruiz et al. 2019, Burgess et al. 2020), key sites to
protect (Horns et al. 2016, Buechley et al. 2018,
Salewski et al. 2019; also, Tonra et al. 2019), or to
target detailed ecological studies. Almost half of
these studies (101) were judged to have con-
tributed significant information for conservation.
Recent papers present extensive new information
on routes (e.g. Trierweiler et al. 2014, Sara
et al. 2019), stopovers (e.g. van der Winden
et al. 2014, Salewski et al. 2019) and non-breeding
areas (e.g. Willemoes et al. 2014, Finch
et al. 2015, Ouwehand et al. 2016). They confirm
that non-soaring migrants migrate on broad fronts
to and from Europe (supported by a positive cor-
relation between breeding and wintering longi-
tudes (Briedis et al. 2020a, 2020b)), rather than

© 2023 British Ornithologists' Union.

following narrow corridors such as those used by
soaring migrants. They are also beginning to reveal
some unexpected patterns. The first is the exten-
sive mid-winter use of the Congo Basin and imme-
diately adjacent areas by species such as Common
Swift Apus apus, Common Cuckoo Cuculus
canorus and European Nightjar Caprimulgus euro-
paeus (Hewson et al. 2016, Evens et al. 2017,
Akesson et al. 2020), as well as some open country
species such as Great Snipe Gallinago media and
Corn Crake Crex crex (Klaassen et al. 2011,
Green 2020). The second is the surprising western
detour that many populations make from the
Congo Basin area to West Africa on their spring
migration (Akesson et al 2020, Willemoes
et al. 2014, Norevik et al. 2019).

These studies have also advanced knowledge
regarding the timing of annual events (e.g. OQuwe-
hand & Both 2017, van Wijk et al. 2017, Briedis
et al. 2018, Tomotani et al. 2019, Brlik
et al. 2020) and patterns of connectivity between
breeding and non-breeding populations (e.g. Hahn
et al. 2013, Akesson et al. 2020). Several species
have been shown to move between multiple sites
in the tropics during the non-breeding season
(Akesson et al. 2012, Willemoes et al. 2014,
Kolecek et al. 2016, 2018, Thorup et al. 2017),
tracking food resources across rainfall gradients
with small-scale (Montagu’s Harrier Circus pygar-
gus (Schlaich et al. 2016), Great Reed Warbler
Acrocephalus arundinaceus (Kolecek et al. 2018a,
2018b), Pallid Swift Apus pallidus (Norevik
et al. 2019)) and/or larger-scale movements (e.g.
Common Cuckoo, Red-backed Shrike Lanius collu-
rio and Thrush Nightingale Luscinia luscinia (Tho-
rup et al. 2017)). This dependence on multiple
locations makes identification of site-level drivers
difficult and means that the conservation of single
sites may be of limited use except for some habitat
specialists (e.g. Aquatic Warbler Acrocephalus
paludicola).

Tracking studies can also provide insights into
the timing of annual events (Lisovski et al. 2012,
Briedis et al. 2018, Pedersen et al. 2018), as well
as the dependencies and carry-over effects
between them (Emmenegger et al. 2016, Briedis
et al. 2017, Brlik et al. 2020). However, most stud-
ies actually suggest little or no linkage between
timing of events early and late in the annual cycle,
because of the buffering effects of variable non-
breeding periods (Ouwehand et al. 2016, van Wijk
et al. 2017, Briedis et al. 2018, Tomotani

8519017 SUOLULLIOD AITER.ID) 3|Gd 1 [ddke aU) Ad PoLIBAOB B8 SDIDILE WO ‘38N J0 S| 0 A1 BUIIUO AB]1A O (SUO1IPUO-PUE-SWLB) W00 A3 1 ARRIq 1 U1 U0/ Sci) SUONIPUOD PUE S | 341395 *[£202/90/2T ] Uo Areii aUlIuO A8]1m ‘9B1pBUOY 1A AQ TZTET IQTTTTOT/I0p/W0Y"Ad |1 AReid)1jBu|uUo//SANY WO PApeo|uMOQ '€ ‘€202 ‘X6T6PLYT



et al. 2019, although see Briedis et al. 2020a,
2020). There may, however, be strong linkages
between directly successive seasons (e.g. the tim-
ing of departure from the non-breeding grounds
and arrival on the breeding grounds for European
Pied Flycatcher Ficedula hypoleuca (Ouwehand
et al. 2016) and breeding season conditions and
overwinter survival for Alpine Swift Tachymarptis
melba (Robinson et al. 2020)).

Tracking studies are also invaluable in under-
standing the strength of connectivity between
breeding and non-breeding populations, with
important implications for understanding declines
and how to stem them (Cresswell 2014). The con-
cept of connectivity can be defined in different
ways but here we refer to a species as having low
connectivity if individuals from the same breeding
population spread over a large non-breeding area,
resulting in different breeding populations sharing
the same non-breeding area to a large degree. In
contrast, a species has high connectivity if individ-
uals from the same breeding population occupy a
small non-breeding area (Finch et al. 2017), result-
ing in different breeding populations having differ-
ent non-breeding areas. The results of studies in
which multiple populations have been tracked (see
Finch et al. 2017; also Prochazka et al. 2018, van
Wijk et al. 2018) show that levels of connectivity
vary greatly across species. However, breeding
populations of most Afro-Palaearctic migrants
show high levels of spread in non-breeding areas,
with mean inter-individual distance between indi-
viduals from the same breeding population across
all studies being 743 km (Finch et al. 2017), with
the Common Nightingale Luscinia megarhynchos
(Hahn et al. 2013) among the lowest so far (mean
inter-individual distance in the non-breeding sea-
son for birds from three breeding populations of
484, 490 and 697 km), and Red-backed Shrike
(2918 km on average, data from two breeding
populations (Pedersen et al. 2019)) and Willow
Warbler Phylloscopus trochilus (1734 km on aver-
age, data from two breeding populations (Lerche-
Jorgensen et al. 2017)) among the highest.

Connectivity in migrant birds has important
implications for their resilience to habitat change,
habitat loss and climate change: low connectivity
is associated with more generalist species able to
exist in anthropogenically modified habitats, and
susceptibility to outright habitat loss but resilience
to climate change (Cresswell 2014, Finch
et al. 2017, Patchett et al. 2018). It also has
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implications for our ability to identify where popu-
lation limitation occurs. Given almost all long-
term monitoring of populations is on the breeding
grounds and that many migrants are highly dis-
persed in winter, any localized reduction in carry-
ing capacity in non-breeding areas, unless at an
extremely large scale, e.g. drought in the Sahel
(Peach et al. 1991), is unlikely to be detected in
breeding trend data (Cresswell et al. 2020). This is
because any impact is effectively diluted across the
large breeding range and will be masked by the
many individuals wintering in unaffected areas
(Finch et al. 2017). This may mean we are less
likely to pick up changes in survival rate driving
population trends or to detect future effects of any
African conservation interventions in Europe, or
vice versa.

Tracking also potentially provides a means by
which to link individual behaviour to population
trends. Such studies remain rare because they
require heavy non-archival tags that provide infor-
mation on mortality events (Klaassen et al. 2014,
Oppel et al. 2015, Ibanez-Alamo et al. 2019,
Loonstra et al. 2019). For example, Common
Cuckoos in the UK follow two different southward
migration routes associated with different levels of
mortality to a common non-breeding area in west-
ern Central Africa. The proportion of birds in local
breeding populations using the less successful
route correlated with the extent of population
decline (Hewson et al. 2016), suggesting a role of
conditions encountered during the migration and/
or the pre-migratory fattening period in the UK. A
second study on Egyptian Vulture Neophron perc-
nopterus (Buechley et al. 2021) highlights variation
in survival in time and space with lower survival
during periods of migration, and on the northerly
breeding grounds, compared with sub-Saharan
Africa, and for birds originating from eastern com-
pared to western Europe.

The growing MOTUS network of automated
radio receiver stations in Europe (Taylor
et al. 2017) has huge potential for linking demog-
raphy and migration of smaller species, as do
future developments in space-based radio tracking,
which allow increasing miniaturization of non-
archival tags (Jetz et al. 2022). The MOTUS sys-
tem allows a large number of tags to be deployed
with the receiver array serving as a ‘virtual mist
net’ registering any passing bird over a large area.
The system has been used to track Barn Swallows
Hirundo rustica to assess survival over relatively
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short time periods (Evans et al. 2020) and carry-
over effects of breeding on autumn migration
(Imlay et al. 2021). Solar-powered nano-tags
allowing individuals to be tracked across their
entire life and an extensive receiver network along
the flyway could allow partitioning of mortality
across routes and major parts of the annual cycle,
as well as help to identify key stopover sites, as it
has done in the Neotropical-Nearctic flyway (e.g.
Gémez et al. 2017).

In summary, in recent years there has been a
dramatic increase in the number of species that
have been tracked with valuable insights into
routes, stopovers, carry-over effects and connectiv-
ity. However, these studies still only relate to a
small fraction of migrant species and populations
(Guilherme et al. 2022). Marked biases exist
towards more westerly breeding populations and
larger-bodied birds. Greatest conservation value
will be achieved by combining tracking studies
(e.g. Guilherme et al. 2022), integrating them with
field studies (e.g. Blackburn & Cresswell 2015,
2016a, 2016b) and undertaking them in a
hypothesis-driven way (e.g. increasing and decreas-
ing European populations).

RECENT ADVANCES IN KNOWLEDGE
AND UNDERSTANDING FROM FIELD
STUDIES OF MIGRANT BIRDS IN
SUB-SAHARAN AFRICA

Several recent studies in the non-breeding season
have collected empirical data relating to the distri-
butions, movements and habitat associations of
migrant birds. The biggest advances made since
2014 (Adams et al. 2014) have been in two areas,
although in both cases the findings relate to a rela-
tively small number of species (between two and
12). First, several studies have highlighted the
importance of certain tree species on the non-
breeding grounds (e.g. Zwarts et al., 2015; Zwarts
& Bijlsma 2015); and secondly, some studies have
suggested that anthropogenic land cover change
may not always be detrimental to overwintering
Afro-Palaearctic migrants (e.g. Blackburn & Cress-
well 2015, 2016a, 2016b).

It has long been recognized that a large propor-
tion of migrant birds that cross the Sahara spend
the winter in the Sahel region (Moreau 1972).
Numbers decline as one travels south — although
large numbers have recently been estimated in
West African mangroves (Zwarts et al. 2014)
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— and recent studies have attributed this to birds’
preferences for a relatively small proportion of the
tree and bush species available in the Sahel region
(Zwarts et al, 2015; Zwarts & Bijlsma 2015).
Migrants were absent in 69% of all tree species
present, favouring thorny trees such as Faidherbia
albida and other acacias that are adapted to high
grazing/browsing pressure through mechanical
(thorns), rather than chemical, defence and so sup-
port relatively high invertebrate abundance. The
main exception is the berry-bearing Salvadora per-
sica, long known to be favoured by migrant birds,
such as Sylvia warblers, that are at least partially
frugivorous during the non-breeding season (Stoate
& Moreby 1995, Frannson et al. 2008, Iwajomo
et al. 2017).

Conditions in the Sahel have long been known
to have an impact on survival and population
trends of migrant birds (e.g. Winstanley
et al. 1974, Peach et al. 1991, Norman &
Peach 2013). Droughts have an immediate impact
upon food availability, and a longer-lasting effect
on vegetation cover and species composition in the
region (Zwarts et al. 2009). Severe losses of woody
cover in the dry northern Sahel since the 1960s,
caused by drought, cutting, grazing and fire, may
equate to the loss of habitat for 300-400 million
migrant birds (Zwarts et al. 2015, 2018), some-
thing likely to be exacerbated by climate change
(Simkins 2019).

Similarly, further south in the Sudan savannah
and Guinea forest zones, various warbler species
show preferences for taller trees compared with
their immediate surroundings (Mallord et al. 2016,
Awa II et al. 2018, Willemoes et al. 2018), while
certain groups of tree species such as acacias
(Willemoes et al. 2018) are often favoured. In
some cases, individual tree species can be impor-
tant: for instance, Wood Warblers Phylloscopus sibi-
latrix at a stopover site in the Sudan savannah
strongly preferred Terminalia leiocarpa, accompa-
nied by a marked avoidance of other more com-
mon species, e.g. Vitellaria paradoxa and
Azadirachta indica (Mallord et al. 2016), also high-
lighting the importance of native trees (Douglas
et al. 2014).

To the extent that they can be considered habi-
tat generalists (Cresswell 2014, Ivande & Cress-
well 2016), migrant birds may be unlikely to be
limited by the availability of suitable habitat on
the wintering grounds in Africa. This may be par-
ticularly the case for open country species such as

8519017 SUOLULLIOD AITER.ID) 3|Gd 1 [ddke aU) Ad PoLIBAOB B8 SDIDILE WO ‘38N J0 S| 0 A1 BUIIUO AB]1A O (SUO1IPUO-PUE-SWLB) W00 A3 1 ARRIq 1 U1 U0/ Sci) SUONIPUOD PUE S | 341395 *[£202/90/2T ] Uo Areii aUlIuO A8]1m ‘9B1pBUOY 1A AQ TZTET IQTTTTOT/I0p/W0Y"Ad |1 AReid)1jBu|uUo//SANY WO PApeo|uMOQ '€ ‘€202 ‘X6T6PLYT



Whinchat Saxicola rubetra (Hulme & Cress-
well 2012, Blackburn & Cresswell 2015, 2016a,
2016b), which may tolerate some agriculture-
related habitat change, but less so for species more
reliant on wooded habitats (Jones et al. 1996,
Vickery et al. 2014). However, species preferring
open woodlands may exhibit some resilience to
loss of tree cover, e.g. Wood Warbler (Mallord
et al. 2016, 2018, Awa II et al. 2018, Buchanan
et al. 2020, Jarret et al. 2021) and possibly other
migrant species that prefer moderate forest cover,
e.g. Willow Warbler (Thorup et al. 2017, Wille-
moes et al. 2018).

Other migrants are highly mobile and able to
track variation in resource abundance over wide
areas. Montagu’s Harriers track the abundance of
grasshoppers (Trierweiler et al. 2013, Augiron
et al. 2015, Schlaich et al. 2016) and changes in
food availability can alter the migratory behaviour
of Iberian-breeding White Storks Ciconia ciconia
(Gilbert et al. 2016), and the foraging strategies of
Eurasian Reed Warblers Acrocephalus scirpaceus
(Vafidis er al. 2014).

In conclusion, we have greatly advanced knowl-
edge for a small number of migrant species, but
overall understanding of non-breeding ecology and
distribution remains poor. We know of only 31
papers published since 2014 based on newly col-
lected empirical data from the wintering grounds
in sub-Saharan Africa, 12 of which are based on
data from just three studies (distribution of
migrants in the Sahel, Whinchats in Nigeria and
Wood Warblers in Ghana). Overall, they show a
preference for a small number of tree species, and
apparent resilience to anthropogenic land-use
change, especially loss of trees. However, it is
important to emphasize that many of these stud-
ies represent a small subset of migrant bird spe-
cies. This work is challenging and expensive and
if the goal is to gather information to conserve
these birds, we suggest that the return on invest-
ment of this area of work is low and unlikely to
change.

RECENT ADVANCES IN KNOWLEDGE
AND UNDERSTANDING FROM THE
USE OF SURVEY AND
DEMOGRAPHIC DATA FROM THE
EUROPEAN BREEDING GROUNDS

The abundance of common breeding bird species
in Europe is monitored under the PECBMS
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(https://pecbms.info/), with additional data from
schemes collated under Birds in Europe/European
Red List of Birds (ERLoB; BirdLife Interna-
tional 2017a, 2017b). Demographic data are col-
lected by standardized mist-netting across 20
countries under the European Constant Effort Site
(Euro-CES) scheme. The spatial and temporal res-
olution of these data mean that they can be used
to explore both large-scale and local-scale patterns
in population trends and demography across spe-
cies ranges. Studies include quantifying large-scale
changes in abundance and demography across
European breeding grounds, identifying within-
and between-species variation in population trends
and demography, examining the role of environ-
mental processes on the breeding and non-
breeding grounds on population declines and
considering the nature and impact of changes in
the timing of arrival and breeding on European
breeding grounds.

Detailed exploration of changes in abundance
and demography of migrant birds across European
breeding grounds has highlighted differences at
both regional and site levels. Growing evidence
suggests that sites where migrants are doing well
are also the sites where residents are doing well
in the UK (Ockendon et al. 2012, Balmer
et al. 2013, Morrison et al. 2013, 2016) and at
the European level (Morrison et al. 2021). Analy-
sis of one species (Willow Warbler) in Great Bri-
tain has shown that, although declines may be
driven by poor conditions outside the breeding
grounds, they could be addressed by targeted
actions to improve productivity at poor breeding
sites. However, in the long term, halting and even
reversing survival-driven population declines are
also likely to require environmental protection
across non-breeding ranges (Morrison et al. 2016,
2021).

Survey and demographic data have also been
used to quantify the role of environmental processes
on the breeding and non-breeding grounds on popu-
lation declines including spring temperature (Meller
et al. 2018), breeding habitat types (Sullivan
et al. 2015) and degree of habitat modification, e.g.
through agriculture (Jorgensen et al. 2016, Sander-
son et al. 2016, Gamero et al. 2017, Knaus 2018,
Moreno-Zarate et al. 2021).

Studies relating European breeding bird data to
large-scale habitat and environmental processes in
Africa have failed to find any clear regional pat-
terns (e.g. Ockendon er al. 2014, Jorgensen
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et al. 2016, Halupka et al. 2017, Beresford
et al. 2019). This failure may reflect marked spa-
tial variation in environmental change in Africa,
limited information about non-breeding and habi-
tat requirements (e.g. Mallord et al. 2016, 2018,
Beresford et al. 2019, Buchanan et al. 2020), and
the large non-breeding area that individuals from a
population may occupy (Finch et al. 2017).

Long-term demographic data have also provided
insight into the effects of phenological change on
migrant populations (Samplonius et al. 2021). Sev-
eral studies in the UK and elsewhere have linked
population trends to long-term datasets on timing
of arrival, departure or egg laying and shown that
those species that are least flexible exhibit the
most  negative  population trends (Mgller
et al. 2008, Newson et al. 2016, Franks
et al. 2018). Although changes in breeding ground
temperature may impact the timing (Ockendon
et al. 2013) or success (Arlt & Part 2017) of nest-
ing attempts, there is little evidence of the impor-
tance of phenological changes on the breeding
grounds. For example, for three insectivorous
passerines, carry-over effects from passage regions
had consistently stronger impacts on breeding phe-
nology than breeding climate (Finch et al. 2014).
For example, in Wood Warblers, a failure to
advance breeding to match the advancement in
peak prey (caterpillar) emergence did not impact
on subsequent productivity, suggesting no marked
effect of phenological mismatch (Mallord
et al. 2017), and that individuals take advantage of
alternative food types. Similarly, a UK-wide multi-
species study found no latitudinal variation in the
timing of peak nestling demand relative to peak
caterpillar biomass for any of the three species
studied (Burgess et al. 2018).

In summary, studies of large-scale survey and
demographic data from the breeding grounds to
identify demographic drivers of migrant population
declines yield complex results that differ between
species, populations, regions and habitats. Rainfall
in the wintering grounds continues to emerge as
an important factor and phenological mismatch is
apparent in some insectivorous migrant birds but
there is little evidence that this is linked to popula-
tion trends. Importantly, for some species, recov-
ery may be possible through targeted action to
improve productivity on the breeding grounds,
even if the drivers of their population trends are
operating elsewhere.
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RECENT ADVANCES IN KNOWLEDGE
AND UNDERSTANDING FROM THE
USE OF REMOTE SENSING OF LAND
COVER CHANGE IN SUB-SAHARAN
AFRICA

Rapid change in land use and land cover in sub-
Saharan Africa is well documented. Recent assess-
ments show an increasing area of agricultural land
under ‘shifting agriculture’ (Curtis et al. 2018,
Faour et al. 2018), particularly in more northerly
zones and countries (Knauer et al. 2017, Schulte
to Bithne et al. 2017, Potapov et al. 2021) with
associated large-scale tree loss (e.g. Fensholt
et al. 2015, Zomer et al. 2016). Long-term changes
to wetland habitats are also apparent throughout
the Sahel and tropical Africa, although these vary
between countries and regions (Moser et al. 2014,
Schroeder et al. 2015). Determining the extent to
which these changes are linked to changes in
migrant bird populations is compromised by the
lack of basic empirical information on distribution
and habitat use of these species in the non-
breeding season (e.g. Beresford et al. 2019). Four-
teen studies have been published since 2014 that
have related migrant bird population trends to
remote-sensed land cover, using either the Nor-
malized Difference Vegetation Index (NDVI;
n = 12) or tree cover data (n = 2).

The recent studies examine whether declines of
migrants could be related to land cover changes in
Africa using NDVI as a measure of vegetation
development or primary productivity, and have
produced mixed results (e.g.  Ockendon
et al. 2014). A number use over-simplistic single
environmental parameters across the entire African
continent in which vegetation phenology varies
enormously (Beresford et al. 2019) and/or lack
crucial information on non-breeding distribution
and species-habitat relationships (e.g. Howard
et al. 2020).

Only one study has incorporated known
species—habitat relationships (Mallord et al. 2016)
with remote sensed data on land cover and land
cover change (from Hansen et al. 2013), first, to
quantify optimal habitat across an Afro-Palaearctic
migrant’s non-breeding African range and, sec-
ondly, to estimate the change in cover of such
habitat over time (Buchanan et al. 2020). This
suggested that between 2000 and 2014, there was
a 47% increase in the extent of optimal open
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woodland habitat for this species with the degrada-
tion of pristine forest. Hence, while our under-
standing of land cover change in sub-Saharan
Africa has increased greatly, our ability to relate
these changes to habitat availability for and/or
population trends of migrant birds has not. This
area of research is constrained by our lack of
knowledge about the distribution, abundance and
species—habitat relationships of most migrant birds
in the non-breeding season and unless this knowl-
edge gap is addressed, such large-scale analyses will
remain of limited value for conservation.

HOW MUCH CAN THESE RECENT
ADVANCES INFORM
CONSERVATION ACTION?

Ultimately, any research into migrant declines
might usefully be turned into conservation action.
Key to this is the identification of stage(s) in the

(a)
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annual cycle where an action can cost-effectively
increase populations. The cost-effectiveness of any
conservation action, measured as money and/or
effort, is always likely to be an S-shaped function,
where a small amount of resource makes no differ-
ence, and a large amount of resource sees dimin-
ishing returns (the ‘conservation investment
function’, e.g. based on decision analysis, see Val-
lero 2021; Fig. 4a). The function shape will vary
according to the strength of the relationship
between investment and the population response
and will be species- and stage-specific (Fig. 4b).
For example, western Ortolan Bunting popula-
tions may currently have the steepest relationship
between change in population and amount of con-
servation investment on passage, where hunting is
the main driver of population declines (Jiguet
et al. 2019), whereas for Whinchats the steepest
relationship is likely to be on the breeding grounds
(Bastian & Feulner 2015). Hence, when a

(c)
+
+
Change in
Change in population
population -
(d)
Amount of conservation investment +
Changein | .
(b) population
BREEDING Change in Annual Survival Rate
; N (ASR) -
action Change in productivity
Amount of conservation investment
PASSAGE and PR —————
_ ange in Annual surviva,
— NON BBEEDING > Rate (ASR)
action

Figure 4. (a) The relationship between investment and population response (the conservation investment function). (b) The crucial
stages in any conservation decision analysis to determine which stage would give the best return for any conservation investment to
address the decline of a migrant species. The success of any intervention will depend, first, on how ecologically relevant it is to a
given population and, secondly, on the ease of implementation. Even if the stage at which the drivers of decline are operating is
known, variation in the ease of implementation can result in very different functional relationships (c, d).
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conservation investment increases population size,
its ranking among all possible interventions will
depend on the steepness of the slope and the abso-
lute change in population, relative to other possi-
ble interventions at other stages in the annual
cycle. How many other species may benefit from
this intervention is also relevant but challenging to
assess. There are at least two important sources of
uncertainty that affect these relationships. The first
is whether the actions taken will actually reverse
species’ declines. A second uncertainty is linked to
the ease of implementation. For example, the
underlying causes of the population declines of
Corn Crakes and European Turtle Doves in the
UK are well established (Green et al. 1997,
Browne & Aebischer 2004). These declines are
associated with changes in farming practices reduc-
ing productivity, and conservation investment has
been provided for both species. In the Corn Crake,
the declines were caused by high chick mortality
through mowing of their grassland habitat (Green
et al. 1997, Tyler et al. 1998). Payments were
made to farmers to alter the mowing regimen
(Green et al. 1997), increasing UK populations (cf.
Fig. 4b; Wotton et al. 2015). In the European Tur-
tle Dove, the declines were linked to a changing
food supply and shifts in diet from wild to culti-
vated seeds (Browne & Aebischer 2003, 2004).
However, a large amount of investment, especially
in terms of management interventions within UK
government agri-environment schemes (Dunn
et al. 2015), has not resulted in population recov-
ery (cf. Fig. 4c) (Woodward et al. 2020). Differ-
ences in population response are also likely to be
the result of differences in the ease of implementa-
tion. Corn Crakes are geographically confined to a
relatively small area in the UK, so that manage-
ment can be targeted precisely. European Turtle
Doves are more widespread and the precise cause
of the decline is less certain. Understanding
whether the failure of a particular conservation
intervention is due to the nature of the action, or
its implementation, will be important in terms of
replicating the measures more widely. Ordering
the various potential conservation interventions,
therefore, depends fundamentally on a reasonable
quantification of how population changes arise
from variables that are amenable to conservation
action, and the cost of influencing these variables.
For example, habitat quality in terms of retained
larger trees on the non-breeding grounds in Guinea
savannah landscapes across Africa is likely to be
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important for many Palaearctic migrant popula-
tions (e.g. Mallord et al. 2016) as well as resident
species. Tree and natural habitat retention or man-
agement could be encouraged through direct pay-
ments or indirect incentives to landowners (Brown
et al. 2021). The costs and population conse-
quences of this, relative to conservation action on
the breeding grounds (Mallord et al. 2012), would
require establishment of a functional relationship
between levels of investment and population
response. Each relationship is straightforward, but
it requires ornithologists and conservationists
working in countries throughout a particular
migrant species’ range to make such empirical
measurements. The complexity arises because
there are many stages in the annual cycle of a
migrant, and many possible conservation actions,
whose implementation will be dependent on geo-
graphical, political and socio-economic factors,
which will be different for each species.

The key question in the context of this review
is, therefore, have we modelled sufficient conserva-
tion investment functions to be able to start halt-
ing and ultimately reversing migrant population
declines effectively? The answer remains no, partly
because we are still limited by the lack of studies
of how migrant populations are affected by condi-
tions during passage and on the non-breeding
grounds. As Figure 3 shows, we lack complete
annual cycle data on most populations, and for
those species that are well studied (e.g. Common
Cuckoo, European Turtle Dove, Whinchat, Euro-
pean Pied Flycatcher, Wood Warbler), knowledge
is restricted to a very limited number of popula-
tions. Perfect knowledge across the flyway may
not be necessary; for example, population recovery
may be possible through increasing productiv-
ity/survival at stages where implementation is easi-
est, even if the drivers of decline are operating at
other stages (Morrison et al. 2021), although this
remains untested.

SUMMARY AND CONCLUSIONS

Despite considerable efforts, there has been rather
limited progress in identifying the causes of
migrant bird declines, linked, in no small part, to
the complexity of the system and the diversity of
species involved. The ‘full annual cycle approach’
(Marra et al. 2015) is often viewed as key to
understanding a system. Although possible for a
species such as the American Redstart Setophaga
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ruticilla, with relatively low non-breeding disper-
sion, it is rarely possible for species with high non-
breeding dispersion, which is often the case in the
Afro-Palaearctic system. This is particularly true
where non-breeding grounds are in remote and
often politically unstable areas, as is the case for
many migrants (Guilherme et al. 2022). There are
examples where individual species have been
linked to specific (or, at least, flyway) populations,
confirming that hunting pressure is unsustainable
and the probable cause of population declines and/
or lack of recovery, e.g. Ortolan Bunting and Euro-
pean Turtle Dove.

We argue that there is an urgent need to shift
from diagnosing declines to trialling potential solu-
tions, based on the best available evidence, com-
bined with monitoring and adaptive actions. The
escalating scale of Afro-Palaearctic bird declines
suggests that conservation action cannot await the
outcome of future research investment focusing
purely or largely on diagnosis. This review may be
used to identify valuable policy-based and/or land-
based experiments. Such experiments, if effec-
tively monitored, could help to indicate where the
steepest parts of the ‘population response and con-
servation investment’ curve are (Fig. 4), in the
absence of full prior understanding of such rela-
tionships, to support decision analysis.

The substantial advances in recent knowledge
from tracking, and particularly results relating to
dispersion, are important in this context. In the
broadest terms, these show that individuals from
the same population may spread over a large non-
breeding area, leading to breeding populations
sharing the same areas extensively during passage
and the non-breeding season (low connectivity).
This suggests that (1) any one site that is con-
served will only benefit a very small fraction of the
overall population, although any suitable habitat
site will conserve some individuals of many breed-
ing populations; (2) land-sharing solutions may be
more effective than purely site-based conservation;
(3) any local changes in Africa may affect many
European populations, and these local changes will
be averaged across many breeding sites, making it
difficult to pick up changes in survival rate on the
non-breeding ground driving population trends, or
to detect future effects of any localized African
conservation interventions; and (4) if factors driv-
ing declines of species do operate on non-breeding
grounds, they must do so at a relatively large scale
to have significant impact on any one breeding
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population (e.g. climate change or large-scale land
use change).

Hence, the degree of connectivity and number of
sites required by a species helps to identify general
principles for conservation action and approaches.
There are a smaller number of species, often special-
ists, that migrate along defined routes and bottle-
necks (e.g. Aquatic Warbler (Salewski et al. 2013)
and Ortolan Bunting (Jiguet et al. 2016)), that rely
on a small number of key sites and may benefit from
targeted site-based conservation action at multiple
sites across the flyway. Although a relatively small
number of species may benefit from widespread
small-scale site-level interventions, a significant pro-
portion of migrants are widely spread on the non-
breeding grounds. These species (e.g. Whinchat
(Blackburn et al. 2017) and Great Reed Warbler
(Lemke et al. 2013)) may be best served by broad
landscape-scale conservation action, e.g. land shar-
ing solutions (Green et al. 2005) and nature-based
solution approaches (Seddon et al. 2020).

On the breeding grounds, work to understand
the habitat conditions associated with good sites
for key species may help to identify the sorts of
habitats to replicate and/or scale up and imple-
ment targeted action to boost productivity (Mor-
rison et al. 2021). On non-breeding grounds where
implementing management action is challenging,
there is great potential in monitoring the benefits,
for both migrant and resident birds, of aid and
development initiatives that are linked to enhanc-
ing, for example, tree cover to improve livelihoods
(Le Houérou 1977, Bizikova et al. 2015, Graves
et al. 2019). These range from large-scale initia-
tives, such as The Great Green Wall for the
Sahara and the Sahel Initiative (GGWSSI or Great
Green Wall GGW (FAO 2014, Bozzano
et al. 2014, https://www.greatgreenwall.org)), to
smaller-scale projects — e.g. The Acacia Operation
Project (Bozzano et al. 2014); Bocage system (Gir-
ard 2008); Zai pits (Sawadogo 2011, Danjuma &
Mohammed 2015); and Ecovillages (ANEV 2015,
http://www.Ecovillages.sn/, GENSEN 2015) that
often adapt traditional agricultural practices to
grow native trees and shrubs (Berrang-Ford
et al. 2011). The extent to which they will benefit
biodiversity, and indeed climate, depends to a very
great extent on the number and species of trees
planted and surviving, and their provenance (Dou-
glas et al. 2014, Seddon et al. 2020). However,
very few of these initiatives currently include bio-
diversity monitoring (though see Stout et al. 2018,
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Delaney et al. 2020) and integrating such monitor-
ing could provide valuable evidence on ways to
enhance benefits for biodiversity, climate and local
people.

We also urge greater collaboration and integra-
tion between research projects and programmes,
sites, geographical regions and scientific disciplines.
In the case of tracking, for example, the most sig-
nificant advances for conservation will be made by
combining tracking studies and using them in com-
bination with other approaches in a hypothesis-
driven way. This will reveal generalities and differ-
ences between, for example, migration routes and
wintering locations between western and eastern
Europe or increasing and decreasing European
populations (see, for example, Guilherme
et al. 2022). Pooling data will also allow the identi-
fication of ‘hotspots’ or ‘regions’ used by multiple
species and populations.

In summary, if we are to stem the declines of
migrant birds, we need to use the scientific knowl-
edge we have to start to act rather than wait for
complete knowledge and understanding. This
means identifying and evaluating potentially valu-
able policy and land-based ‘natural experiments’,
where possible guiding their establishment in ways
to yield the best understanding. We need to con-
nect bird and land-use researchers along the fly-
way, for research to be carried out and understood
and applied locally, involving local communities
where possible. This will demand a much larger
scientific capacity and a new scientific literacy
within policy encompassing biodiversity, human
development, business and industry. Soberingly,
we need to recognize that the decline of wide-
spread relatively common species may carry a
stronger warning about the health of our natural
world than the decline of rare and threatened spe-
cies, and to afford them a higher priority.

We dedicate this review to Japheth Roberts, a brilliant
young biologist from Ghana whose life was tragically cut
short by illness. He made a major contribution to RSPB
and Ghana Wildlife Society work in Africa — an area of
work we highlight as a key ongoing priority. The review
drew on discussion and insights generated at a workshop in
Cambridge in 2019 generously funded by the Cambridge
Conservation Initiative collaborative fund CCC-05-18-
003 and RSPB and co-organized by J.V. and Susana
Requena. We are grateful to all attendees for their invalu-
able input: Guy Anderson, Phil Atkinson, Olivier Biber,
Claire Bissel, Graeme Buchanan, Malcolm Burgess,
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Andrew Callendar, Carles Carboneras, Nonie Coulthard,
Nicola Crockford, Joao L. Guilherme, Jenny Gill, Borja
Heredia, Vicky Jones, Felix Leichti, Alex Ngari, Abdou-
laye N’Diaye, Will Peach, Rob Robinson, Tilman Schnei-
der, Fernando Spina, David Stroud, Simon Wotton. We
also thank the Editor Richard Fuller and Associate Editor
Inés Catry and two anonymous referees for comments that
greatly improved this review.
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SUPPORTING INFORMATION

Additional supporting information may be found
online in the Supporting Information section at
the end of the article.

Table S1. Summary of our understanding of
factors impacting Afro-Palaearctic migrants on
their breeding, non-breeding and staging grounds.
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Table S2. Widespread and common European
long-distance and short-distance migrants.

Appendix S3. Complete list of tracking referen-
ces.
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