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Summary

1. Virtually all empirical ecological interaction networks to some extent suffer from under-

sampling. However, how limitations imposed by sampling incompleteness affect our under-

standing of ecological networks is still poorly explored, which may hinder further advances in

the field.

2. Here, we use a plant–hummingbird network with unprecedented sampling effort (2716 h

of focal observations) from the Atlantic Rainforest in Brazil, to investigate how sampling

effort affects the description of network structure (i.e. widely used network metrics) and the

relative importance of distinct processes (i.e. species abundances vs. traits) in determining the

frequency of pairwise interactions.

3. By dividing the network into time slices representing a gradient of sampling effort, we

show that quantitative metrics, such as interaction evenness, specialization (H2
0), weighted

nestedness (wNODF) and modularity (Q; QuanBiMo algorithm) were less biased by sampling

incompleteness than binary metrics. Furthermore, the significance of some network metrics

changed along the sampling effort gradient. Nevertheless, the higher importance of traits in

structuring the network was apparent even with small sampling effort.

4. Our results (i) warn against using very poorly sampled networks as this may bias our

understanding of networks, both their patterns and structuring processes, (ii) encourage the

use of quantitative metrics little influenced by sampling when performing spatio-temporal

comparisons and (iii) indicate that in networks strongly constrained by species traits, such as

plant–hummingbird networks, even small sampling is sufficient to detect their relative impor-

tance for the frequencies of interactions. Finally, we argue that similar effects of sampling are

expected for other highly specialized subnetworks.

Key-words: connectance, forbidden links, modularity, nestedness, network metrics, neutral-

ity, NODF, plant–pollinator networks, QuanBiMo, specialization

Introduction

In the last decades, the understanding of mutualistic

plant–animal interactions at the community scale has

greatly advanced due to an increasing use of network

approaches (Jordano 1987; Bascompte 2009; Dormann

et al. 2009; Vázquez et al. 2012, 2015; Schleuning et al.

2014; Kissling & Schleuning 2015). This has revealed sev-

eral consistent patterns in the structure of bipartite plant–
animal networks. Notably often only a small proportion

of possible links are actually realized, resulting in low

connectance (Jordano 1987); networks are often nested

and modular (Bascompte et al. 2003; Olesen et al. 2007);

the degree distribution is skewed with most species having

few links and few species having many links (Jordano,

Bascompte & Olesen 2003); and there is high asymmetric

dependence between partners in a given network (Jordano

1987; Bascompte, Jordano & Olesen 2006). These struc-*Correspondence author: E-mail: jbugoni@yahoo.com.br
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tural properties are expected to be associated with com-

munity stability and maintenance (Bascompte, Jordano &

Olesen 2006; Thébault & Fontaine 2010), ecosystem func-

tioning (Schleuning, Fr€und & Garcia 2015) and to have

implications for conservation (Tylianakis et al. 2010).

An array of ecological, historical and evolutionary pro-

cesses may influence network structure (Vázquez, Chacoff

& Cagnolo 2009b; V�azquez et al. 2009a; Dalsgaard et al.

2013; Schleuning et al. 2014; Vizentin-Bugoni, Maruyama

& Sazima 2014; Martı́n González et al. 2015; Renoult

et al. 2015). Additionally, chance meeting governed by

species abundances, i.e. neutrality, may determine the

structure of networks (Stang, Klinkhamer & van der Mei-

jden 2007; V�azquez, Chacoff & Cagnolo 2009b). In this

regard, several recent studies have investigated the relative

importance of distinct processes in structuring mutualistic

networks. Most of these studies have found species abun-

dances as a major factor determining interactions in the

networks, with a complementary role of species traits (e.g.

Stang, Klinkhamer & van der Meijden 2007; V�azquez,

Chacoff & Cagnolo 2009b; Gonz�alez-Castro et al. 2015;

Olito & Fox 2015). Nevertheless, in some more specialized

systems, such as Neotropical plant–hummingbird net-

works, contrasting results were found with species traits

predicting interactions better than abundances (e.g. Mar-

uyama et al. 2014; Vizentin-Bugoni, Maruyama & Sazima

2014). Importantly, sampling may also influence the

detected network structure, making it critical to consider

in order to disentangle biological processes from meth-

odological shortcomings (Bl€uthgen et al. 2008; Ulrich

2009; V�azquez et al. 2009a; Chagnon 2015). Thus, limita-

tions related to sampling may reduce our understanding

of the structure of interaction networks (Vázquez, Cha-

coff & Cagnolo 2009b) and make spatio-temporal and

taxonomic comparisons problematic (Blüthgen et al. 2007;

Chacoff et al. 2012; Fründ, McCann & Williams 2015).

Despite the fact that sampling incompleteness may influ-

ence network patterns, most studies provide no estimate

of sampling effort, but assume that interactions in the

given community were sufficiently sampled to describe the

associated network (Ollerton & Cranmer 2002; Vázquez

et al. 2009a; Gibson et al. 2011; Chacoff et al. 2012; Riv-

era-Hutinel et al. 2012; Fr€und, McCann & Williams

2015). Considering that even estimates of species making

up the community suffer from difficulties of sampling

(Gotelli & Colwell 2001), limitations of sampling should

be analogous for interaction networks which represent

distinct combinations of species.

To date, only a handful of studies have explicitly evalu-

ated the effects of sampling incompleteness on the

description of network structure. These studies found high

variation in the number of detected species and total

number of links and suggest that some metrics, that is

aggregated statistics describing network patterns, are

prone to sampling bias (e.g. Goldwasser & Roughgarden

1997; Bana�sek-Richter, Cattin & Bersier 2004; Nielsen &

Bascompte 2007; Bl€uthgen et al. 2008; Dormann et al.

2009; Martinez et al. 1999; Rivera-Hutinel et al. 2012;

Fr€und, McCann & Williams 2015). Nevertheless, some

important gaps remain to be addressed regarding the

importance of sampling completeness. Notably, little is

known about the influence of sampling effort on quantita-

tive network structure, that is metrics calculated from net-

works that take into account the strength of interactions

(but see Bl€uthgen, Menzel & Bl€uthgen 2006 and Bl€uthgen

et al. 2008 for some indices and Fr€und, McCann & Wil-

liams 2015 for numerous metrics using simulated data)

and we know of only one attempt at investigating the

effects of sampling incompleteness on the understanding

of the processes structuring ecological networks (Olito &

Fox 2015). Moreover, all information about the influence

of sampling on detected network structures is based on

either simulated networks (e.g. Fr€und, McCann & Wil-

liams 2015) or is from less specialized and potentially

incompletely sampled networks from temperate regions

(e.g. Nielsen & Bascompte 2007; Hegland et al. 2010;

Chacoff et al. 2012; Rivera-Hutinel et al. 2012). Although

a reasonable description of plant–pollinator network

structure may be possible with a sampling focused during

the peak-season in temperate areas (Hegland et al. 2010),

such a short sampling span is unlikely to be enough for

networks from tropical areas, where many pollinators’ life

and/or activity span longer periods and their food plants

typically present staggered flowering all year-round.

By employing an unprecedent sampling effort across

2 years and focusing on a specialized and relatively easily

sampled subnetwork of plants and hummingbirds, we

built an interaction network with unusually high sampling

completeness. This characteristic of our study system

offers an unique opportunity to evaluate the susceptibility

of network patterns and structuring processes under little

variation in the network species richness, as well as

greater confidence that unobserved interactions actually

do not happen. Specifically, we ask (i) to what extent is

network structure, as measured by both binary and quan-

titative metrics, affected by sampling effort? and (ii) does

sampling effort affect the relative importance of distinct

processes (i.e. species abundance vs. traits) in determining

pairwise frequencies of interaction in the network? As a

model system, we use a plant–hummingbird subnetwork

embedded in a larger diverse network from a species-rich

area in the Brazilian Atlantic Rainforest, where forbidden

links are known to play a major role in structuring the

interactions (Vizentin-Bugoni, Maruyama & Sazima

2014).

Materials and methods

study area and data collection

The data used here represent an update of our previous study

(Vizentin-Bugoni, Maruyama & Sazima 2014) by covering

additional plant species and one more year of sampling. Data

were collected along 12 000 m of trails in the Atlantic Rainforest
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from Santa Virg�ınia Field Station at Serra do Mar State Park,

SE Brazil (23°170S–23°240S and 45°030W–45°110W), from Septem-

ber 2011 to August 2013, over 4–10 days per month. We sampled

interactions by observing at least three individuals of ornithophi-

lous or potentially hummingbird-pollinated plants, away 100 m

(or more) from each other along the trails. We included in the

network all native species blooming at least once during our

2 years of sampling and which were possible to observe for 50 h

(Table S1, Supporting information). Five species with slightly

lower sampling were also included: Edmundoa lindeni (Regel)

Leme (38 h), Macrocarpaea rubra Malme, Sinningia cooperi (Pax-

ton) Wiehler, Wittrockia superba Lindm. (44 h each) and Nidular-

ium rutilans E. Morren (46 h). In total, we carried out 2716 h of

focal observation in which we identified the visiting humming-

birds that touched anthers and stigmas (Table S2) as well as the

precise moment the visits occurred across the 50 h of sampling

for each plant species. Individual-based rarefaction indicates that

most links in the community were recorded (Fig. S1) and links

richness estimation suggests that we observed c. 82% of all inter-

actions (123 observed links from 150�3 � 16�9 expected by Chao

1 estimator; Chao 1984; Chacoff et al. 2012).

We monitored flower and hummingbird phenologies by assign-

ing their presence or absence monthly (Tables S3 and S4). We

did not consider a finer time scale for phenology as it was not

possible to sample all coflowering plant species within the same

hour or day. For each of the hummingbird-pollinated species, we

measured corolla depth from c. 10 flowers collected in the field

(Table S5) and hummingbird bill lengths were measured from

museum specimens (Table S6). In order to better estimate the

hummingbirds’ ability to access nectar in deep flowers, we added

80% as a correction for tongue extension to bill length estimates.

This correction is based on measures from Selasphorus rufus ton-

gue extension (Grant and Temeles 1992) and keeps the propor-

tionality in which longer-billed species tend also to have longer

tongues (Paton & Collins 1989) (Table S6). Using an alternative

33% threshold to correct for tongue extension (as in Vizentin-

Bugoni, Maruyama & Sazima 2014) did not alter our results

(Table S10, see model “M1”). Plant abundance was quantified as

the total number of open flowers counted per species monthly

along all trails (Table S1). In order to obtain data for all species,

hummingbird abundances were measured as the proportion of

days a species was recorded in our 130 days in the field

(Table S2). We used this measure because some rarer species were

not recorded during our counting of hummingbirds. The reliabil-

ity of this estimation of hummingbird abundance is supported by

its positive and strong correlation with the number of aural and

visual contacts of species across ten transects sampled monthly

(100 m; Fig. S2; Table S7). All other sampling details on pheno-

logical, morphological and abundances data followed Vizentin-

Bugoni, Maruyama & Sazima (2014).

data analysis

Interaction networks along a sampling effort gradient

Plant–hummingbird interaction data were assembled into a quan-

titative bipartite network, with pairwise interaction frequencies

representing the number of legitimate visits between a given hum-

mingbird and plant species. Thus, each cell (aij) represents the

number of interactions between a pollinator (i) and plant (j) spe-

cies. To construct a sampling gradient, we pooled all interactions

observed into time slices of 1 h of sampling effort; for instance,

the first-hour time slice was composed by all interactions

recorded by plants and pollinators in the first hour of observa-

tion to each plant species. If a plant species was not visited in

this interval, it was not included in this specific time slice. Then,

by summing time slices sequentially, we created a gradient of net-

works with increasing sampling effort. Therefore, the gradient

was composed of 50 networks, from one to 50 h of observation

for each plant species in the community.

Network patterns

In order to evaluate how sampling effort influences network pat-

terns, we computed network metrics for the 50 networks with

accumulated sampling effort. We first calculated descriptors of

networks including the number of plants, richness of pollinators,

number of links (i.e. pairwise combinations) and number of inter-

actions recorded. Moreover, we also calculated binary and quan-

titative network metrics which are widely used in the literature

and cover distinct network properties: Connectance is defined as

the proportion of possible links actually observed in the network;

Interaction evenness is a measure of variation in frequencies of

interactions, that is visits, among distinct links (e.g. Bersier,

Bana�sek-Richter & Cattin 2002). Specialization was quantified by

the H2
0 index, which is an application of information theory to

quantitative networks and can be interpreted as a measure of

how species partition their interactions in the network (Bl€uthgen,

Menzel & Bl€uthgen 2006); Nestedness was measured by NODF

index, both for binary and quantitative networks, the latter

denoted as wNODF (Almeida-Neto & Ulrich 2011). Modularity

(Q) was also estimated for both binary and quantitative matrices

using the QuanBiMo optimization algorithm (Dormann &

Strauss 2014). As the QuanBiMo algorithm is stochastic, the val-

ues found can be slightly different between runs; we followed

Maruyama et al. (2014) and Schleuning et al. (2014) and account

for this by choosing the higher values from 10 independent runs

set to 107 swaps to each network. The significance of metrics was

assessed by comparing the observed values to those obtained by

1000 null model randomizations, with the exception of modular-

ity, which was tested against 100 runs due to large computational

time required by the algorithm. Calculation of NODF signifi-

cance was performed using the software ANINHADO and tested

with the null model in which interactions are distributed propor-

tionally to the marginal totals of the network (Guimar~aes &

Guimar~aes 2006). For binary Q, we used the shufle.web function

that relocates entries in the matrix keeping the original dimen-

sions and, for all quantitative indices, we used the vaznull null

model which keeps the marginal totals and the connectance in

the network, both ran in R package bipartite (Dormann, Gruber

& Fr€und 2008). Metric values were considered significant if they

did not overlap 95% of confidence intervals of the randomized

values.

Rarefaction-like approaches for interaction networks

One can argue that the order of the focal observations in the field

used to assemble the network could affect metric values, espe-

cially across the sampling gradient. For instance, if the first plant

sampled was an individual located in a less visible spot, then it

could be less visited not by barriers related to the plant trait, but

by some stochasticity. Therefore, this would affect the values of
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metrics calculated for each time slice. In order to account for this

potential bias, we used an analysis inspired in sample-based rar-

efaction method used for species richness (Gotelli & Colwell

2001). In this case, our samples were time slices of 1 h of obser-

vation to each plant species, with the respective links (and num-

ber of visits) observed. As we observed 50 h, each plant species

also had 50 time slices. We then randomly assembled networks

with accumulating sampling effort from 1 to 50 h of accumulated

observation. To each class of sampling effort (1–50 h), we gener-

ated 1000 randomized networks and calculated all network met-

rics to contrast to the observed variation in the metric values

with increasing sampling.

We also checked the robustness of our findings by simulating

an individual-based rarefaction-like gradient of sampling effort,

also inspired on Gotelli & Colwell (2001). We successively

removed 10% of the interactions recorded from the complete

matrix (50 h), from 10% to 90% of interactions removal and all

metrics were recalculated for each removal level. We then per-

formed 1000 repetitions for each removal level and calculated all

above mentioned metrics. Results are presented in Fig. S3 which

can be directly compared with Fig. 1. As the results were roughly

similar regardless of the methods, we kept the ‘sample-based rar-

efaction-like method’, which better reflect sampling procedures in

the field conducted through timed observations (see Gibson et al.

2011).

Processes entangling interactions

We investigated the relative importance of phenological overlap,

morphological matching and species abundance (or combina-

tions of them) in predicting pairwise frequencies of interactions.

We used the conceptual and analytical framework proposed by

V�azquez, Chacoff & Cagnolo (2009b) and subsequent adapta-

tions by Vizentin-Bugoni, Maruyama & Sazima (2014) which is

based on probability matrices (null models) and likelihood anal-

ysis. We produced eight probability matrices based on Pheno-

logical overlap (P) – the probability of interaction between two

species is given by the number of months a hummingbird and a

flowering plant species overlapped in their occurrence (aij = 0–

24 months); Morphological matching (M) – an interaction is

allowed (aij = 1) only if the hummingbird bill + tongue length

estimates exceed the floral corolla depth, otherwise the probabil-

ity of interaction is zero (aij = 0); Abundances (A) – the proba-

bility of an interaction is proportional to the multiplication of

the relative abundances of plant and hummingbird species in

the community. In this sense, two abundant species have higher

probability to interact than rarer species. Note that in A, all

species combinations are allowed (aij > 0), while in P and M,

some interactions are considered ‘forbidden links’ (aij = 0) when

species do not overlap in time or have no morphological match-

ing, respectively. In order to investigate potential effects of com-

bined mechanisms on the network, we also multiplied these

matrices (A, P and M) in all possible combinations by element-

wise multiplication (Hadamard product), that is PM, PA, AM

and APM. Finally, all matrices were normalized by dividing

each cell by the matrix total. As a benchmark, we produced an

additional matrix in which all species had the same probability

to interact (Null).

We used likelihood analysis and model selection to compare

the capacity of each probabilistic matrix (A, P, M, AP, AM,

PM, APM and Null) in predicting frequencies of pairwise

interactions in the observed matrix. Model matrices were consid-

ered equal when MAIC ≤ 2 (Burnham & Anderson 2002). To

penalize models with distinct complexities, we used as parameters

the number of species contained in the matrix (plant + hum-

mingbird species) multiplied by the number of probabilistic

matrices considered in the model (i.e. A, P and M = 1; AP, AM

and PM = 2; and APM = 3; see Table S8). In order to identify

whether the best predictor changes across the sampling gradient,

we repeated this analysis in networks built with cumulative sam-

pling effort (1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 h).

Analyses on probability matrices were conducted using bipartite

package in R, assuming that the probability of interactions fol-

lows a multinomial distribution (V�azquez, Chacoff & Cagnolo

2009b). Finally, in order to estimate the fit of the best model to

the data, we performed Spearman’s rank-order correlation

between the observed frequency of pairwise interactions and its

corresponding probability of interactions from the best model

(i.e. the PM model, see Results). We repeated the correlation for

each time slice of sampling effort and presented the coefficient of

correlation in Fig. 2.

Results

network structure and metrics variation
across the sampling effort gradient

We recorded 55 hummingbird-pollinated plants and nine

hummingbird species, which performed 2793 visits dis-

tributed among 123 distinct pairwise interactions. The

plant–hummingbird network presented moderate con-

nectance (0�25), high interaction evenness (0�85; 95% CI:

0�66–0�68), moderately high specialization (H2
0 = 0�47;

95% CI: 0�11–0�18) and high nestedness when considering

binary information (NODF = 66�15; 95% CI: 37�7–38�2),
but a non-nested pattern when considering quantitative

data (wNODF = 29�50; 95% CI: 42�5–55�2). Conversely,

the network was non-modular in the binary version

(Q = 0�33; 95% CI: 0�31–0�34), but significantly modular

when considering quantitative information (Q = 0�41;
95% CI: 0�03–0�13), with four distinct modules (Fig. 1;

Tables S9 and S11).

All nine hummingbird species were recorded with 3 h

of observation for all plants. Although some plant spe-

cies only received visits after 33 h of sampling and were

then included in the network, 96% of the species

received at least one visit before completing 10 h of

observations (Fig 1; Table S9). In spite of the inclusion

of most plants and hummingbirds early in the sampling

gradient, new links were still recorded close to 50 h of

sampling. Connectance, interaction evenness and H2
0

achieved reasonably stable values around 10–15 h, and

H2
0 became significantly higher than expected by the null

model after 5 h. On the other hand, values of NODF

increased consistently along the sampling gradient,

although already significant also after 5 h. Weighted

nestedness, wNODF, achieved an asymptotic value

around 30 h, but was only significant under very small

sampling (1 h of observation). Binary modularity, Q,
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Fig. 1. Network patterns described by

metrics calculated on the observed net-

work (black line) or expected (grey over-

lapping lines) by randomizations (1000

iterations) of the data across increasing

sampling effort of a plant–hummingbird

network in SE Brazil. Dashed black lines

indicate mean and 95% CI. Note that

quantitative metrics were, in general, more

robust to low sampling effort. Note also

the observed sequence of sampling (black

lines), in general, falls out the networks

assembled randomly (1000 grey lines)

from a pool of observed samples (1 h time

slices), which suggest that random changes

in the order of plant individuals observed

had some effect on the value of network

metrics, especially under low sampling.
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progressively decreased with sampling completeness but

was always non-significant; quantitative Q showed oscil-

lation under small sampling but stabilized after 20 h of

observation. Although quantitative Q was significant

after just 1 h of observation, the number of identified

modules stabilized only after 15 h. The order of sample

slices that we used to assemble the networks across the

sampling gradient had no or only small influence on

most metrics. Only connectance, wNODF and binary

modularity presented slightly different values from those

obtained in randomly reassembled networks under small

sampling effort (<15 h; compare black lines with grey

trends in Fig. 1, see also Fig. S3).

processes structuring the network across
the sampling effort gradient

With very small sampling effort (≤2 h), the Null model

had the best predictive ability of the observed network

(Fig. 2, Table S10). However, after 3 h of observation the

model PM, which includes both phenological overlap and

bill-corolla matching, had consistently the best ability to

predict the frequency of pairwise interactions (Fig. 2).

Furthermore, after 15 h of sampling effort, the coefficient

of correlation remained consistent with a slight increase

up to r = 0�543 in the most complete network (50 h).

Discussion

We provide a thorough evaluation on the effects of sam-

pling effort on ecological networks by analysing widely

used binary and quantitative metrics as well as on the

processes defining interactions in networks. Our findings

show that low sampling effort to some extent influences

our understanding of interaction patterns, but has minor

influence on the identification of processes structuring a

tropical plant–hummingbird subnetwork. Specifically, we

found that network metrics are not all equally affected by

sampling: quantitative metrics tend to be more robust

than binary ones, and the significance of network metrics

changes along the sampling gradient. These findings were

consistent regardless of the methods applied to create the

gradient of sampling effort, that is sample-based or indi-

vidual-based rarefaction-like methods. Furthermore, infer-

ences on the relative importance of processes determining

frequencies of interaction were biased only under very

small sampling effort, and we consistently identified the

importance of traits as the main drivers of interactions as

sampling increased.

are detected network patterns biased at low
sampling effort?

The Santa Virg�ınia network was structurally similar to

other tropical plant–hummingbird networks, presenting

more plants than hummingbird species, moderate con-

nectance, intermediate specialization, and high modular-

ity (Maruyama et al. 2014, 2015; Vizentin-Bugoni,

Maruyama & Sazima 2014; Mart�ın Gonz�alez et al.

2015). The order of the focal observations, that is time

slices, to assemble the network had some effect on con-

nectance, wNODF and binary modularity, at least

under smaller sampling effort (c. 15 h; Fig. 1). This fur-

ther reinforces the idea that poorly sampled networks

might lead to wrong inferences on network patterns. In

addition to the methods chosen to assemble the net-

works (Gibson et al. 2011), our findings thus reveal that

the order and choice of which individual plant will be

observed (and how many of them) can also influence

some of the observed metrics. Since species richness in

our system stabilizes after c.10 h, detected biases on the

network metrics beyond 10 h of sampling reflect the

effect of addition of links and distribution of the inter-

actions among links, more than the dimension of the

network, as suggested previously (see below).

Effects of low sampling effort on network structure

depend on the metric considered, and two different biases

emerged: in the metric values per se and their signifi-

cances. To understand these potential biases is crucial

when comparing network metric values between webs,

either to investigate geographical (e.g. Ollerton & Cran-

mer 2002; Olesen and Jordano 2002; Bana�sek-Richter,

Cattin & Bersier 2004; Dalsgaard et al. 2013; Schleuning
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Fig. 2. Ability of eight models to predict observed frequency of

interaction between pairwise species over increasing sampling

effort in a hummingbird–plant network. Models are probability

matrices based on species abundance (A), phenological overlap

(P), morphological matching (M) and all possible combinations

among them. The Null model is a benchmark model that assumes

all interactions have the same probability to occur. Note that

after 5 h of sampling effort the model PM, which includes both

phenological overlap and bill-corolla (morphological) matching,

had the best ability to predict pairwise interaction while those

models including A had worst fits, even worse than the Null

model. This means that the higher importance of forbidden links

in detriment of abundances was identified even under low sam-

pling. We also show the change in coefficient of correlation

between the observed frequency of pairwise interactions and the

frequency predicted by the best model PM (right axe, black line

with dots in the plot). Note that the correlation coefficient tends

to increase with sampling effort (up to c. 15 h). All correlations

were P < 0�001.
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et al. 2014; Mart�ın Gonz�alez et al. 2015) or temporal pat-

terns (e.g. Petanidou et al. 2008).

Connectance is known to be strongly biased by the

addition of new species in the network (e.g. Jordano

1987; Bana�sek-Richter, Cattin & Bersier 2004; Nielsen &

Bascompte 2007; Rivera-Hutinel et al. 2012; Fr€und,

McCann & Williams 2015; but see Martinez et al. 1999).

Previous studies with plant–insect pollinator networks

have found that connectance tends to decrease along the

sampling gradient (Nielsen & Bascompte 2007; Rivera-

Hutinel et al. 2012), which may be caused by the discov-

ery of new species happening faster than of new links.

This is not the case in our system, since network size

reached a constant relatively quickly, that is most hum-

mingbird species were recorded visiting a particular plant

species early in the sampling gradient. This may partly be

because hummingbirds are very active and need to fre-

quently visit flowers to cope with their high metabolism

(Suarez 1992); thus, they are readily recorded and incor-

porated in the interaction network. In contrast to plant–
hummingbird networks, one should expect stronger effects

of sampling incompleteness on connectance in other sub-

networks such as orchid-pollinator systems in which many

species produce no or scarce nectar and interactions are

rarely recorded (e.g. Ackerman, Rodriguez-Robles &

Melendez 1994) or larger ‘full’ networks, that is including

several animal taxa (e.g. Donatti et al. 2011; Danieli-Silva

et al. 2012).

Another widely used binary metric, NODF, consistently

increased with species and links inclusion in the network

(Fig. 1). The same was found by Rivera-Hutinel et al.

(2012), who argued that the increase in NODF could be

related to the increase in network size. However, this

argument is not supported here since network size did not

increase much after c. 10 h of sampling, nevertheless

NODF value kept increasing. This suggests that NODF is

dependent on the detection of links for highly connected

species, which are major contributor for high nestedness

in networks (Almeida-Neto et al. 2008). Thus, the use of

NODF to compare nestedness estimates across time,

space or systems should be done carefully, and it is safer

to compare this metric preferably for networks that had

reached both a stable size and number of links. In this

sense, binary nestedness seems to be more influenced by

sampling incompleteness than previously thought (Nielsen

& Bascompte 2007). In contrast, quantitative nestedness

(wNODF) was more robust, but still tended to increase

with sampling intensity, as also found by a simulation

study (Fr€und, McCann & Williams 2015). Even with

stable network size, this metric was progressively affected

by the detection of new links (10–35 h) and first stabilized

after c. 35 h of sampling. This suggests that high sampling

effort in order to accumulate most of the links may be

needed before its use for spatio-temporal comparisons.

The same may be expected for binary modularity (Q),

though less so, since its value decreased consistently up to

c. 15 h of sampling effort. Interestingly, the same trend of

decreasing binary modularity along a sampling gradient

was found for a plant–pollinator network from Chilean

deciduous forest (Rivera-Hutinel et al. 2012). This sug-

gests that the addition of new links had the effect of blur-

ring the boundaries of modules.

Interaction evenness, specialization index (H2
0) and

quantitative modularity (Q) were less prone to biases since

all these weighted metrics achieved stable values already

after c. 10 h of sampling, which argue for their use in

comparative studies. The stabilization of all these metrics

coincided with the stabilization of network size, which

suggest that they are depended on network dimensions

but little affected by addition of rarer links. In relation to

H2
0 specifically, our results agree with Bl€uthgen, Menzel

& Bl€uthgen (2006) that found this metric to be less

affected by sampling incompleteness; however, contrary to

what they suggested, it is possible that this index is also

affected by network size. The influence of network size on

H2
0 could explain the slight overestimation found by sim-

ulations of this index value on poor sampled networks

(Fr€und, McCann & Williams 2015). In regard to modular-

ity, however, despite the stability of its value, modules

identification under small sampling were sensitive to addi-

tion of species and new links and interactions (Table S9),

suggesting that modules conformation cannot be safely

assessed in poorly sampled networks. Also, the high varia-

tion of the detected Q in the randomizations (grey lines in

Fig. 1) under small sampling effort suggests that this met-

ric is influenced by the identity of both species and links

that are added. In sum, our empirical findings suggest

that quantitative metrics are more robust to sampling

effort than binary ones, as suggested previously for some

food webs metrics (Bersier, Bana�sek-Richter & Cattin

2002; Bana�sek-Richter, Cattin & Bersier 2004) and simu-

lated bipartite networks (Fr€und, McCann & Williams

2015). Additionally, our results point out that network

dimensions have some effect on most of the estimates

metric values, since higher variation was prevalent under

small sampling effort when network size was variable.

When considering metrics significance, small sampling

leads to wrong conclusions depending on the metrics con-

sidered, as NODF and H2
0 became significant and

wNODF became non-significant after c. 5 h of sampling.

In short, both findings regarding the variation in metrics

value and significance suggest that description of network

patterns is susceptible to bias by missing species, links

and visits and an accumulated sampling effort of c. 10–
15 h for each plant species seems necessary for our system

consisting of plant–hummingbird interactions.

are processes structuring networks biased
at low sampling effort?

As many other tropical plant–pollinator communities,

in Santa Virg�ınia, there was a strong variation in hum-

mingbird bill and corolla length; plants presented short

flowering periods and species bloomed sequentially
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(Tables S3-S6). All these factors together seem to be the

primary mechanisms determining interactions between

plants and hummingbirds, no matter how abundant spe-

cies are (Wolf, Stiles & Hainsworth 1976; Maruyama

et al. 2014; Vizentin-Bugoni, Maruyama & Sazima 2014).

This conclusion is already apparent with only ≥3 h of

sampling, when morphological matching and temporal

overlap appeared as the best predictors of the frequency

of interactions. Interestingly, this happened before the sta-

bilization of network dimensions (i.e. species richness),

suggesting that when forbidden links are the most impor-

tant predictors of frequencies of interactions, their impor-

tance is revealed even in incompletely sampled networks

(here, with only 6% of the total sampling effort). The

only previous study that also evaluated the influence of

sampling on the inferences of processes determining inter-

action frequencies used a temperate plant–pollinator net-

work (Olito & Fox 2015). They consistently found the

phenological overlap as the best predictor of pairwise

interactions. Despite of the more than twofold sampling

completeness of our tropical subnetwork (i.e. 82% here

vs. 37% of the estimated links identified in Olito & Fox

2015), both studies agree that the identification of the

major processes structuring ecological networks may be

possible even under small sampling effort.

Although we present an analysis for a single ecological

subnetwork within a larger network, our findings may

also apply to other types of mutualistic systems in the

tropics, such as plant–frugivorous bird and plant–hawk-
moth subnetworks, in which there is high morphological

variation among species in traits important for determin-

ing interactions (e.g. sizes of mouth apparatus, fruits and

flowers) and fruiting or flowering periods tend to be

sequentially organized among species (Moermond & Den-

slow 1985; Cocucci, Mor�e & S�ersic 2009; Amorim, Wyatt

& Sazima 2014; Gonz�alez-Castro et al. 2015). It may also

apply to antagonistic networks and entire food webs when

traits are dominant structuring factors (Ekl€of et al. 2013).

On the other hand, larger networks such as those includ-

ing multiple groups of pollinators, for example bees, flies,

moths and birds (Danieli-Silva et al. 2012), or multiple

taxonomic groups of seed dispersers, for example birds,

large and small mammals and fishes (Donatti et al. 2011),

could each be influenced differently by sampling effort.

This could be generated, for instance, by distinct rates of

species and interactions accumulation among groups

within the same network due differences in physiology,

morphology and behaviour, for example. Thus, different

taxonomic groups may demand distinct sampling efforts

in order to satisfactorily describe the network structure.

Geographically, we may also expect differences in the

influence of sampling effort as species-rich communities in

the tropics may be more prone to bias than temperate

counterparts.

In sum, detected network patterns may be biased

depending on the sampling effort employed to build the

network and the metrics considered; evidence suggests

that binary metrics are more influenced by sampling than

quantitative metrics. However, for more specialized net-

works in which traits have a strong role in determining

interactions, processes structuring the networks may be

identified even under small sampling effort. The latter

may even be the case for more generalized systems, such

as temperate plant–insect pollination networks (Olito &

Fox 2015). We argue that ecologists should better investi-

gate the extent to which sampling artefacts bias network

patterns, especially for lager networks in diverse tropical

ecosystems. To circumvent sampling bias, we suggest

using metrics little influenced by sampling (i.e. certain

quantitative metrics) and gather more intensively sampled

networks. This may include the use of complementary

sampling methods, for example focal observation, spot

censuses and pollen loads analysis, which may be valuable

ways to improve link detection.
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Appendix S2. Figures showing the asymptotic trend of links in a

rarefaction, a correlation between hummingbird species abun-

dances and their frequencies of occurrences and an individual-

based rarefaction for network metrics.

Figure S1. Individual-based rarefaction curve for links with 95%

confidence intervals (grey lines). Note the asymptotic tendency

from accumulated number of links with the accumulation of visits

observed in the network. We ran this analysis in EstimateS 9.1.0

(Colwell 2013) and calculated confidence intervals using uncondi-

tional variances as suggested by Colwell et al. (2012, doi:10.1093/

jpe/rtr044)

Figure S2. Spearman correlation between frequency of occurrence

during 130 days of field work and number of contacts during

counts in transects. Observations were conducted over a 2 year

period and include nine hummingbird species from Santa Virg�ınia

Field Station, southeastern Brazil.

Figure S3. Network metrics calculated under a simulated sampling

effort gradient created by interaction removals (individual based

rarefaction-like approach) of a plant–hummingbird network (indi-

vidual-based rarefaction framework) in SE Brazil. We simulated

rarefaction-like sampling reduction by removing successively 10%

of interactions creating class of removal from 90% to 10%

removals. Network metrics were recalculated (1000 iterations) and

their values (gray overlapped lines) and mean (black line) were

plotted. Dashed black lines indicate mean and 95% CI. Note that

the results do not differ importantly from Figure 1 but metrics were

less variable across the gradient of sampling effort using this

approach.

Table S1. Abundances of 55 hummingbird-pollinated species

quantified along 12 000 m of trails in the Atlantic Rainforest at

Santa Virg�ınia Field Station, southeastern Brazil. Number of

flowers (or inflorescences, for Asteraceae species) was counted

monthly from September 2011 to August 2013 and relative

abundances indicate the relative proportion of flowers accounted

by each species calculated on the total number of flowers.

Table S2. Abundances of nine hummingbird species ocurring in the

Atlantic Rainforest from September 2011 to August 2013 at Santa

Virg�ınia Field Station, southeastern Brazil. Contacts in transects

indicate the total number of aural and visual contacts with

individuals counted monthly across 10 transects (100 m each);

frequency of occurrence is the proportion of days in which a species

was recorded across 12 000 m of trails percurred and over 130 days

of fieldwork; and the relative frequency is the relative proportion

accounted by each species calculated on the frequency of

occurences.

Table S3. Plant phenology quantified by the monthly presence/

absence of flowers of 55 hummingbird-pollinated species from

September 2011 to August 2013 in the 12 000 m of trails in the

Atlantic Rainforests at Santa Virg�ınia Field Station, southeastern

Brazil. Species acronym according Table A1. In total, 130 days of

sampling were spread along the years.

Table S4. Hummingbird phenology indicated by the monthly

presence/absence of flowers from September 2011 to August 2013

in the 12 000 m of trails in the Atlantic Rainforests at Santa

Virg�ınia Field Station, southeastern Brazil. Species acronym

according Table A2.

Table S5. Minimum corolla depth in 55 hummingbird-pollinated

species in Atlantic Rainforests from September 2011 to August

2013 in the 12 000 m of trails in the Atlantic Rainforest at Santa

Virg�ınia Field Station, southeastern Brazil. Corolla depth was

measured as the internal distance from the base of nectar chamber

to the distal portion of the flower (i.e. effective corolla length,

sensu Wolf, Stiles & Hainsworth 1976), which represents the

minimum mouth apparatus length needed to a hummingbird

access the nectar legitimately. Species acronym according

Table A1.

Table S6. Bill length (exposed culmen), estimated tongue extension

and bill+tongue estimation of nine hummingbird species in the

Atlantic Rainforest at Santa Virg�ınia Field Station, southeastern

Brazil. *Tongue extension estimated based on Selasphorus rufus

measures, which is around 80% of the bill length (Grant & Temeles

1992). Species acronym according to Table S2.

Table S7. Geographical coordinates of starting and ending points

from the ten transects (100 m long) where we counted humming-

birds monthly at Santa Virg�ınia Field Station, southeastern Brazil.

Table S8. Number of parameters used to penalize model complex-

ity in each of eight models described in Table S10. These numbers

of parameters were defined according to number of plant and

animal species in the matrix and to number of variables included in

the models. Smaller networks tend to be easier to predict, so the

number of species in the matrices was included in the model’s

penalization to account for the increasing network size along the

sampling effort gradient.

Table S9. Network metrics over increasing sampling completeness

in the hummingbird-plant network in Santa Virg�ınia. Between

parenthesis are shown values expected by the null model (95%

confidence interval) and bold indicates significant differences

between observed and expected by the null model.

Table S10. AIC values indicating the ability of eight models to

predict observed frequency of interaction between pairwise species

over increasing sampling effort in the Santa Virg�ınia hummingbird-
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plant network. Models are probability matrices based on species

abundance (A), phenological overlap (P) and morphological

matching (M) and all possible combination among them. Null

model is a benchmark model that assumes all interactions have the

same probability to occur. Note that Null is the best predictive

model under very small sampling (≥3 h), but after 3 h of

cumulative sampling the PM model, which includes both pheno-

logical overlap and bill-corolla (morphological) matching, had the

best ability to predict pairwise interaction. Also note that all

models including A had the worst fits, even worse than the Null

model. Because data on tongue extension in hummingbirds is

scarce in the literature, we also recreate a morphological model

(M1) considering the tongue extension as 1/3 of the bill length.

However, these models presented minor influence on the results

because they performed similarly to the model M; thus we

discussed just model M in the text.

Table S11. Plant–hummingbird network from Atlantic Rainforest

at Santa Virg�ınia Field Station, southeastern Brazil assembled with

50 h of observation to each plant species (see detail in ‘Materials

and methods’ for details). Plant and hummingbirds species names

follow Tables S1 and S2, respectively.
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