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of sampling effort. We finish with a literature review of promising new research related
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The purpose of this review is to clarify the concepts of

bias, precision, and accuracy as they are commonly

defined in the biostatistical literature. The statistical

concepts of bias, precision and accuracy arise in situa-

tions involving measurement, sampling, and estimation.

We will mention the first two situations in passing, but

will mostly focus on the problem of estimation as we

intend to use these definitions to evaluate the perfor-
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mance of statistical estimation methods (also called

estimators). For example, species richness estimators

try to estimate the true or total species richness from an

incomplete sample of a biological community. We will

use species richness estimators as an example to show

how to evaluate the performance of estimators according

to their bias, precision and accuracy given some sample

data. Species richness estimators belong to the class of

point estimators which are trying to estimate the exact

value of some population parameter (e.g. species rich-

ness, or population size). Interval estimators, on the

other hand, try to estimate confidence intervals for a

parameter. We do not deal with interval estimators here,

but mention them briefly below.

Given some sample data, a point estimator will yield

some estimate of the parameter. For example, Fig. 1 shows

an estimate (open circle) that misses the true value of zero

by five units. With just a single estimate, it is impossible to

tell what the reason for this error is. However, if further

estimates (filled circles) are calculated using different

sample data, we may hypothesize the main cause for the

error of the first data point. Figure 1a illustrates the case

when systematic error is the main cause while Figure 1b

illustrates the case when random error is the main cause. In

this case, we assume that both types of error are due to the

estimator itself. Of course, systematic and random error

may have other causes related to measurement and

sampling, some of which we will mention below.

Bias

The term bias refers to several statistical issues that may

be classified as measurement, sampling, and estimation

bias (Kotz and Johnson 1982�/1988). In measurement or

sampling situations, bias is ‘‘the difference between a

population mean of the measurements or test results and

an accepted reference or true value’’ (Bainbridge 1985).

Therefore, bias leads to an under- or overestimate of the

true value. Measurement bias is mainly due to faulty

measuring devices or procedures. Therefore, measure-

ment bias usually does not disappear with increased

sampling effort, as all measurements are systematically

biased away from the true value (Kotz and Johnson

1982�/1988, West 1999, Debanne 2000). Sampling bias is

due to unrepresentative sampling of the target popula-

tion. This kind of bias does not disappear with increas-

ing sampling effort either. For example, measuring more

and more females will not give an unbiased estimate of

the male population, or vice versa. Estimation bias is

also called systematic error (Fig. 1a), and it refers to an

estimation method for which the average of repeated

estimates deviates from the true value (West 1999). Thus,

estimation bias is due to the estimator itself being biased.

However, estimation bias should decrease with increas-

ing sampling effort, as this is one of the desirable

characteristics of an estimator. For example, the ob-

served number of species is a negatively biased estimator

of the total species richness whose bias decreases with

increasing sampling effort (Fig. 2). Below, we are only

concerned with estimation bias.

Precision

Random error (Fig. 1b) is also called variability or

variance, but it is also often defined as the opposite,

namely precision, referring to the absence of random

error. Unlike bias, its magnitude is only dependent on

the estimated (or observed) values and is completely

independent of the true value. Precision is thus a

measure of ‘‘the statistical variance of an estimation

procedure’’ (West 1999) or, in sampling situations, the

‘‘spread of the data . . . attributable to the statistical

variability present in the sample’’ (Debanne 2000). In

measurement situations, precision arises from the vari-

ance produced by the measurement device or procedure.

The total variance then arises from the variability

generated by measurement error, sample variation and

estimation variance. For example, the precision of

measurements of a continuous variable depends on the

resolution of the measuring device. The resolution of a

measuring device is defined as the smallest distance over

which it is possible for a value to change (Jones 1997),

and the smaller this distance, the greater the variance the

measuring device can detect. For example, if the resolu-

tion of the measuring device is very coarse, it will each

time return exactly equal measurements of a fixed object,

and precision will be zero, but if the resolution is

sufficiently fine, precision will be greater than zero.
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Fig. 1. Examples of (a) systematic error and (b) random error.
In this hypothetical example, the true value is assumed to be
zero. Note that the values on the vertical axis are presented only
for graphical reasons.
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The significant figures of reported measurements should

reflect the precision of these measurements (Kotz and

Johnson 1982�/1988).

Accuracy

Bias and precision combine to define the performance of

an estimator. The more biased and the less precise an

estimator is, the worse its overall ability to make an

accurate point estimation. Accuracy is thus defined as

the overall distance between estimated (or observed)

values and the true value (Bainbridge 1985, Zar 1996,

Jones 1997, Krebs 1999). There are different mathema-

tical definitions of this distance (see below), and some

explicitly combine bias and precision in their mathema-

tical definitions.

Bias, precision and accuracy, as defined above, are

qualitative concepts. To quantify the performance of

estimators, we now need quantitative measures that can

tell us what the estimated bias, the estimated precision

and the estimated accuracy of an estimator is. These

estimated measures are point estimates of these qualita-

tive concepts, using data to calculate them. For example,

because the concept of accuracy incorporates the con-

cept of bias, estimating bias and accuracy (but not

precision) in a real-world situation is dependent on

actually knowing (or at least guessing at) the true value

of the population parameter (e.g. total species richness;

see section Determining total species richness below).

Below, we first introduce various bias, precision and

accuracy measures (providing formulas for each of these

performance measures in Table 1), and then illustrate

their use in Table 2 with a worked example using some of

the data presented in Fig. 2.

Unscaled performance measures

Definitions are as follows: let A be the asymptotic or

total species richness (the ‘‘true value’’ which is a

constant for any community defined in time and space,

but may be different for different communities), Ej be the

estimated species richness for the jth sample, and n be the

number of samples. In the following we assume that all

estimates have been calculated for the same community,

so that A is a constant. Later, we discuss how to scale

performance measures so that performance measures

can be used to compare performance across commu-

nities in which A is not a constant.

Bias measures

A good estimator should be unbiased, so that an even

distribution of under- and overestimates leads to an

overall bias of zero (Kotz and Johnson 1982�/1988,

Stuart and Ord 1991). Bias measures typically take into

account the difference between the estimated and the

total species richness.

1) One common bias measure called mean error (ME)

is the mean of all differences between the estimated

values and the true value (Table 1; e.g. Zelmer and Esch

1999). It indicates whether the estimator consistently

under- or overestimates the total species richness. This

measure has also been called mean deviation (MD)

(Palmer 1990, 1991), mean difference (Rosenberg et al.

1995), mean bias (Pledger 2000) or bias (Hellmann and

Fowler 1999, Foggo et al. 2003a, b).

2) Another simple bias measure is the percentage of

estimates that overestimates the total species richness A

(Palmer 1990, 1991, Walther and Morand 1998, Chiar-

ucci et al. 2001, 2003, Foggo et al. 2003b, Melo et al.

2003). In this case, an unbiased estimator should return

50% overestimates and 50% underestimates.

Precision measures

A good estimator should be precise, so that its estimates

show little variation (Kotz and Johnson 1982�/1988,

Stuart and Ord 1991). Generally, the precision of an

estimator increases linearly with the square root of the

sampling effort (Marriott 1990). In principle, any

measure of the variability of the estimates themselves
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Fig. 2. Example of the bias and precision associated with two
species richness estimators. The total species richness is assumed
to be 24 species (example taken from Walther and Martin 2001).
As sampling effort increases, the mean of the observed species
richness (open circles) and the mean of the first-order jackknife
estimator (closed circles) are approaching the total species
richness asymptote. Standard deviations around the mean are
represented by open (observed species richness) and closed
(first-order jackknife estimator) triangles, respectively. Means
and standard deviations were calculated from 1000 estimates
derived from 1000 runs of randomized sampling order using the
program EstimateS (Colwell 2000). For example, the difference
between the mean of the first-order jackknife estimator and the
total species richness is a measure of the bias of the first-order
jackknife estimator, and the standard deviation of the first-order
jackknife estimator is a measure of the precision of the first-
order jackknife estimator.
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can be used as a precision measure. However, typically,

one of the following measures is used.

1) The most common precision measure is the vari-

ance (Table 1; e.g. Hellmann and Fowler 1999, Foggo et

al. 2003a, b). The variance is useful as it can be

combined with the mean error to measure accuracy

(see below).

2) Another precision measure is the standard devia-

tion (SD) (Table 1). For example, Baltanás’

(1992) calculated the standard deviation of his bias

measure PAR (see below), and Brose et al. (2003) and

Melo et al. (2003) used a similar approach. Closely

related to the variance, the advantage of the standard

deviation is that it is on the same scale as the mean and is

thus directly comparable.

3) A very simple precision measure is the range

(Tietjen 1986). However, it is of essentially no use in

this context because it increases with sample size (Sokal

and Rohlf 1995). On the other hand, the inter-quartile or

semi-interquartile range (the difference between the 25

and 75% quartile) is less sensitive to sample size and may

thus be used as a more robust precision measure (Sokal

and Rohlf 1995, Gould and Pollock 1997, Peterson and

Slade 1998).

It is important to note that the calculation of precision

measures does not require knowledge of the true value

(in this case, the total species richness A). Therefore,

precision measures alone cannot evaluate estimator

Table 1. Performance measures of bias, precision, and accuracy. Full names for the abbreviations of performance measures are
given in the text. A is the asymptotic or total species richness, Ej is the estimated species richness for the jth sample, and n is the
number of samples. S denotes the summation formula.

Measure Bias Precision Accuracy

Unscaled ME�//

1

n
a

n

j�1(Ej�A) Var1)�//

1

n
a

n

j�1(Ej�Ē)2
MSE�//

1

n
a

n

j�1(Ej�A)2

SD�//

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
a

n

j�1(Ej�Ē)2

s
RMSE�//

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
a

n

j�1(Ej�A)2

s

MAE�//

1

n
a

n

j�1jEj�Aj

Scaled SME�//

1

An
a

n

j�1(Ej�A) CV�//100SD=Ē SMSE�//

1

A2n
a

n

j�1(Ej�A)2

PAR�//

1

n
a

n

j�1(100Ej=A) SRMSE�//

1

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
a

n

j�1(Ej�A)2

s

Absolute values jSMEj or jPARj SMAE�//

1

An
a

n

j�1jEj�Aj

1) Note that we here use the biased estimate of variance because when calculating MSE, the bias in this estimate is exactly balanced
by the bias generated using the bias measure provided. If calculating variance estimates for other purposes, we recommend using the

unbiased variance estimate Var�//

1

n-1
a

n

j�1(Ej�Ē)2:

Table 2. A worked example illustrating the calculation of
performance measures for two estimators (the observed species
richness and the first-order jackknife estimator presented in Fig.
2). For ease of calculation, we picked only the first 10 estimates
produced during the first 10 runs for each estimator at sample
30 (the highest sampling effort depicted in Fig. 2). The estimates
are (presented in ascending order) 18, 19, 20, 20, 20, 20, 20, 20,
21, and 23 for observed species richness and 21.01, 21.59, 22.21,
23.53, 23.87, 23.96, 24.06, 24.69, 24.84, and 25.42 for the first-
order jackknife estimator. The resulting values of the bias,
precision, and accuracy measures, both unscaled and scaled (see
Table 1), are presented below.

Concept Measure Observed
species
richness

First-order
jackknife

Unscaled measures
Bias ME �/3.900 �/0.482
Precision Var 1.490 1.907

SD 1.221 1.381
Accuracy MSE 16.700 2.139

RMSE 4.086 1.463
MAE 3.900 1.084

Scaled measures
Bias SME �/0.163 �/0.020

PAR 83.750 97.992
Precision CV 6.073 5.872
Accuracy SMSE 0.029 0.004

SRMSE 0.170 0.061
SMAE 0.163 0.045
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performance. For example, Chazdon et al. (1998) and

Longino et al. (2002) suggested that an estimator should

remain stable as sample size increases. However, this is

just another way of suggesting to measure the precision

of the estimates. Therefore, while ‘‘stability’’ is a quality

an estimator should have with increasing sample size, it

alone does not guarantee the accuracy of the estimator

as it does not consider bias.

Accuracy measures

A good estimator should be accurate, so that its

estimates are as close to the true value as possible

(Kotz and Johnson 1982�/1988, Stuart and Ord 1991).

Like bias measures, accuracy measures typically take

into account the difference between the estimated and

the total species richness, but then square this difference

or take the absolute value of it to eliminate the direction

of the difference. Thus, only the magnitude of the

difference is taken into account.

1) A common accuracy measure called mean square

error (MSE) is the mean of the squared differences

(Table 1; e.g. Burkholder 1978, Kotz and Johnson 1982�/

1988, Marriott 1990, Hellmann and Fowler 1999, Foggo

et al. 2003a, b). It indicates how close the estimator is to

the true value. This measure has also been called mean

squared error (Tietjen 1986, Walsh 1997, Zelmer and

Esch 1999) or mean square deviation (MSD) (Palmer

1990, 1991). This measure incorporates concepts of both

bias and precision as the MSE is actually equal to the

variance of the estimates plus the squared mean error (a

proof of MSE�/variance�/bias2�/variance�/ME2 can,

for example, be found on p. 303 in Casella and Berger

1990). Small variance (�/ high precision) and little bias

thus lead to a highly accurate estimator. On the other

hand, an inaccurate estimator may be due to high

variance and/or large bias. Since the MSE squares all

differences, this measure does not have the same scale as

the original measurement.

2) To return to the original scale, we can take the

square root of the MSE (which is the same basic

operation as turning the variance into the standard

deviation). This mathematical operation yields the

second accuracy measure called root mean square error

(RMSE) (Table 1; e.g. Rosenberg et al. 1995, Stark

1997�/2002, Zelmer and Esch 1999). Since both MSE

and RMSE are calculated using squared differences, they

tend to be dominated by outlying estimates far away

from the true value.

3) To avoid this potential problem of outlying

estimates, one may take the absolute value of the

difference between the estimated and total species

richness as a measure of accuracy. One can then take

the mean (called mean absolute error (MAE), see Table

1; e.g. Burkholder 1978, Kotz and Johnson 1982�/1988)

or the median of all absolute differences (called median

absolute deviation (MAD), see Norris and Pollock 1996,

1998, Pledger 2000) yielding more robust (i.e. less

sensitive to outliers) measures of accuracy.

4) A simple accuracy measure is the percentage of

estimates falling within the range A9/([r*A]/100) which

translates into a r% range around the total species

richness asymptote A (Baltanás 1992, Walther and

Morand 1998).

Scaled performance measures

One of the problems with studies evaluating estimator

performance is that their results are often incomparable

to other studies because the unscaled performance

measures introduced above have been calculated for a

specific population or community. Since these measures

are not scaled according to the species richness of the

community, it is invalid to compare results from com-

munities with differing species richness. To make results

comparable, all the above measures need to be scaled by

dividing through the total species richness A. For

example, if estimated and total species richness are 9

and 10, respectively, then the root mean square error is 1.

If estimated and total species richness are 90 and 100,

however, the root mean square error is 10. Although the

root mean square error differs numerically, both esti-

mates are 10% less than the total species richness, and

therefore should be considered equally accurate. There-

fore, scaled performance measures should be used

whenever results from communities with differing species

richness are compared. Later we discuss how scaled

performance measures calculated from different com-

munities may be combined to give an overall perfor-

mance measure.

Bias measures

1) Scaling the ME by dividing through the total species

richness A yields the scaled mean error (SME) (Table 1).

This measure has also been called mean relative error

(MRE) (Chiarucci et al. 2001, 2003), relative bias (Otis et

al. 1978, Wagner and Wildi 2002), mean bias (Brose et

al. 2003), or bias (Walther and Morand 1998, Walther

and Martin 2001).

2) The SME can easily be transformed into a second

scaled bias measure called percent of actual richness

(PAR) (Table 1, e.g. Baltanás 1992). This measure has

also been called percent of true or total richness (PTR)

(Brose 2002, Herzog et al. 2002). These two measures are

related as PAR�/100*SME�/100.

3) One can also take the absolute value of the two bias

measures above to get a directionless measure of bias

(e.g. Rosenberg et al. 1995). This operation is useful if

only the magnitude and not the direction of the bias is of

interest, but note that this is not strictly abiding to the

definition of bias anymore resulting in yet another

performance measure altogether.
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Precision measures

1) The most commonly used measure is the coefficient of

variation (CV) which provides a scaled measure of

precision for values with different means (Table 1; e.g.

Cam et al. 2002). It is simply the standard deviation

expressed as a percentage of the mean (Sokal and Rohlf

1995).

Accuracy measures

1) Scaling the MSE by dividing through the squared

total species richness A yields the scaled mean square

error (SMSE) (Table 1). This measure has also been

called mean inaccuracy (Brose et al. 2003), mean relative

variance (Wagner and Wildi 2002), mean square relative

error (MSRE) (Chiarucci et al. 2003), mean square

proportional deviation (MSPD) (Palmer 1990, 1991),

mean square relative deviation (MSRD) (Chiarucci et al.

2001), or deviation (Walther and Morand 1998). Un-

fortunately, this measure was also called precision

(Walther and Martin 2001) which resulted from a

somewhat confusing use of the term by Zar (1996,

p. 18) who defined accuracy as ‘‘the precision of a

sample statistic’’. Although he stated that ‘‘the precision

of a sample statistic, as defined here, should not be

confused with the precision of a measurement’’, Walther

and Martin (2001) proceeded to use the term precision

instead of accuracy. In the future, we recommend to use

the term accuracy instead of ‘‘precision of a sample

statistic’’ to avoid confusion.

2) Scaling the RMSE by dividing through the total

species richness A yields the scaled root mean square

error (SRMSE) (Table 1).

3) Scaling the MAE or the MAD by dividing through

the total species richness A yields the scaled mean

absolute error (SMAE) (Table 1) or the scaled median

absolute deviation (SMAD).

Evaluating performance over many communities

Often we would like to evaluate an estimator’s perfor-

mance over a number of different communities with

different species richnesses. To do this, we typically seek

an average of the performance measures of interest over

the different communities to produce a single value for

each performance measure. However, a few points

should be noted in this case.

Most importantly, scaled performance measures

should always be used as unscaled measures will give

higher weights to more species-rich communities (see

section Scaled performance measures above). For many

performance measures (e.g. SME and SMSE), the value

of the measure calculated using combined data from

more than one community corresponds to the weighted

average of the measure calculated for each community

separately (with the weights being equal to the sample

size for each community). However, this is not true for

all performance measures (notably variance and CV),

and so care must be taken using this approach. For

example, the variance of estimates derived from two

separate communities may be 0.5 and 1.5, but the

variance of estimates derived from the combined data

may be much greater than the average of 0.5 and 1.5,

depending on the difference between the means of the

communities. The combined variance indicates the over-

all variation between the two communities rather than

the average precision of the estimates within one

community. This problem cannot be avoided by scaling,

e.g. by using the coefficient of variation. Again, the CV

of the estimates derived from combined data may be

much greater than the average of the CVs derived from

each separate community.

Therefore, we recommend that performance measures

are calculated for each community separately and then

combined as averages after the calculation. As well as

avoiding the necessity of figuring out the validity of a

combined data approach, calculating the measures for

each community separately has a couple of additional

advantages. First, it allows one to see the different

contributions that each community makes towards the

overall performance of an estimator, facilitating the

identification of any unusual occurrences or between-

community patterns in estimator performance. Second,

one can choose whether a weighted average (each

community estimate is weighed according to the number

of samples used to calculate it) or a simple average (each

community estimate is weighed equally) is more appro-

priate. The latter option may be reasonable if sample

sizes vary widely between communities. For example, a

small boreal forest will require less sampling effort than

a large tropical forest to get a reliable idea of its species

richness, but we may wish to consider both communities

equally important when evaluating overall estimator

performance.

Other performance measures

Measures of estimator performance should be viewed as

suggestive, not prescriptive. Each measure should be

adopted to explore an estimator’s properties, but not be

seen as the ultimate judgment tool, given that there is a

virtually infinite number of ways of defining estimator

performance in addition to the ones mentioned above. For

example, another suggestion was to determine the smal-

lest sub-sample size needed to estimate the total species

richness (Melo and Froehlich 2001) while Pitman’s close-

ness measure calculates the frequency with which one

estimator is closer in absolute value to

the true value than another estimator (Mood et al.

1974). Yet another suggestion is to test the ability of

estimators to reliably rank communities by calculating the
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regression between estimated and total species richness

(Palmer 1990, 1991, Baltanás 1992, Brose 2002). However,

since estimated species richness changes with sampling

effort, this approach may be misleading unless estimated

species richness is calculated for various levels of sampling

effort (Walther and Morand 1998). Brose et al. (2003)

recently used r2-values of the regression as a precision

measure, and the difference between the observed slope of

the regression and the expected slope of one forced

through the origin as a bias measure.

The statistical theory of point estimation has intro-

duced several other concepts of how to evaluate

estimator performance (Burkholder 1978, Kotz and

Johnson 1982�/1988, Lehmann 1983, Tietjen 1986,

Marriott 1990, Stuart and Ord 1991). For example, a

more efficient estimator has a smaller variance than

another, and a consistent estimator converges on the true

value as sampling effort approaches infinity. Consistency

should therefore be a property of every estimator,

because an estimator that yields a biased estimate even

when given all possible data is surely not adequate. Such

asymptotic (i.e. large-sample, or limiting) properties of

an estimator do not make them irrelevant to ‘‘real-

world’’ biological situations that usually involve small

sample sizes. Whenever direct calculation of bias, preci-

sion, and accuracy is complex or infeasible, asymptotics

can yield useful numerical approximations of bias,

precision and accuracy for a given finite sample size.

Asymptotic properties therefore do not define optim-

ality, but rather, approximate the quantities that do

define optimality. Therefore, if the sample size is large

enough, good probabilistic approximations may be

drawn for the given situation, and in particular, these

approximations can be used to estimate bias, precision

and accuracy.

Of course, point estimation of species richness is only

one side of the coin, and interval estimation is also

important to establish confidence intervals for a para-

meter. Therefore, another important criterion for com-

paring estimators is the coverage probability of a

confidence interval which is the percentage of confidence

intervals that cover the true value over many resampled

data sets, i.e. the specified probability that the estimate

will fall within a pre-defined lower and upper bound

around the true value.

Determining total species richness

Below, we will outline how to test the performance of

various species richness estimators. One prerequisite of

this approach is to somehow determine the true value of

total species richness so that we can calculate the bias

and accuracy of each estimate returned by the estimator

(a quite different approach which is not dependent on

knowing the total species richness is using data-based

evaluation procedures and model selection to estimate

total species richness; see section Promising new research

related to species richness estimation below).

To determine total species richness from real data sets,

sampling must be exhaustive. Of course, asserting that a

biological community or population has been sampled

exhaustively is very difficult. However, as sampling effort

increases, the number of singletons (i.e. single observa-

tions of a species, for details see Colwell and Coddington

1994) typically decreases once a sufficient number of

species has been found (in the beginning of sampling, the

number of singletons may actually increase). As long as

singletons persist in the data, there is a good chance that

the total species richness has not been reached. Once

singletons disappear after continued sampling, one may

assume that the total species richness has been reached

(which, admittedly, rarely happens in most real data

collections, e.g. Novotny and Basset 2000, Mao and

Colwell 2005, but see Walther and Morand 1998 and

Walther and Martin 2001 for such examples). The basic

idea behind using singletons is that the probability of

finding a new species in an additional observation is

approximately the proportion of singletons remaining to

be observed (see Good 1953 and Chao and Lee 1992 for

details).

A closely related way of checking the data set is to plot

a randomized species accumulation curve (also called a

sample-based taxon re-sampling curve, see Gotelli and

Colwell 2001). As long as singletons are present in the

data set, this curve will be rising (Walther 1997).

However, a curve with a clear horizontal asymptote

indicates that the total species richness has been reached

(for an illustrated example, see Walther and Martin

2001). If the total species richness cannot be ascertained

in this way, one should at least state how accurate the

estimate of total species richness is (e.g. by stating an

interval of possible richness values; see various examples

in Table 3).

If such well-sampled real datasets are not available,

another approach is of course to pre-set total species

richness in some kind of population model that simu-

lates data many thousands of times, and then to compute

bias, precision and accuracy measures for various

estimators using these data (see various examples in

Table 3). To illustrate how to use real or simulated data

to test species richness estimators, we below outline some

of the most important points to keep in mind when

testing the performance of species richness estimators.

Testing the performance of species richness

estimators

We will now use the bias, precision and accuracy

measures introduced above to show how to evaluate

the performance of an estimator, using a worked

ECOGRAPHY 28:6 (2005) 821



Table 3. A list of studies comparing estimator performance (first column). The second column indicates the study taxon and
whether real (R) or simulated (S) data were analysed. The third column gives the accuracy, bias and precision measure used in the
analyses; unscaled measures: 1)mean error, 2)standard deviation, 3)mean square error, 4)root mean square error; scaled measures:
5)scaled mean error, 6)percent of actual richness; 7)scaled mean square error (see Table 1); regression measures: 8)difference between
the observed slope of the regression and the expected slope of one forced through the origin, 9)r2-values of the regression (see Brose
et al. 2003). The fourth column ranks the estimators’ performance according to the respective measure with the first estimator being
the best. Abbreviations of estimators are mostly taken directly from the references and refer to the following estimators: the non-
parametric estimators called ACE, bootstrap (Boot), Chao1, Chao2, ICE, the first, second, third, fourth, fifth and kth-order
jackknifes (Jack1, Jack2, Jack3, Jack4, Jack5, Jack-k) and the interpolated jackknife (Jack-int); the species-abundance distribution
fitting methods called Preston’s log-normal, Poisson’s log-normal, and Cohen’s truncated log-normal; the non-asymptotic curve
models called log-linear (Log-Lin) ‘‘Gleason’’ and log-log (Log-Log) ‘‘Arrhenius’’ model (also called exponential and power model,
respectively); and the asymptotic curve models called Beta-P, collector’s curve, finite-area, Karakassis’ infinite model, modified
logarithmic, modified negative exponential, modified power function, negative exponential, rational function and Weibull (see
Palmer 1990, Baltanás 1992, Walther and Martin 2001, Petersen and Meier 2003, Brose et al. 2003, Foggo et al. 2003b or the specific
studies listed below for definitions and references). Another asymptotic curve model is the Michaelis-Menten curve model that can
be fitted in four different ways (MM-least-squares, MM-Mean, MM-Monod, MM-Runs). The observed species richness (Sobs) is
printed in bold because its performance is a baseline against which the performance of the other estimators can be compared. The
studies using real data sets determined the total species richness in the following ways: comprehensive floristic list (Palmer 1990,
1991, Chiarucci et al. 2001, 2003); randomized species accumulation curve had reached asymptote (Walther and Morand 1998,
Foggo et al. 2003b); no singletons or doubletons in the data set, therefore the randomized species accumulation curve had reached
asymptote (Walther and Martin 2001); total species richness was measured as the arithmetic mean of the estimates returned from
four estimators calculated using the entire data set (Brose 2002); comprehensive avian list (Herzog et al. 2002); comprehensive faunal
sampling and expert knowledge (best ‘‘guesstimate’’) (Petersen and Meier 2003, Petersen et al. 2003). Several comparative studies
(Gimaret-Carpentier et al. 1998, Keating et al. 1998, Hellmann and Fowler 1999, Melo and Froehlich 2001, Wagner and Wildi 2002,
Foggo et al. 2003a, Melo et al. 2003, Rosenzweig et al. 2003, Cao et al. 2004) were not included here because most of their results
were presented in figures, not tables, which made assigning ranks difficult or impossible. Note that further reviews (Brose and
Martinez 2004, O’Hara 2005) were not included here because they were at the proof-stage.

Studies Taxon Performance
measure

Estimators listed according to performance

Palmer 1990, 1991 Plants (R) Bias1) Jack2, Jack1, Log-Lin, Boot, Preston log-normal, Sobs,
MM-Monod, Log-Log

Plants (R) Accuracy3) Jack1, Jack2, Boot, Log-Lin, Preston log-normal,
MM-Monod, Sobs, Log-Log

Plants (R) Accuracy7) Jack1, Log-Lin, Jack2, Boot, Preston log-normal,
Sobs/MM-Monod, Log-Log

Baltanás 1992 Invertebrates (S) Bias6) Jack1, Cohen’s truncated log-normal, modified power function,
Sobs

Invertebrates (S) Precision2) Cohen’s truncated log-normal, Jack1, modified power function,
Sobs

Poulin 1998 Parasites (S) Bias6) Jack1, Chao2, Boot, Sobs
Walther and

Morand 1998
Parasites (S) Accuracy7) Jack1, Boot, Chao1, Chao2, Jack2, MM-Mean, MM-Runs,

Sobs
Parasites (S) Bias5) Chao1, Chao2, Jack1, Boot, Jack2, MM-Runs, MM-Mean,

Sobs
Parasites (R) Accuracy7) Chao2, Jack1, Chao1, MM-Mean, Jack2, Boot, Sobs,

MMRuns
Parasites (R) Bias5) Chao2, Jack1, Chao1, MM-Mean, Jack2, Boot, MM-Runs,

Sobs
Zelmer and Esch 1999 Parasites (S) Accuracy6) Boot, Jack-k, Sobs

Parasites (S) Bias3) Jack-k, Boot, Sobs
Chiarucci et al. 2001 Plants (R) Accuracy7) Jack1, Jack2, MM-Mean, bias-corrected Chao2, Boot, Sobs

Plants (R) Bias5) Jack2, Jack1, bias-corrected Chao2, MM-Mean, Boot, Sobs
Walther and

Martin 2001
Birds (R) Accuracy7) Chao2, Chao1, Jack2, Jack1, rational function, MM-least-

squares, modified power function, MM-Runs, MM-Mean,
ICE, ACE, Boot, Weibull, Beta-P, Sobs, modified negative
exponential, finite-area, negative exponential, modified
logarithmic, collector’s curve

Birds (R) Bias5) Chao2, Jack1, Chao1, modified power function, Jack2, rational
function, MM-least-squares, ICE, MM-Runs, ACE, MM-
Mean, Boot, beta-P, Weibull, Sobs, modified logarithmic,
modified negative exponential, finite-area, negative
exponential, collector’s curve

Brose 2002 Beetles (R) Bias6) Chao1, Jack2, Jack1, Boot, Sobs
Beetles (R) Precision2) Chao1, Sobs, Boot, Jack1, Jack2

Herzog et al. 2002 Birds (S) Bias6) x -species-list method: MM-Runs, MM-Mean, Jack2, Chao2,
Chao1, ICE, ACE, Jack1, Boot, Sobs

Birds (R) Bias6) x -species-list method: MM-Runs, Jack2, MM-Mean, Chao2,
ICE, Jack1, ACE, Chao1, Boot, Sobs

Brose et al. 2003 Species (S) Bias8) Jack5, Jack4, Jack-k, Jack3�/Jack-int, Chao2, Jack2, Jack1,
ICE,
MM-least-squares, Sobs, negative exponential

Species (S) Precision9) Jack4, Jack-k, Jack3�/Jack-int, Jack2, Jack5, Chao2, ICE,
Jack1, Sobs, negative exponential, MM-least-squares
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example (Table 2). Remember that a point estimator of a

parameter (e.g. total species richness) needs to be both

unbiased and precise to be accurate. In Fig. 2, a typical

species richness accumulation curve (or curve of ob-

served species richness) is approaching the total species

richness asymptote of 24 species as sampling effort

increases. The observed species richness is inevitably a

negatively biased estimator of species richness. To do

better, various species richness estimators have been

developed (e.g. the first-order jackknife estimator shown

in Fig. 2).

These estimators try to estimate the total species

richness of a defined biological community from an

incomplete sample of this community. Recent reviews list

numerous species richness estimators (Bunge and Fitz-

patrick 1993, Colwell and Coddington 1994, Walther et

al. 1995, Flather 1996, Nichols and Conroy 1996,

Stanley and Burnham 1998, Boulinier et al. 1998,

Chazdon et al. 1998, Keating et al. 1998, Colwell 2000,

Chao 2001, 2005, Walther and Martin 2001, Hughes et

al. 2001, Williams et al. 2001, Bohannan and Hughes

2003, see also reviews of species diversity estimators by

Lande 1996, Mouillot and Lepêtre 1999 and Hubálek

2000), but the methodological differences between these

estimators are of no concern here. All that is important

in this context is that a species richness estimator will,

given various data sets, yield various estimates of the

total species richness. We want to test how biased,

precise and accurate these estimates are, and we want

to be able to compare the estimates of different

estimators to evaluate their respective performances.

Note also that, in this context, it does not matter what

purpose the estimator was designed for originally. For

example, the estimators Chao1, Chao2, ICE and ACE

were originally designed to estimate a lower bound for

species richness, while the jackknife estimators were

originally designed as bias reduction methods (see Table

3 for references). Each estimator has been developed to

work best under the assumptions defined by a specific

population model (which is the model that defines the

population structure resulting from various community

parameters, i.e. total species richness, species-abundance

distribution, etc.), but may of course also be tested under

differing population models, which is what biostatisti-

cians or ecologists want to do. In other words, an

estimator is just a function of the data, and whether it is

biased, precise or accurate depends on what the

researcher aims to estimate. Therefore, if a researcher

decides to use a ‘‘lower-bound’’ or ‘‘bias-reduction’’

estimator to estimate total species richness, the perfor-

mance of this estimator may be evaluated and compared

to the performance of any other estimator. Incidentally,

Chao and Tsay (1998) and Chao et al. (2005) proved that

Chao1, Chao2, ICE and ACE are legitimate estimators

of total species richness under some feasible population

models. It is thus statistically no problem to regard these

four estimators as estimators of total species richness

given certain assumptions.

In some circumstances, a given estimator may have an

attached statistical theory so that measures of bias,

precision, and accuracy can be estimated even from a

single data set (e.g. the sample mean). However, if the

statistical theory for an estimator has not been devel-

oped, is not readily available, or the working assump-

tions do not hold, we may attempt to estimate values for

bias, precision, and accuracy measures by generating

large datasets and sampling them repeatedly. Many

resampling schemes exist, with a large literature attached

to their theory (e.g. Efron and Gong 1983, Efron and

Tibshirani 1986, Manly 1997, Davison and Hinkley

1997). Resampling must be done from some empirical

distribution (defined by the parameters of some popula-

tion model which is itself an estimator of the true

underlying distribution, e.g. the parameters of a real

biological community).

In this context, it is important to note that resampling

can be done with or without replacement. This crucial

distinction has important implications on whether the

generated data are independent of one another and are

similar to real data. They are independent of one

another if we resample with replacement, but generally

not when we resample without replacement, except in

those cases when we resample a small enough fraction of

the data so that we can confidently ignore that the

resampled data are dependent on one another. More-

over, over large sample sizes, the generated data are

similar to real data only if we resample with replace-

ment. Therefore, resampling without replacement

complicates statistical matters considerably and

should generally not be recommended. However, we

cannot make a definite recommendation here, as the

decision ‘‘with or without replacement’’ depends on the

Table 3. Continued.

Studies Taxon Performance
measure

Estimators listed according to performance

Chiarucci et al. 2003 Plants (R) Accuracy7) Jack1, Jack2, bias-corrected Chao2, Boot, Sobs
Plants (R) Bias5) Jack1, Jack2, bias-corrected Chao2, Boot, Sobs

Foggo et al. 2003b Invertebrates Bias1) Chao2, ICE, Chao1, ACE, Boot, Jack2, Karakassis’ infinite
model, Jack1, Sobs

Petersen et al. 2003 Diptera Bias6) Jack2, Jack1, ICE, MM-Mean, Chao2, Boot, Chao1, ACE,
Sobs

Petersen and Meier 2003 Diptera Bias6) Poisson log-normal, Chao1, ACE, Preston log-normal, Sobs
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researcher’s goals defined by the study’s context. This

decision is not a matter of statistical principle but a

question of statistical modelling, and both options are

feasible. We therefore recommend that researchers refer

to standard references (see above) or consult with a

biostatistician on this issue.

Because any such data simulation models and resam-

pling schemes have certain assumptions, these assump-

tions should be clearly described at the outset of any

study. For example, researchers should be aware of the

‘‘black-box’’ properties of the programs they are using.

One popular program is EstimateS (Colwell 2000), but

most of its users did not state whether they used

sampling with or without replacement. Also, EstimateS

only returns summary statistics derived from the calcu-

lation of many individual data points, making the

application of some formulas given in Table 1 impos-

sible. These two important points were missed by many

authors, including the senior author of this review.

Researchers should also use real datasets in addition

to simulated datasets whenever possible (e.g. Walther

and Morand 1998). Simulated data allow for testing of

the effects of changing community parameters (i.e. total

species richness, sample size, aggregation of individuals

within samples) as well as the generation of bodies of

data large enough for statistical analysis. However,

simulated datasets may miss real patterns of community

structure (Palmer 1990, 1991). Therefore, real datasets

should also be tested, but only if their total species

richness is known with some certainty (see section

Determining total species richness above).

Moreover, researchers should compare as many dif-

ferent estimators as possible in their studies. Several

comprehensive reviews of estimators were cited above,

and several computer programs are also available (Ross

1987, Ludwig and Reynolds 1988, Rexstad and

Burnham 1991, Izsák 1997, McAleece et al. 1997, Krebs

1999, White and Burnham 1999, Hines et al. 1999,

Colwell 2000, Thomas 2000, Gotelli and Entsminger

2001, Turner et al. 2001, Anon. 2002). In addition, the

performance of the ‘‘observed species richness’’ estima-

tor should always be included in the results as a baseline

against which the performance of the other estimators

can be compared.

Furthermore, a mathematical expression or an un-

ambiguous source for all estimators (e.g. Colwell 2000)

and performance measures (e.g. Table 1) should always

be given. Unfortunately, many studies lack such state-

ments, and this lack of information will lead to confu-

sion and incomparable results.

Also, the scaled performance measures resulting from

the study should, whenever possible, be presented in

tables and not in figures because not knowing the actual

numbers makes it difficult or impossible to assign

performance ranks to estimators or compare their

performance across studies.

Finally, resampling should be done for various

increasing levels of sampling effort, with the goal of

assessing each estimator’s performance with increasing

sampling effort. For example, the data displayed in Fig.

2 were derived by sampling a bird community by means

of 20-min point counts with fixed radius during which

the number of individuals of each species was recorded

(see Martin et al. 1995 for details). Each point count is

considered a sample, and the entire set of point counts is

considered the data set. To calculate many estimates for

each level of sampling effort, the sample order is

randomized many times over. For each new random

combination of samples, all estimators are used to

calculate estimates of total species richness. Once this

has been done many times (e.g. 1000 times), the resulting

1000 estimates can then be used to calculate the bias,

precision, and accuracy of each estimator at each level of

sampling effort. In Fig. 2, the mean and standard

deviation of the 1000 estimates for both the observed

and the first-order jackknife estimator are given.

The difference between the mean of the estimates and

the total species richness is then the bias of each

estimator at each level of sampling effort, and the

standard deviation of the estimates yields the precision

of each estimator at each level of sampling effort. A table

presenting the bias, precision and accuracy of each

estimator at each level of sampling effort is then the

most basic and complete presentation of each estimator’s

performance. We present a simple example in Table 2

where we calculate most of the performance measures

presented in Table 1 for 10 estimates produced by the

two estimators presented in Fig. 2 at constant sampling

effort.

Rather than presenting all performance measures for

each level of sampling in a very large table, we may want

to summarize the information in such a table to get some

overall measure of performance. While such an overall

performance measure may not be a truly statistical

property of an estimator (as the properties of an

estimator change with sampling effort, and of course

depend on the data), we may still want to summarize the

information in such a table which is a valid procedure as

long as we clearly describe how these summary perfor-

mance measures are calculated. For example, the most

common approach would be to average each perfor-

mance measure over all levels of sampling effort to get an

all-encompassing performance measure (see section

Evaluating performance over many communities above).

However, to ecologists, the performance of species

richness estimators may not be of interest once the

observed species richness is very close to the asymptote.

Therefore, such ‘‘late’’ samples may not be very in-

formative when testing estimators for the practical

purposes of ecological surveys. However, very ‘‘early’’

samples may also not be very informative simply because

sampling effort is still so low (e.g. below 5 samples) that
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no estimator can be expected to perform well. Therefore,

Walther and Morand (1998) and Walther and Martin

(2001) argued that estimator performance should be

tested at ‘‘intermediate’’ sampling effort when observed

species richness is still increasing but nowhere near the

asymptote. No matter what cut-off points for sampling

effort are used, levels of sampling effort used for

performance evaluation should be clearly stated by

researchers.

Literature review of comparative studies of species

richness estimator performance

We stated above that comparative studies of estimator

performance should carefully describe the details of data

simulation models and resampling schemes, also use real

datasets whenever possible, compare as many different

estimators as possible (including the ‘‘observed species

richness’’), give or clearly reference mathematical ex-

pressions for all estimators and performance measures,

and present results for each scaled performance measure

in numerical tables with increasing levels of sampling

effort.

Unfortunately, only relatively few studies have so far

kept to these criteria. Many studies of estimator

performance did not use both real and simulated

datasets (examples in Table 3), used very few estimators

(examples in Walther and Martin 2001), and presented

results mostly in figures (examples in Table 3). Never-

theless, a literature review of those studies that we knew

about reveals some interesting overall trends (Table 3;

see also Cao et al. 2004). As expected, the observed

species richness is almost always one of the worst

estimators, further supporting the notion that the use

of almost any estimator is preferable to the simple

species count (unless sampling has been exhaustive). In

most cases, non-parametric estimators (mostly the Chao

and jackknife estimators) perform better than the other

estimators. Even though fitting species-abundance dis-

tributions performed well in two out of three studies in

which they were tested, their overall performance cannot

be evaluated at present until they are included in more

comparative studies (also note the problems associated

with their actual application mentioned in Colwell and

Coddington 1994). Curve-fitting models, on the other

hand, have been extensively tested and usually perform

worse than non-parametric estimators, with a few

notable exceptions. The log-linear model performed

quite well in Palmer’s (1990, 1991) study when used

with limited sample sizes, but it cannot be used to

extrapolate total species richness as it has no asymptote.

The modified power function and the rational function

performed reasonably well in one study (Walther and

Martin 2001) and perhaps deserve further consideration.

Rosenzweig et al. (2003) even found that curve models

far outperformed two non-parametric estimators (ICE

and kth-order jackknife), but their study was based on

the analysis of just one real regional data set of

butterflies. Somewhat surprisingly, the Michaelis-Men-

ten curve model performed best in one study (Herzog

et al. 2002), which is contrary to its usual mediocre

performance. However, Herzog et al. (2002) manipulated

the data with the so-called x-species-list method prior to

analysis which may explain their somewhat contra-

dictory results. The usually superior performance of

non-parametric estimators may be due to the fact that

they, unlike curve models, have been developed from

underlying models of detection probability (Cam et al.

2002).

To further summarize the results of our review, we

calculated overall bias and overall accuracy using the

information contained in Table 3. However, just as there

are many different ways of evaluating bias, precision and

accuracy, there are obviously various ways of summariz-

ing the information contained in Table 3, and the

particular analysis presented in Table 4 is just one of

many possible ones (and we encourage researchers to do

their own analysis). Nevertheless, our particular analysis

further corroborates that the Chao and jackknife

estimators usually perform better than the other meth-

ods, and that the observed species richness is the worst

estimator. Therefore, our simple numerical analysis

supports the overall qualitative impression of Table 3

presented above.

Of course, even the Chao and jackknife estimators

may sometimes perform badly, and the reasons for

varying performance are dependent on those variables

which change the structure of the data that is used by the

estimators to calculate their estimates: they are, specifi-

cally, 1) total species richness, 2) sample size, and 3)

variables that change the aggregation of individuals

within samples, e.g. the species-abundance distribution

or the sampling protocol. In other words, while sample

size and total species richness determine the actual size

of the two-dimensional species-versus-sample data ma-

trix, the species-abundance distribution and the sam-

pling protocol determine how individuals are distributed

within the individual samples, and this in return

influences estimator performance. Therefore, there are

no estimators that are suitable for all situations, or that

are especially suitable for particular taxa, e.g. spiders or

birds, unless their performance is tied to the species-

abundance distribution of that taxon and the actual

sampling protocol used for that taxon.

Promising new research related to species richness

estimation

The development and testing of species richness estima-

tors is an exciting and rapidly advancing field with
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several publications coming out every month. It is

therefore impossible to summarize all present and

possible future developments, and we ask for forgiveness

if we left out some promising research that we did not

know about.

As mentioned above, a different approach which is not

dependent on knowing the total species richness is using

data-based evaluation procedures and model selection to

estimate total species richness. This approach uses either

goodness-of-fit or model selection criteria. Goodness-of-

fit criteria (e.g. Samu and Lövei 1995, Flather 1996,

Winklehner et al. 1997) essentially assume that the

estimator which fits the data best will also yield the

best estimate. However, the use of goodness-of-fit

criteria may easily lead to over-fitted models because

‘‘increasingly better fits can often be achieved by using

models with more and more parameters’’ (Burnham and

Anderson 1998, p. 27). Therefore, other model selection

criteria have been developed, of which there are many

(e.g. Stanley and Burnham 1998). For example, like-

lihood ratio tests and discriminant function procedures

have been used to choose between various jackknife

estimators (e.g. Otis et al. 1978, Rexstad and Burnham

1991, Norris and Pollock 1996, Boulinier et al. 1998).

However, much recent research has shown that model

selection based on Kullback-Leibler information theory

and maximum likelihood approaches is superior in

choosing and weighting among several candidate models

(Burnham and Anderson 1998, 2001, Anderson et al.

2000). These data-based model selection methods are

based on the principle of parsimony ‘‘in which the data

help ‘select’ the model to be used for inference’’

(Burnham and Anderson 1998, p. 27). A good example

of this approach is provided in Burnham and Anderson

(1998, pp. 71�/72) where they re-analyse Flather’s (1996)

species-accumulation curve models. Model selection

methods are especially useful when there is no extra-

polation involved, e.g. the estimation of survival prob-

abilities, detection probabilities, movement probabilities,

and so on.

However, model selection based on maximum like-

lihood is only applicable if a log-likelihood function can

be calculated (Burnham and Anderson 1998). Most

estimators lack such a function, but so-called mixture

models have recently been developed that use maximum

likelihood estimation for populations with heteroge-

neous capture (or detection) probabilities (Norris and

Pollock 1996, 1998, Gould and Pollock 1997, Gould

et al. 1997, Pledger 2000, Chao et al. 2000, Pledger

and Schwarz 2002). In particular, Pledger (2000)

developed maximum likelihood estimators for all eight

capture-recapture models developed by Otis et al. (1978)

and likelihood ratio tests to choose between these

models.

Besides these new non-parametric estimators, new

accumulation curve models have also been developed.

Following papers by Soberón and Llorente (1993),

Nakamura and Peraza (1998), Keating et al. (1998),

Christen and Nakamura (2000), Gorostiza and Dı́az-

Francés (2001), Dı́az-Francés and Gorostiza (2002),

Colwell et al. (2004), Mao and Colwell (2005) and

Mao et al. (2005) included nonhomogeneous pure birth

processes, maximum likelihood estimation and Bayesian

methods into the development and comparison of curve

models while Picard et al. (2004) developed a curve

model that can deal with different spatial patterns.

All these new and exciting approaches to estimating

species richness should be comparatively tested on real

and simulated biological data. We hope that the various

performance measures presented in Table 1 will help

researchers to evaluate the performance of various

estimators given different datasets and sampling proto-

cols.
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Table 4. Ranking estimators according to their overall bias and
accuracy as summarized from the results of Table 3. For each
study in Table 3, each estimator was ranked with the best
estimator ranked highest. Rank was then divided by the number
of estimators tested in each respective study to yield scaled
ranks (resulting in 1 for the best estimator and 1/n for the worst
estimator, with n being the number of estimators tested in each
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