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Aunique challenge for environmental DNA (eDNA)-based palaeoeco-
logical reconstructions and extinction estimatesis that organisms can
contribute DNA to sediments long after their death. Recently, Wang
et al.! discovered mammoth eDNA in sediments that are between
approximately 4.6 and 7 thousand years (kyr) younger than the most
recent mammoth fossils in North America and Eurasia, which they
interpreted as mammoths surviving on both continents into the Mid-
dle Holocene epoch. Here we present an alternative explanation for
these offsets: the slow decomposition of mammoth tissues on cold
Arcticlandscapesisresponsible for the release of DNA into sediments
for thousands of years after mammoths went extinct. eDNA records
areimportant palaeobiological archives, but the mixing of undatable
DNA from long-dead organisms into younger sediments complicates
the interpretation of eDNA, particularly from cold and high-latitude
systems.

Allanimal tissues, including faeces, contribute DNA to eDNA records?,
but the durations across which tissues can contribute geneticinforma-
tion must vary depending ontissue type and local rates of destruction
and decomposition. On high-latitude landscapes, soft tissues and skel-
etal remains of large mammals may persist, unburied, for millennia®>.
For example, unburied antlers of caribou (Rangifer tarandus) from
Svalbard (Norway) and Ellesmere Island (Canada) have been dated**
tobetweenland2 calkyr BP (calibrated kyr before present). Elephant
seal (Mirounga leonina) remains near the Antarctic coastline>® can
persist for more than 5,000 years. Thisis incontrast to bonesinwarmer
settings, which persist for only centuries or decades”. Because bones
are particularly resistant to decay, quantifying how their persistence
changes across environments enables us to constrain the durations that
dead individuals generally contribute to eDNA archives. To do this, we
consolidated dataonthe oldest radiocarbon-dated surface-collected
bones from different ecosystems. Weincluded bones that we are reason-
ably confident persisted without being completely buried (‘never bur-
ied’), and bones for which exhumation cannot be confidently excluded
(‘potentially never buried’). Pairing bone persistence with mean annual
temperatures (MAT) from their samplelocalities, we find astrong link
between the local temperature and the logged duration of bone persis-
tence (Fig. 1, never buried bones: R? = 0.94, P < 0.01; potentially never
buried bones: R*=0.95, P < 0.01). Millennial-scale bone persistence
is probably ubiquitous in Arctic ecosystems, particularly those with
low sedimentation rates. Bone persistence increases with body size’,
so although the persistence of Arctic mammoth bones is unknown,
results based on smaller-bodied organisms in warmer modern tem-
peratures (Fig. 1) are probably underestimates of bone persistence for
Pleistocene megafauna living in colder settings. Of note, bones and
other biological tissues in cold environments are frozen for much of
eachyearand even weather-worn specimens can produce viable DNA®.

eDNA, like all other sedimentary records, incorporatesinputs from
many sources and ages*®. Although this temporal mixing is frequently
ignored in deference to inputs from living individuals, dead remains
also contribute DNA as they decay. The magnitude of temporal mix-
ing in eDNA must, therefore, largely depend on the decay durations
of bones and other tissues. Because DNA cannot be directly dated,
the degree of temporal mixing cannot be estimated for an individual
eDNA sample. However, even diminutive antlers of female caribou can
persist on tundra surfaces for more than 3,000 years (Fig. 1). Beyond
extended bone persistence, Arctic settings are often characterized by
ice-driven (for example, frost-heaving and cryoturbation) and geomor-
phological processes that release ancient fossils to the surface, thereby
expanding the magnitude of temporal mixing within eDNA™. Wang et al.
themselves reported mammoth DNA from surface samples adjacent
to mammoth bones eroding out of nearby sediments'. Although they
interpret this as contamination today, if this same temporal mixing
occurred during the formation of sediment layers from the deeper
past, it would go unnoticed.

How much temporal mixing can we expect in eDNA records? Argu-
ably, the best time to evaluate this questionis following aspecies extinc-
tion, after which contributions of DNA into sediments shift from a mix
of live-and dead-sources to dead-only sources. The timing of extinction
isunlikely to coincide with the last occurrence of that species”, but the
temporal distribution of body fossils or eDNA can be used to estimate
extinction timing. Mammoth body fossils found in Northeast Siberia,
Northwest and Central Siberia, and northern North America (n =101,
468,and 394, respectively; Supplementary Methods and Supplemen-
tary Data 3) are known semi-continuously from around 50 cal kyr BP
until their last occurrences. Thus their predicted extinctionintervals'
(Supplementary Methods) are tightly constrained (Fig. 2). Using eDNA
records, we find that extinction intervals are poorly constrained and,
for Northwest and Central Siberia, includes the modern day (Fig. 2).
More importantly, the mean extinction estimate for Northwest and
Central Siberia is 2.7 cal kyr BP. On the basis of the temperature of the
most recent mammoth DNA-bearing site (MAT =-13.3 °C), we would
expectbone persistence times of between 2.26 and 4.19 kyr (mean and
upper 95% confidence intervals for never buried bones) to more than
8.0 kyr (upper 95% Cl for potentially never buried bones). Thus, using
eDNA time series at face value implies that bones of the last mainland
Siberian mammoths might still be persisting on today’s landscapes.
Yet, in the face of concerted efforts, the most recent mammoth fos-
sils in this region are no younger than 11 cal kyr BP and are generally
entombed in permafrost’®®, This differs from Wrangel Island (expected
bone persistence between 1.96 kyr and 3.53 kyr (mean and upper 95%
confidenceinterval for never buried bones) to more than 6.66 kyr upper
95% confidence interval for potentially never buried bones), where
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mammoths persisted until 4 cal kyr BP, Middle Holocene sediments
are thinand their bones lie exposed on the ground™.

One possibility is that millennial-scale gaps between the last mam-
moth fossils and the youngest eDNA samples highlight the inherent
incompleteness of fossil records. This seems to be an unlikely driver,
given the near-continuous record of mammoth fossils (Fig. 2) that
terminate without a recognized sedimentological shift. eDNA might

Fig.1|Duration ofexposed bone persistence onlandscapes as afunction
ofthebonelocation’s MAT. Persistence estimates (regressions and their 95%
confidenceintervals) are shown for bones that have probably remained at least
partially exposed for their entire post-mortem history (never buried; filled
points, solid lines, R?=0.94, P<0.01) and bones that were found exposed, but
have more ambiguous post-mortem histories (potentially never buried; open
circles, dashedlines, R*=0.95,P<0.01). Forlocations with more limited sampling,
the same bones were used for both regressions (filled points surrounded

by opencircles). The most recent mammoth bone found exposed on Wrangel
Islandisshown (red diamond), butis notincluded in the regressions. Error bars
are2¢gand generally smaller than the points.

also be recording individuals immigrating from Holocene mammoth
populations on Wrangel Island or the Pribilof Islands. This too seems
unlikely, given the wide oceanic crossings that would be required®.
Instead, we consider the most parsimonious explanation to be that
mammoth-bearing Middle Holocene sediments incorporated genetic
information from well-preserved remains still lying on landscapes or
introduced from exhumed remains of even more ancient individuals.
This explanation is corroborated by our finding that the ages of all
Siberian sediments containing mammoth DNA are within the expected
interval between the last mammoth occurrences and the durations
those remains could persist on Siberian landscapes (Fig. 2). Although
two North American sediments containing mammoth DNA are younger
than expected, exhumation of remains from deeper sediments could
explain the genetic occurrence of this extinct species.

Nevertheless, eDNA records of mammoths extend beyond their
fossil records. As Wang et al. claim’, a possible reason is that mam-
moths survived on mainland North America and Eurasia into the Mid-
dle Holocene. However, the combined evidence indicates that this
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Fig.2| Timeseries of mammothbody fossils and eDNA records. Body

fossils (black points) and eDNA (grey points) areillustrated separately. The 95%
confidenceintervals for mammoth extinctions are estimated'?separately for
fossiland eDNA records'in eachregion (red horizontallines; vertical line is mean
extinction estimate usingeDNA records). Predicted persistence of mammoth
bones foreachregion extends from the median of the bone-informed extinction
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estimate. Thick grey horizontal lines, mean prediction based on never buried
bones; medium grey horizontallines, upper 95% confidence interval based on
never buried bones; thin grey horizontallines, upper 95% confidence interval
for potentially never buried bones. LGM, last glacial maximum; BA, Bglling
Allergd; YD, Younger Dryas.



pattern can be explained by Arctic environmental and taphonomic
conditions that increase the persistence of DNA-bearing tissues
on landscape surfaces and permit the release of long-dead tissues
exhumed from permafrost. The mixing of DNA from long-dead organ-
ismsinto younger sediments complicates the interpretation of eDNA,
but we canstart to control for this challenge by assessing the lengths
of time across which DNA of extinct species are incorporated into
sedimentary records.

Methods

To evaluate how bone persistence durations change with environment,
we aggregated literature records of the ages of bones collected from
landscape surfaces. For the purposes of this study, we only included the
oldestbone from each region. To diversify the environmental settings
includedinthe dataset, we added three accelerator mass spectrometry
radiocarbon-dated bones from Arctic Alaska (two caribou antlers from
the Coastal Plain, Arctic National Wildlife Refuge, USA) and temper-
ate North America (one elk (Cervus elaphus) femur from Yellowstone
National Park, USA; Supplementary Methods and Supplementary
Datal). For a full description of methods used, see Supplementary
Information.

Online content

Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-022-05416-3.

Reporting summary

Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data generated or analysed during this study are included in the
Article and its supplementary information.
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Data collection  We estimated the mean annual temperature of different locations around the world using the 2.5 minute BioClim1 raster (WorldClim2) and
QGIS (version 3.4). Values were extracted using the 'raster' (version 3.0-7) package in R (version 4.0.3).

Data analysis Data were analyzed using the open-source software R (version 4.0.3). Radiocarbon dates were calibrated using the ‘rcarbon’ (version 1.4.2)
package in R. To estimate the timing of extinction, we used the OLE function in the R package ‘sExtinct’ (version 1.1).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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Ecological, evolutionary & environmental sciences study design
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Study description This study uses radiocarbon ages of bones sitting on landscapes around the world to estimate how mean annual temperature
impacts the duration that bones can persist (unburied) in different environmental settings. We compare the resulting expectation of
bone persistence duration to evaluate whether middle Holocene sediments containing mammoth DNA may have come from long-
dead individuals as their remains decompose (as opposed to DNA contributed by late-surviving mammoths populations).
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Research sample The most severely weathered bones known from Yellowstone National Park and the Arctic National Wildlife Refuge, Alaska are
included in this analysis, along with all literature records appropriate for estimating the persistent of bones on different landscapes
around the world. Additionally, we include all previously dated and published mammoth bones from Siberia and North America
(which come from previously published compilations).

Sampling strategy Data presented here represent an exhaustive survey for all subjects. This includes known data on bone persistence around the world,
all known mammoth bones from Siberia and North America, and all mammoth-bearing eDNA records published from Wang et al.
2021.

Data collection Data collection on bones from Yellowstone National Park and the Arctic National Wildlife Refuge were collected by Joshua Miller

using a standardized data collection scheme. Data on geographic location and taphonomic setting were taken in the field using a GPS
and a field notebook. Additional observation on taphonomic state were evaluated in the lab through visual analysis. Miller collected
all data related to bone persistence.

Timing and spatial scale  Most of the data used in these analyses come from efforts across many decades (from which all appropriate data are used). The
eDNA data come directly from Wang et al. 2021 (all mammoth-bearing eDNA sediments from Siberia and North America are used;
https://www.nature.com/articles/s41586-021-04016-x). The bone persistence data similarly come from all available data (which
includes samples collected across 63 years).

Data exclusions No data were excluded from this study.

Reproducibility Lab experimentation was not part of this work. However, by incorporating data from decades of work, the reproducibility of different
portions of our results (e.g., the time period after which mammoth fossils are no longer recovered in Northeast Siberian, Northwest
and Central Siberia, and northern North America) is highlighted. Further, all methods are divulged to encourage additional, directly

comparable work.

Randomization Randomization was not relevant for our study. This study specifically evaluates differences in the distribution of fossils and eDNA
samples within three specific geographic regions.

Blinding Blinding was not relevant for our study. This work is largely a reevaluation of published data.

Did the study involve field work? Yes [ ]No

Field work, collection and transport

Field conditions Fieldwork (Yellowstone National Park, Arctic National Wildlife Refuge) was conducted on fair-weather days (e.g., not activity raining).

Location For Yellowstone National Park, bones were evaluated across the Northern Range (approximately: 44.95 latitude, -110.50 longitude).
For the Arctic National Wildlife Refuge, bones were evaluated across the Coastal Plain (approximately: 69.63 latitude, -141.43
longitude). Mammoth bones were evaluated across northern North America, and Siberia.

Access & import/export  All new collections highlighted in this work were done in accordance with all local, state, and federal laws. Collection from
Yellowstone National Park was done under permit YELL-2007-SCI-5486, approved by Tom Olliff (Chief, Yellowstone Center for
Resources) in 2007. Collections from the Arctic National Wildlife Refuge were approved in 2018 by Steve Berendzen (Manager, Arctic
National Wildlife Refuge).

Disturbance No discernible site disturbance was caused by this study. All study sites were approached on foot and all efforts were done to
minimize impact during the work.

Reporting for specific materials, systems and methods
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Materials & experimental systems Methods
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Palaeontology and Archaeology

Specimen provenance All new collections highlighted in this work were done in accordance with all local, state, and federal laws. Collection from
Yellowstone National Park was done under permit YELL-2007-SCI-5486, approved by Tom Olliff (Chief, Yellowstone Center for
Resources) in 2007. Collections from the Arctic National Wildlife Refuge were approved in 2018 by Steve Berendzen (Manager, Arctic
National Wildlife Refuge).

Specimen deposition All specimens are curated at public repositories. Newly published bone specimens highlighted here are available at the Department
of Geology's collections, University of Cincinnati, Cincinnati, OH, USA.

Dating methods AMS radiocarbon dates were generated from collagen extracted using standard acid/base pretreatments. Dates were acquired from
the Center for Accelerator Mass Spectrometry (Lawrence Livermore) and University of California Irvine Keck-CCAMS facility. Quality
assurance was monitored using internal lab standards and radiocarbon blanks. Radiocarbon dates were calibrated using the
‘rcarbon’ (version 1.4.2) package in R and the IntCal20 calibration curve.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Because all specimens were dead at the time of collection, no ethical oversight or guidance was required for this work.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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(2022)

Since the inception of ancient environmental DNA (eDNA) research,
considerable attention has been paid to the depositional and diage-
netic processes of DNA molecules in different sediments and settings'.
Understanding those processes is critical to determine whether the
recovered DNA is of the same age as the deposit in which it is found.
Itis therefore not unreasonable to ask, as Miller and Simpson have?
inresponse to our recently published eDNA study of 50,000 years of
Arctic ecosystem changes?® whether remains of long-dead megafauna
might have contributed older DNA to younger deposits. They propose
that this may account for our finding that mammoths persisted into
the Holocene epochin the continental Arctic.

Thebasis for Miller and Simpson’s proposal is that mammoth remains
couldhavepersistedonthesurfaceof cold Arcticlandscapesformillennia
after the species’ extinction, and while decomposing, released DNA
into younger sediment layers. Their argument assumes that surface
skeletal persistenceis predominantly temperature-related, basedona
correlation between mean annual temperature and the time unburied
bones appear to persist. Leaving aside the limited sample size (n =10)
onwhich their correlationis derived, and the fact that not all the dated
bones in the model have been on the surface since the animals’ death
(for example, the Wrangel Island mammoths were evidently released
from permafrost only a few years before their discovery*), there can
belittle doubt that temperatureisafactorinbone preservationin the
Arctic. However, itis not the sole or even dominant factor. Instead, thisis
aregionwhere multiple factors work against ubiquitous, millennia-long
preservation, including carnivore and scavenger activity, moisture
effects, seasonal freezing and thawing, strong ultraviolet radiation, and
arange of biogeochemical processes that lead to enzyme digestion and
organic matter decomposition**. Mammoth individuals, being large,
would require wide geographicranges’. The expected average density
of mammoth fossils per unit area would therefore be extremely low,
and so too would the likelihood that these rare remains contributed
DNA to our sampling sites. Given that mammoth DNA was found in
23 Holocene samples from 14 different sites (Fig. 1a), these late survivals
are highly unlikely to be aresult of DNA released from dead remains.

Furthermore, the eDNA that we obtained from surface samples
belonged solely to species present on the landscape presently,

indicating that secondary contamination from fossil material is minor.
However, it is well understood that some depositional settings (for
example, riverbanks and thaw lakes) may be affected by complex
processes, whereby older material (not only eDNA but the sediment
stratums) can be redeposited within younger sediments. This applied
foronesite (anactively eroding riverbank setting) of our original study
that did not meet our criteria of an unmixed section with clear sedimen-
tologicaland chronological contexts for eDNA sampling (describedin
the supplementary information of ref. ), which was therefore excluded
from the analysis. This reinforces the well-known caution that fluvial
settings require particularly stringent sampling and dating protocols®.

Although Miller and Simpson rightly note that there is a near-
continuous record of dated mammoth fossils, that record is not areli-
able estimator of extinction timing. The youngest dated fossil marks
thelast time a species was abundant on the landscape’, rather thanits
last occurrence, whichis highly likely to go undetected when aspecies
isdeclining toward extinction, especially across the large geographic
range of the vast Arctic landmass. Given the patchy nature of both
the fossil and radiocarbon records, there can be centuries-long gaps
between dated specimens (figure 1in ref. 2). Those gaps would only
increase as species declined and shifted their ranges to smaller portions
of their former area'®. Mammoths may have survived in refugia—such
asthelast pockets of the steppe-tundralandscape to which they were
adapted—long after the date of the last known fossils, and most prob-
ably also after their last recorded occurrence ineDNA. However, there
is a greater chance of detecting the lingering presence of an animal
with eDNA than withits fossils, because an animal releases millions of
DNA molecules onto the landscape on a daily basis over the course of
its lifetime, but only leaves one skeleton, which is far less likely to be
preserved, found and dated.

Notwithstanding limitationsin Miller and Simpson’s model and the
lack of evidence for redeposition of DNAin our samples, itis reasonable
to ask what we might expect to seeif the slow decomposition of mam-
moth tissues on cold Arctic landscapes released DNA into sediments
ubiquitously millennia after mammoth extinctions.

First, if redeposition of ancient DNA were widespread, we would
expect to see mammoth eDNA in many sampling sites across the

A list of affiliations appears at the end of the paper.
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Fig.1| Thegeographical distribution oflate-surviving mammoths, and

the vertical distribution of eDNA samples and the identified mammoths
insediment profiles.a, Mammoth eDNAs were identified in 23 out 0f192
Holocene samples, from 14 out of 32 sites covering the Holocene, and originated
from 3 different sediment contexts. The 3 coloured regions show the shrinking
distribution of mammothinthe Holocene: green, blue andred correspond to

species’ full range during the late Pleistocene epoch, and not only
restricted to particular regionsin the Holocene. Yet, we instead found
evidence of later surviving populations—mammoths younger than
the Pleistocene/Holocene boundary (11.7 thousand years before pre-
sent (kyr BP))—inonly 23 out of the 192 Holocene samples, in different
depositional contexts from 14 out of the 32 sites covering the Holocene
(Fig.1a). The Holocene-age mammoth eDNA occurs in distinct spatial
and temporal patterns. It disappears first from the North Atlantic and
North American regions, and finally from Siberia, especially northwest
and central Siberia (Fig.1a). These patterns are highly unlikely to have
resulted from mammoth bones persisting on the ground surface or
being exhumed from below thenreleasing DNA—if that were the case,
the pattern of Holocene ages of mammoth eDNA would be unlikely to
be so geographically uneven or to become geographically restricted
over time.

Second, if mammoth DNA was continually ‘leaking’ into deposits, it
would probably be detected in most (if not all) of the stratigraphic layers
that formed after its DNA first found until the remains (whether pre-
served onthe surface or exhumed from below) had disappeared alto-
gether. Thus, mammoth DNA would not berestricted to time-specific
depositional layers withinsites, but would instead be ‘smeared’ across
successive layers. We do not see this either—there is no evidence of
mammoth DNA being smeared throughout a section, either horizon-
tally or vertically (Fig. 1b). Instead, the DNA of mammoths and other
animalsis usually restricted to specific strata and separated by layers
where their DNAis absent, including fluvial sites that canharbour eDNA
from geographically wider catchments and upstream DNA sources
that may feed them®. In many cases, mammoth DNA is detected only
insome—and not all—of the samples from the same stratum (Fig. 1b),
indicating that it has not diffused through a horizontal layer.

Third, if mammoth DNA was an artefact of redeposition, the sig-
nal would probably be random with respect to changes in vegetation
and climatic conditions. That is not the case. Our eDNA results were
embedded in a comprehensive reconstruction of past Arctic ecosys-
tems, which revealed continental and regional associations between
mammoth eDNA and (1) eDNA of other animals, (2) the steppe-specific
herbaceous plants, and (3) palaeo-climate panels reconstructed inde-
pendently from different climate models (figures 2 and 4 in ref. 3).
Our results show that the range of where mammoth eDNA has been
found shrinks through the Holocene along with the shrinking of the
steppe-tundra vegetation and the climatic and hydrogeological condi-
tions to which the species was adapted to in the Pleistocene®, thereby
supporting the geographically uneven and increasingly restricted
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patternjust noted. Iflingeringmammothbones had leached older eDNA
ubiquitously, we should not have seen spatiotemporal co-occurrences
of mammoth, steppe vegetation, and the cold and dry Pleistocene-like
climate conditions.

Finally, if redeposition of DNA in younger deposits was a prob-
lem, the eDNA of late-surviving mammoths ought to reflect the
full range of clades present in mammoth populations in the late
Pleistocene. They do not. Instead, we find a consistent decline of
mammoth mitochondrial haplogroup diversity from the Pleistocene
into the Holocene to the point where only Clade 1DE remained, both
onisolated islands and on continental Siberia (figure 4 inref.>). Itis
highly unlikely that this reductionin genetic diversity was because
individuals harbouring the same haplogroup were the only ones
whose DNA was being released into younger sediments over time.
This finding instead conforms to a pattern of a species’ decline
towards extinction.

Insum, we find all evidence pointing to the validity of the eDNAiden-
tifications of late-surviving Arctic megafauna reportedin our original
study?. However, we acknowledge the possibility that unburied or
exhumed animal fossils can contribute DNA to younger sediment lay-
ers,and this should always be considered (along the lines we described
inref.?). Thisis particularlyimportantin cases in which the animal spe-
cies targeted were abundant and widely distributed on thelandscape,
for fine-resolution reconstructions, and for studies relying primarily
on fluvial sediments as the eDNA source.

Reporting summary

Furtherinformation on experimental designis availablein the Nature
Portfolio Reporting Summary linked to this Article.

Online content

Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-022-05417-2.

Data availability

All dataanalysed in this study are included in this article or have been
published previously.
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