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Protected areas have amixed impacton
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International policy is focused onincreasing the proportion of the Earth’s surface that
is protected for nature'. Although studies show that protected areas prevent habitat

loss®¢, thereis alack of evidence for their effect on species’ populations: existing
studies are at local scale or use simple designs that lack appropriate controls’ . Here
we explore how 1,506 protected areas have affected the trajectories of 27,055
waterbird populations across the globe using arobust before-after control-
intervention study design, which compares protected and unprotected populations
inthe years before and after protection. We show that the simpler study designs
typically used to assess protected area effectiveness (before-after or control-
intervention) incorrectly estimate effects for 37-50% of populations—for instance
misclassifying positively impacted populations as negatively impacted, and vice
versa. Using our robust study design, we find that protected areas have a mixed
impact on waterbirds, with a strong signal that areas managed for waterbirds or their
habitat are more likely to benefit populations, and aweak signal that larger areas are
more beneficial than smaller ones. Calls to conserve 30% of the Earth’s surface by
2030 are gathering pace™, but we show that protection alone does not guarantee
good biodiversity outcomes. As countries gather to agree the new Global Biodiversity
Framework, targets must focus on creating and supporting well-managed protected
and conserved areas that measurably benefit populations.

Protected areas have been the cornerstone of conservation practice
for more than a century. Nearly 16% of land and 7% of the ocean are
now designated as protected areas”, and there are prominent calls
for the Convention on Biological Diversity to set an area-based target
of 30% coverage for protected areas and other effective area-based
conservation measures by 20302, Given the importance to humanity
of addressing biodiversity loss, it is crucial that the next decade’s
biodiversity conservation targets are informed by evidence of the most
effective conservation strategies and actions>".

Optimizing where protected areas are placed to most efficiently
conserve species and their habitats has been a major research theme
in conservationscience for decades'®. However, until recently, robust
attempts (those making an explicit effort to account for confounding
factors) to evaluate the performance of protected areas have been
lacking’?°. Anumber of studies have shown that protected areas slow
habitat loss, particularly in forests®¢, however intact habitat does not
guarantee the health of populations?. Studies attempting to address
this problem by quantifying the impact of protected areas on popu-
lation health and persistence have suffered from a lack of suitable
controls®. To accurately estimate the impact of a protected area, it is

necessary to understand what would have happened in the absence
of protection? and most studies do this by using either before-after
or control-intervention study designs. Before-after studies compare
populations pre- and post-protected area designation”?, but cannot
ascertain whether the observed difference was caused by the protected
area or other factors that changed in the same time period. Control-
intervention studies compare populations between protected and
unprotected sites®'?, but cannot ascertain whether the observed dif-
ference was due to the effectiveness of the protected area, or because
it was placed where populations were performing well to begin with.

Combining these designs into a before-after control-intervention
(BACI) framework—where populations in protected and unprotected
sites are compared before and after the date of protected area des-
ignation—can overcome these limitations®, and even approximate
causality®*. The recent emergence of large biodiversity databases in
ecology provides an opportunity to test the effects of protected areas
on populations under a BACI framework.

Here, using one of the largest global datasets of bird population
counts, compiled fromcitizen scienceinitiatives and non-governmental
organization (NGO) and government-led monitoring programmesin 68
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Fig.1|Map of study sites. Locations of protected (green; n=1,506) and
unprotected (purple; n=3,343) sitesused across analyses. Darker colours
meanagivensitewasusedinagreater number of analyses, toamaximum of 21
(our focal analysis and 20 full parameter analyses; there are 864 protected sites
inthe focal analysis). See Supplementary Information for amap showing only
thesitesusedinthe focal analysis.

countries, we present the first robust, global-scale assessment of pro-
tected areaimpact on populations. We examined how 1,506 protected
areas have impacted the population trajectories of 27,055 waterbird
populations, where ‘population’is defined as a particular species ata
particularsite (Fig.1). Waterbirds are an appropriate taxonomic group
withwhichto exploreimpact, given their broad distribution and ability
torespond rapidly to changes in site quality”. We asked three questions:
(1) how much do the study designs typically used to assess protected
area effectiveness cause misleading conclusions, compared with a BACI
study design?; (2) what is the impact of protected areas on waterbird
populations?; and (3) what factors contribute to protected areaimpact?

We estimated impact using before-after, control-interventionand
BACI study designs. For BACI and control-intervention analyses, we
matched protected populations to similar unprotected populations
using a combination of exact matching and Mahalanobis distance
matching (see Methods). We considered the wide range of ways in
which populations may respond to protection by counting cases where
localimmigrations or extinctions had occurred and using generalized
linear models to assess both immediate changes in population num-
bersandlonger-term changesin population trend (an extension of the
traditional BACI study design that considers only average change in
population size?*). We used these measures to classify populations into
three broad groups: positive, negative, or no impact from protection
(the full range of population responses and how they were classified
aredescribed in Fig. 3, Extended Data Figs. 3, 4).

To explore the sensitivity of our results to different parameter deci-
sions (such as years of sampling required, the maximum geographical
distance between sites, or the strictness of Mahalanobis matching),
we ran our entire analysis 21 times: one ‘focal analysis’ using our best
guess parameter estimates, and 20 analyses using estimates sampled
from a plausible range for each parameter (full parameter analyses)
(Methods, Extended Data Table 1).

Before-after and control-intervention estimates

Estimates of protected area effectiveness varied markedly on the basis
of study design, and studies using before-after or control-interven-
tion designs can lead to highly misleading conclusions. In our focal
analysis, 37% of populations analysed using a before-after design,
and 50% of populations analysed using a control-intervention design,
had different outcomes to those in the BACI analysis (Fig. 2). These
changes were not simply a result of BACI detecting positive or nega-
tive signals where other designs could not: 41% (before-after) and 57%
(control-intervention) of populations that were apparently positively
impacted were shown to be notimpacted, or even negatively impacted
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Fig.2|Changesinestimates of protected areaimpact under different study
designs.a, b, Thechangein protected areaimpact when estimated undera
before-after (BA) versus BACI framework (a) or a control-intervention (CI)
versus BACI framework (b). y-axes show the proportion of populationsin each
category under before-after or control-intervention on the left,and BAClon
theright. The shift of each colour shows how our estimate of the impact of
protected areas on populations change between study designs. Note that these
figures only contain populations where we could obtain both before-after and
BACI (n=6,006) or control-intervention and BACI (n = 3,609) estimates of
protected areaeffectiveness. This figure is based on our focal analysis,
Extended DataFig.1shows changesinoutcomeacrossall full parameter
analyses.

under a BACl analysis (Fig. 2). Changes to negative impacts were even
more substantial, with 63% (before-after) and 92% (control-interven-
tion) of apparently negatively impacted populations shown to be not
impacted or positively impacted by protection under a BACI analysis
(Fig. 2). The findings from our full parameter analyses were similar
(Extended Data Fig.1). Before-after models were also heavily impacted
by regressionto the mean (Supplementary Information5), an additional
reasonto consider them unreliable. These results show that relying on
before-after or control-intervention studies can distort the picture
of aprotected area’simpact.

BACIl estimates of protected areaimpact

We found a mixed impact of protected areas on populations when
using a BACl approach. Within nearly all sites, populations showed
arange of responses from positive to negative (in the focal analysis
the proportion of positively impacted populations within a site was
0.25+0.21 (mean + s.d.) with a range of values from O to 1; Fig. 3a).
Impacts on populations were similarly variable when grouped by spe-
cies (inthefocalanalysis the proportion of positively impacted popula-
tions within aspecies was 0.36 + 0.17 witharange from 0 to 1; Fig. 3b).
In our focal analysis, 27% of all populations were positively impacted
by protected areas (blues), 21% were negatively impacted (reds) and
for48% we could detect noimpact of protection (greys, white and yel-
lows) (our full parameter analyses produced similar results; Extended
DataFig. 2). Four per cent of populations were excluded because of
model failure. Of the 48% of cases where we could not detect any differ-
encebetween protected and unprotected populations, 85% (41% of all
populations; whites and greys, Fig. 3) wereincreasing, or had no trend.
These cases are difficult to define as a success or failure as, while the
protected area did not have ademonstrably positive impact compared
toanunprotected area, the protected population appears to be healthy.

Regardless, over a quarter of populations showed anegative response
(Fig.3). These are formed from two groups: (1) negatively impacted pop-
ulations, thatis, those that perform worse in protected areas relative to
matched controls (21%, reds) and (2) populations for which there was no
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Fig.3|Estimates of protected areaimpactunder aBACIstudy design.

a,b, The proportion of populations (n = 7,313) showing various responses to
protection, accordingtosite (a; n=864) and species (b; n=67), when
calculated inaBACIframework. Each vertical bar comprises species or site,and
the proportions of the populationsin each category are shown on the y-axis.
Barwidthisscaled to the number of populations of that species or sitein the

positive or negative signal of protection and which were either declin-
ing in protected areas at a similar rate to unprotected populations,
or where both protected and unprotected populations went locally
extinct (7%, yellows). Of note, half of these negative responses (14% of
populations overall), do not occur in sites designated for waterbirds
or their habitat (thatis, Ramsar Sites?® or Special Protected Area—Birds
Directive? sites) and so we might not necessarily expect a positive
impact in these cases and thus should not consider these to be cases
where protected areas have not worked.

We consider protected areaimpact exclusively in the context of how
protected areas support the persistence of populations, which ignores
the potential benefit of protection on the maintenance of the habitats
in which these populations occur. Our dataset was restricted to sites
where monitoring occurred: if habitat change meant that waterbirds
were no longer found at a site, monitoring would likely cease?. Thus,
we could not consider such sites as counterfactuals, and so could not
account for protected areas having prevented complete habitat con-
version. We also do not consider the potential for protected areas to
defend against future threats, forinstance, protecting afuture climate
refuge. In sum, itisimportant to remember that the results presented
here about the impact of protected areas on populations are above
and beyond these already-known benefits* %%,

Our results are also likely to underestimate the positive impact of
protection as we were restricted to species for which we were able to

dataset (logscaledinthe case of species) with awider bar indicating that the
speciesor site has more populations. Each colour represents adifferent way in
whichapopulation canrespond to protection, and anexample of each
responseis shown atthe bottom. This figureis based on our focal analysis;
Extended DataFig.2ashows the proportion of populations within each broad
outcome category across all full parameter analyses.

obtain adequate matches between protected and unprotected popu-
lations, resulting in a bias towards common species (Supplementary
Information 10). Common species tend to have more generalist habitat
requirements’ and so may fare better in degraded sites than rarer
species. They are also less likely to be the target of specific interven-
tions, which in some cases could actively impede them; for instance,
water could be kept at levels appropriate for rare waders, but not
for common ducks. To explore whether this affected our results, we
assessed whether outcomes varied betweenregionally threatened and
non-threatened species in Europe (Supplementary Information 11; a
global analysis was not possible due to data restrictions). We did not
find any differences in the impact of protected areas between these
groups, possibly because there was only asmall set of threatened spe-
cies in our data, though arecent study* similarly found no difference
between rare and common species when studying population trends.

Predictors of protected areaimpact

We show that the mere designation of a protected area does not neces-
sarily bring benefits to populations. Given this, we used cumulative
link mixed models, where the response variable was the impact (posi-
tive, no or negative), to investigate which species and protected area
characteristics predict outcomes for populations, on the basis of our
BACI framework (see Fig. 4). The models had random intercepts for
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country, site, species and spatial grid cell. Our explanatory variables
included a management variable, which broadly categorized sites as
either ‘waterbird-managed’ (Ramsar or Special Protected Area—Birds
Directive sites), or ‘mixed-management’ (sites either not designated
for waterbirds or their habitat, or of unknown management status).

Management for waterbirds was consistently positively correlated
with protected areasuccess (Fig.4). Larger protected areas were also
almost always positively correlated with success, although signifi-
cantlysoinonly afew analyses (Fig. 4). No other site or species-based
characteristic was consistently positively or negatively associated
with success (Fig. 4; Extended Data Fig. 5). Depending on the analy-
sis, alarge, waterbird-managed area could increase the likelihood
of a positive impact on a population anywhere from1to 25 percent-
age points (mean weighted by model confidence =9 percentage
points; see Supplementary Information 13) compared to a small,
mixed-management area.

These values are likely to underestimate the positive impact of man-
agement. Our classification of sites into waterbird-managed sites and
mixed-managementsites is a simple metric of diverse on-the-ground
practices (amore nuanced classification was not possible at the global
scale) and, inevitably, some mixed-management sites are likely to be
managed for waterbirds, while management quality will vary within
waterbird-managed sites**?*, Both these factors would reduce the
observed difference between the two management classifications,
meaning the true difference is likely higher. That waterbird-managed
sites perform better emphasizes the need for effective management
to avoid negative outcomes, and suggests that policy needs to focus
onsetting and adhering to ambitious management targets.

The weak positive association between protected area size and
impact adds a new element to the ‘single large or several small’ pro-
tected area debate that considers which is better for conserving bio-
diversity. Studies have agreed that several smaller protected areas
typically provide higher species richness than a few large areas®, but
that larger areas are critical for persistence of larger species®. Our
results demonstrate some importance of larger protected areas for
supporting populations of waterbirds through time. Thisis concerning
given many protected areas across the world are small and many are
currently being downsized”.

While our analysis included data from 68 countries across 6 con-
tinents, the data are biased towards Europe, North America and East
Asia;acommon probleminlarge-scale ecological studies®. There are
anumber of initiatives in less-studied areas of the world to increase the
supply and quality of ecological data® (for example, https://african-
conservation.org, https://www.avesargentinas.org.ar, https:/www.
birdscaribbean.org, and https://www.amazonteam.org/brazil/); sup-
porting and incorporating efforts such as these will be vital to informing
truly global evaluations of conservation effectiveness.

Our results show a mixed impact of protected areas, supporting
concerns raised over protected area efficacy in recent years***,
We had expected that, given their ability to move betweens sites”, water-
birds would show a more immediate and positive signal of protection
than other non-mobile taxa, such as reptiles, where positive signals
might not be apparent until multiple generation cycles of improved
breeding rate had occurred. The lack of signal could be due to poor
or limited management of many protected areas, or it could be due
to forces that cannot be controlled within the borders of a protected
area. Waterbirds rely on water, and threats such as pollution, upstream
dam installation and sea level rise cannot be managed by a protected
area, and can have devastating consequences* **, Terrestrial taxa will
be less impacted by such threats and therefore may experience more
positive responses to protection®, although beyond border threats
are not limited to those affecting water: climate change, air pollution
and disease have the potential to impact all species®. Finding solutions
to conserving speciesin the face of these more ubiquitous threatsis a
key conservation challenge.

106 | Nature | Vol 605 | 5 May 2022

Protected area size- | Estimate

Governance-l -(P>0.05

|
Body size { . +(P>0.05
||

)
Migrant . + (P <0.05)

Wild:h N

)
)

Semi-natural
Rangeland .
Croplands

Village
Pelecaniformes .
Suliformes
Ciconiiformes
Gaviiformes I
Charadriiformes-l I
Podicipediformes
Phoenicopteriformes -

Gruiformes 4 .

T T
0 5 10 15 20
Number of analyses

Anthrome

Order

Fig. 4 |Predictors of protected areaimpact. Number of analyses (20 full
parameter analyses plus one analysis with focal parameter estimates) that
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between various predictors and protected areaimpact. Orders are measured
relative to Anseriformes, and anthromes are measured relative to urban.

For oddsratios of each estimate and confidence intervals, see Extended Data
Fig.5.

Conclusions

The parties to the UN Convention on Biological Diversity will soon
decide onthe post-2020 Global Biodiversity Framework, which will set
nature conservation policy for the decade ahead.Itis likely toincludea
commitmentto protectand conserve 30% of Earth protected by 2030
(and there are growing calls for this to reach 50% by 2050™). Researchers
have warned that such calls must consider the social and political con-
textin which conservation operates, or risk undermining conservation
support*. Our results raise additional concerns about the 30 by 30’
approach by showing that protection alone does not guarantee optimal
biodiversity outcomes. Halting biodiversity loss requires improve-
ments to the performance of existing protected areas, and action
to address ubiquitous threats beyond area borders. Ever-increasing
area-based targets must be accompanied by equally ambitious targets
thatensure protected area effectiveness.
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Methods

We published a pre-analysis plan for this paper laying out our planned
analysis before we looked in detail at the data*’. Pre-analysis plans are
useful toreduce therisk of cherry picking or hypothesizing after results
are known, which has led to a replication crisis in science*®. As much
as possible, we have followed the methods we set out, however we
discovered a number of factors we had not considered (for instance,
the potential for immigrations and extinctions and the fact that both
trend and immediate change must be considered®). The conceptual
basis of our revised methodology is described in detail elsewhere?,
and Supplementary Information 7 describes the choices we have made
that deviate from the pre-analysis plan and why.

Overview
Abrief summary of our workflow is as follows: we took yearly counts of
749 waterbird species at 45,745 sites across the world from the Interna-
tional Water Census and Christmas Bird Count. Of these, we wanted to
find populations, here defined as a certain species at a certainsite, that
occurredinaprotected areaand where yearly counts had begunbefore
the protected areawas designated. For our before-after (BA) analysis, we
thenassessed how each populationat each of those sites changed from
beforetoafterthe protected areawas designated. For control-interven-
tion (hereafter Cl) and BACl analysis, we matched each of these protected
populations to unprotected populations surveyed over the same period,
that were similar based on anumber of site and species characteristics.
For CI, we compared populations in the years after the protected area
was designated between unprotected and protected population pairs.
For BACI, we compared change in protected populations from before
to after protected area designation, and then compared this to the BA
change in matched unprotected populations over the same period.
Whether BA, Cl or BACI, we then classified the impact to the popu-
lation as positive, negative or no impact from protection. Next, we
looked to see whether our conclusions about impact varied when we
analysedapopulationinaBA, Clor BACI framework. We found BA and
Clanalyses to be unreliable, so discarded them at this point. Next, we
looked to see whether there were correlates that predicted protected
area impact, by running cumulative link models on BACI data. These
correlated outcome (Positive, Negative or Noimpact) to arange of site
and species level predictors such as protected area size, species body
size, land use type and whether the site was managed for waterbirds.
Finally, we ran sensitivity tests varying arange of parameters that were
used to make analytical decisions to test the robustness of conclusions.
All analysis was completed using R v4.0.3* and QGIS v3.10°, data
figures and base maps were produced using the R package ggplot2*,
impact legends were produced using Inkscape.

Time-series preparation

We took site-specific annual counts from two long term surveys: the
International Waterbird Census (IWC), coordinated by Wetlands Inter-
national, and the Christmas Bird Count (CBC), run by the National Audu-
bon Society. We used Wetland International’s definition of waterbird,
andtook any species from the corresponding families (list of familiesin
Supplementary Information 2). Our initial dataset consisted of 749 spe-
ciesat 45,475 sites, spanning 1940 to 2018. We thenrestricted our data
toonlysites surveyed in December to February. We imputed zeroes, by
taking any site where a species has been observed, and recording any
years where the species was not mentioned as ‘0’ years.

As CBC datais not standardized for effort, we required that these
species showed a log-linear relationship with effort (that is, the rate
of new individuals detected in a search slows with increased effort),
in order to be able to include effort as a term in our models. For each
species, weranasimple negative binomial generalized linear modelin
R, using the glm.nb function from package MASS™, using all available
CBC datafor that species:

log(E (Count))) =B log (h;) (€]

Where Count is all counts of a species and A; is the number of survey
hoursforeach count. Weretained CBC data for all species where there
was a significant positive relationship between count and effort.

Protected and unprotected area data

We first created a dataset of counts at protected sites. We took our
protected areadata fromthe World Database on Protected Areas (‘Pro-
tected Planet’)*?, downloading the full dataset of all protected areas
globally, and overlaying our sites to determine which fell in protected
areas. Some coastal site coordinates fell just outside the land cover layer
that protected areas are aligned to, so we snapped all sites to the base
terrestrial layer used by Protected Planet™, but by no more than10 km.
We removed any sites where the designation status was proposed, and
any United Nations Educational, Scientific and Cultural Organization
(UNESCO) biosphere reserves as these are often not afforded formal
protection®. We next removed any sites where there was no information
about designation date. In some cases, there were multiple protected
areadata entries for asite, in these cases we took the earliest designa-
tion year given. Finally, we reduced the count dataset to only the 10
years before and after the designation date of whichever protected
area the survey site fell within, requiring that at least 7 years before
and after were surveyed (we tested the number of years restricted from
5-15years, and number of years measured from 4-13; Extended Data
Table1a, b, respectively).

We next created a dataset of counts at unprotected sites for Cl and
BACIl analysis. For Christmas Bird Count data, surveyingis conductedin
acirclewitharadius of12.07 km. If there is a protected sitein this circle,
we cannot be sure that the counts are not being biased by protection.
Therefore, we only counted sites as unprotected if no protected area
occurredinthe entire circle. ForIWC data, we included sites that were
atleast1kmfromaprotectedarea, toavoid any confounding of results
fromspill-over effects® (we sensitivity tested this threshold from 500 m
to 5 km; Extended Data Table 1c). We consider sites to be unprotected
until the point in time when a protected area was designated at that
site. For instance, a site, A, could be designated as a protected area
in the year 2000, but this would mean that counts before this point,
say, from the 1980s, would be of waterbirds at a site not experiencing
any benefit of protection. We could therefore match a protected site
from the 1980s to Site A’s counts in the 1980s, and treat A’s counts as
unprotected at this time.

BA, Cland BACl datasets
Inall cases, we defined the ‘after’ period as being the years after, but not
including, the designation date of the protected area. We also defined
cases of ‘all zeros’ to account for local immigrations and extinctions.
Waterbirds are highly mobile and can quickly immigrate to, or emigrate
fromasite. Inthese cases we cannot assess achangein trend between,
for instance, a before period where there are individuals absent and
an after period when they have immigrated to the site (for a detailed
explanation of why immigrations and extinctions pose a problem for
trend analysis, see ref. >*). Theoretically, we should only consider those
caseswherethereare zero countsin all before or after years as ‘all zero’
localimmigrations or extinctions, but because waterbirds are able to
appear asvagrants atasite, we chose to classify cases where at least 70%
of years were zero counts as all zeroes. We tested this threshold from
60-80% (Extended Data Table 1d). Of note, any sites where the species
had never occurred would not be included in the dataset, so even in
cases of all zeroes the species is known to be able to occur at the site.
To create the BA dataset, we took all protected populations where
there were cases of counts (as opposed to all zeroes) in either the before
period, after period or both. We subset the BA dataset to only protected
populations that also occur in the BACI dataset.



To create the Cl dataset, we took all protected populations with
counts (as opposed to all zeroes) in the after period, and matched
these to unprotected populations also with counts over the same time
period (see matching below). We subset the Cl dataset to only protected
populations that also occur in the BACI dataset.

To create the BACI dataset, we matched protected and unprotected
populations, requiring that at least one period (either protected before,
protected after, unprotected before, or unprotected after) had counts
(as opposed to all zeroes).

Matching

Data preparation. We developed astatistical matching method to achieve
matching of BACland Clanalyses. The covariates we used for matching,
how we prepared them andjustification for their use are givenin Extended
Data Table 2, broadly they encompass variables related to climate, land
use and human impact. We removed highly correlated variables by first
calculating the variance inflation factor (using the VIF function fromthe
usdm package inR¥) of all covariates, and iteratively removing variables
witha VIF greater than four until none were over four®, We next removed
variables with a Pearson’s correlation coefficient of over 0.7.

For BACI, we matched only on covariatesinthe years prior to designa-
tion (as protected and unprotected sites might be expected to differin the
yearsafter protected areadesignation, especially on covariatesrelated to
humanimpact). For Cl, we matched on covariates only in the years after
designation, aswe choose to be blind to the ‘before’ period in this analysis.

We then proceeded with matching, separately for each species.
The following describes the procedure for one species.

Mahalanobis distances. We used Mahalanobis distance matching to
evaluate how similar protected and unprotected sites were. Though
Mahalanobis distance has been criticized in the past for performing
poorly when matching on many covariates*°, recent criticisms of the
most commonly used matching method, Propensity Score Matching®,
meant we were interested to test other options and found Mahalanobis
distance matching to perform markedly better in comparisons (Sup-
plementary Information 9).

Mahalanobis Distance (md) computes the distance between points
in multivariate space. The Mahalanobis distance between two sets of
pointsis calculated as follows:

md ;)= | (x-y)' ST (x~y) )

Where x and y are vectors containing values for each covariate (in
our case, therefore, the list of covariate values for sitesxand y) and S
is the covariance matrix of the covariates.

Thisformularequires eachsite to have one value for each covariate,
so we took means of the values for the years pre- (BACI) or post- (CI)
designation.

For each species, we created alarge matrix with protected sites in
columns and unprotected sites in rows, with Mahalanobis distance
values populating the rows. Because we wanted to match exactly onthe
yearsonly prior to protected areadesignation, we first created separate
matrices (using function mahal from R package DOS®?), each containing
only protected areas designated in a certain year (see Extended Data
Fig. 6a, b for an example). Mahalanobis distance requires at least two
protected sites towork (tobe able to calculate the covariance matrix),
and so we could not build Mahalanobis distance matrices for years
where only one protected area in our dataset was designated. This
resulted in a minimal loss of sites.

These Mahalanobis distance matrices were then combinedinto the
larger distance matrix containing all the sites across all designation
years that the species occurred in (Extended Data Fig. 6c¢).

Exact matching. We required that sites were exactly matched on a
number of criteria; where sites failed they were excluded from the

Mahalanobis distance matrix (Extended Data Fig. 6d). For each pro-
tected site, we removed unprotected sites not of the same anthrome
category, continent, and migratory status. We also removed any sites
greater than 500 km from the protected area (we tested this value from
100 kmto 2,500 km; Extended Data Table le).

For BACl analysis, we needed to satisfy the parallel trends assump-
tion**®*, which specifies that the trends of control and intervention
populations in the ‘before’ period must be parallel. To test this, we
modelled the differenceintrends between each protected and potential
unprotected matched population. We used a negative binomial glm
(glm.nb, R package MASS®),:

log(E (Count; ;)) = a+B,Y;+ B,Cl;+ B,Y,Cl; + offset(log(h)) + € (3)

Where the count of the population in year i at sitej is predicted by
the Year (Y), abinary termthatis one for the protected site and zero for
the unprotected site (CI) and the interaction between the two. Log of
effortisincluded as an offset for CBC data (effortis held at one for IWC
data). We also checked for temporal autocorrelation and adjusted the
model if it was present (see ‘Temporal autocorrelation’ below). If the
interaction coefficient (3;) was significant (P < 0.05), then there was a
significant difference between the trend of the two populations, and
the unprotected population was discarded.

If no unprotected sites met the exact match criteria, the protected
site did not have a match and was excluded (for example, Extended
DataFig. 6d, site E).

Picking matches. Next, we ran an optimized greedy nearest-neighbour
algorithm to select, from the Mahalanobis distance matrix (with any
sites not satisfying exact match criteria excluded), the unprotected
site with the smallest Mahalanobis distance. We ran this without re-
placement, meaningeach protected site could be matched to only one
unprotectedsite, to ensure no pseudoreplication. Agreedy algorithm
works through the dataset, picking the best match for each successive
protected site and removing the matched unprotected site from the
potential matching pool as it goes. However, greedy algorithms have
atendency to get stuck in local optima®*, so to account for this, we
ran the greedy algorithm 1,000 times, each time randomizing the or-
der of protected sites that the greedy algorithm would work through.
Wefound the global distance for eachiteration and used the set with the
smallest global distance (Extended DataFig. 6e, for example, with ran-
domizationsinthe figure asmaller global distance would be detected).

Evaluating match quality. Once we had our matched sets for each
species, we needed to ensure that the matches were of a high enough
quality to be used. This was done by assessing the covariate balance
between matched and unmatched sites for each species using the
‘standardized difference in means’ (SDiM), which is calculated using
the following formula®:

Teov = Ceov

! 2

Where T, is the values of covariate cov for protected sites (mean
from the years before and equal to designation), C_,, is the same for
unprotected sites, var is the variance of each of these and d_,, is the
standardized mean difference between protected and unprotected
sites. We assessed the SDiMs to determine whether they were below
0.25for all covariates®®®® (we sensitivity tested this threshold from 0.1
to 0.25; Extended Data Table If). If they were not, the matched pair with
the greatest distance was removed and the SDiM checked again. Once
all covariateshad aSDiM of <0.25 (or the relevant sensitivity value), the
remaining matched pairs were considered the ‘final’matched dataset
for that species (Extended Data Fig. 6f). If fewer than 80% of the sites
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that a species occurred in were remaining, we discarded the species,
to ensure that the matched set was not biased to a certain subset of all
sites for that species (we sensitivity tested this value from 50-90%;
Extended Data Table 1g).

Assessing protected areaimpact

Following the framework set out in ref. >, we defined anumber of ways
thatapopulationcould respondto protection. Broadly, populations can
respond to a protected area by immigrating to the area, going locally
extinctfromthearea, showingachangeintrend over time, or by showing
animmediate change, thatis, animmediate increase or decrease in the
number of individuals (see legends of Fig. 3, Extended Data Figs. 3, 4).

For comparing BA, a population could show animmediate change
or changeintrend, or the population could immigrate to the site or go
locally extinctat the site (Extended DataFig. 3). For comparing BACI, the
BA changes were compared between protected and unprotected sites.
For example, apopulation could be stable inthe period before protec-
tion, and declininginthe period after - thiswould be anegative BA trend
change (Extended DataFig. 3). Butif amatched unprotected population
was also stablein the before period, butdeclining atafaster ratein the
after period, then the BACI trend change would be positive (Fig. 3), as
the protected area had slowed the decline of the protected species, even
ifit hadn’t halted it. If the unprotected population was declining at a
similarrate to the protected populationin the after period, this would
beacase of noimpactunder aBACI framework (Fig. 3). For comparing
Cl, only the difference in trend between protected and unprotected
populations was considered (Extended Data Fig. 4).

All BA, Cl or BACI time periods with all zeroes were categorized as
immigrations or extinctions, for instance, in BACI analysis, if a pro-
tected population had no counts in the before period, but did in the
after period, while the matched unprotected population had no counts
inthe before and after period, this would be classified as alocal immi-
gration (and a positive impact of the protected area).

For time periods with all counts, we ran the following models.
Inall cases Yrepresents the year, centred around the year of protected
areadesignation sothat year of designation equals zero.BAis abinary
term thatis zero in the years before protected area designation, and
one in the years after; note that thisisn’tincluded in the Cl model as
only ‘after’ yearsare used. Clis abinary term thatis zero for the unpro-
tected population and one for the protected population; note that the
Cltermis notincludedinthe BAmodel as thismodel does not include
unprotected populations. Finally, eachmodelincludes an offset term
for effort (h), to account for variable effortin CBC data. For IWC data,
effortis always set to one and so does not contribute to the model.
Allmodels were negative binomial glms, run using R package MASS™;
see ref.> for a more detailed explanation of these models.

For BA:

log(E(Count)) -~ B,+ BBA;+ B,Y,+ B,BAY +offset(log(h)) + € (5)
B, gives theimmediate change and S, gives the trend change®.
For Cl:

log(E(Count)) ~ B, + B,Cl;+ B,Y;+ B,CLY;+offset(log(h)) + €  (6)
pB;givesthedifferenceintrend between protected and unprotected

sites.
For BACI:

Iog(E(CountiJ)) ~ By*+ BBA;+ B,Cl; +B.Y,+ BBACI; + BBAY +
B,Cl;Y; + B.BACL, Y+ offset(log(h)) + €

)

B, gives the immediate change and S, gives the trend change?*.
We excluded any cases where 8, was significant as this indicates a

significant difference between protected and unprotected trends in
the before period, meaning the parallel trends assumption is not satis-
fied. Though we checked for this in matching, running a full model con-
taining ‘after’ data (compared with only ‘before’ data, as in matching)
meant that very occasionally this term became significant, presumably
because of anincrease in power.

In a small proportion of populations, models failed to converge.
In these cases, we removed the population from analysis.

Temporal autocorrelation. Time-series data are vulnerable to the
effects of temporal autocorrelation, where counts in one year are im-
pacted by countsinthe years before, and as aresult are notindepend-
ent, as models assume. Being mobile, we expect less temporal autocor-
relationinwaterbird data thanfor sessile species (waterbird population
numbers can change markedly at asite year to year), but nevertheless
we checked for, and accounted for, temporal autocorrelation in our
data.Foreach population model (whether BA, Cl or BACI; and also for
the models used to check for parallel trends in the matching stage), we
checked for temporal autocorrelation using three implementations of
the Durbin-Watson test in R: durbinWatsontest from package car®,
testTemporalAutocorrelation from package DHARMa®, and dwtest
from package Imtest®. Though each of these implementations per-
forms the same test, variationsin methodology meant we found some
population models had significant temporal autocorrelation under
one, but not another. To be conservative, we decided that if a popula-
tion had significant autocorrelation under any of the three tests, we
considered there to be temporal autocorrelation. If this was the case,
we re-ran the population model as a negative binomial generalized
linear mixed model (using glmer.nb from package Ime4”) including
arandom intercept for year for BA analyses, and site:year for Cl and
BACl analyses, to account for the autocorrelation.

Classifying outcomes. We then classified outcomes. We aimed to
be generous for assigned positive outcomes, and so for BA and BACI,
asignificantly (P < 0.05) positive immediate or trend change (even if
the other was significantly negative) meant that the protected area
was classed as having had a positive impact on the population. If both
immediate and trend were insignificant, then the protected area was
classed as having had no impact. And if either was negative and the
other insignificant, orifboth were significantly negative, the protected
areawas classed as having had a negative impact. We conducted a sup-
plementary analysis to see whether relaxing this P-value would resultin
detecting more positive impacts (see Supplementary Information 12),
results did not affect our conclusions.

For Cl, a significantly positive difference between protected and
unprotected trends was classed as a positive impact, significantly nega-
tive was a negative impact, and an insignificant difference no impact.

Drivers of change

To explore the predictors of protected area effectiveness, we consid-
ered body mass, species migratory status, taxonomic order, the broad
anthrome category (i.e.land use type) of the protected area, protected
area size, and country governance'. See Extended Data Table 3 for
details of how each covariate was obtained.

Totest how these covariates might correlate to protected area effec-
tiveness, we ran cumulative link mixed effects models that allow for
ordinal predictors and random factors, with the response term being
athree-level factor: negative impact, no impact, or positive impact.
To account for spatial autocorrelation, we included arandomintercept
for ‘grid cell’, with sites each assigned to a gridcell of size 2 x the maxi-
mum distance between protected and unprotected sites, depending
on the focal/full parameter analysis (Extended Data Table 1e). In this
way errors are grouped by sites that are closer together. In some of
the 21 analyses, typically those with smaller sample sizes, including
both country and grid cell as random factors meant the model could



not converge; inthese cases we retained only country as arandom fac-
tor. We used the clmm function from R package ordinal”. The model
specification was as follows:

lmpacti‘j'k ~ B, MigatoryStatus, + §, log(BodyMass);
+B, Order; + B, Anthrome; + B, RamsarSPA;
+ B, log(PA siz); + B, MeanGovernance;
+(1i) + (LK) + (k) + (Um) + (Lm:j) €

Where,j, kand mare species, site, country and gridcell, respectively.
Insome sensitivity tests some covariates did not have sufficient popula-
tionstobeableto test them, inthese cases certain levels of the covariate
were removed (for example, if there were not enough populations of
a particular taxonomic order) or in some cases the entire covariate
was removed. Not all protected areas have area data reported, and so
we had to run models only on the subset of data where area data was
available. To ensure this reduced set was not misrepresenting the full
dataset, we alsoran models without the ‘protected areasize’ covariate
and on the full dataset; results were broadly similar (Supplementary
Information 8), and inthe case of BACI, waterbird-managed sites were
more strongly positively associated with outcomes.

We estimated the effect size of management and protected areasize
using the function ggpredict from R package ggeffects’, which returns
odds ratios from the cumulative link mixed models. We estimated effect
size for water-bird managed vs mixed-managed sites, and for 5 quin-
tiles of log(protected areasize): 0.05, 0.25, 0.5, 0.75 and 0.95. For the
effect size reported in the manuscript, we compared the chance of a
positive impact on a population in a mixed-management site in the
0.05th size quintile to the chance of a positiveimpact on apopulation
in a waterbird-managed site in the 0.95th quintile.

Finally, some covariates violated the proportional odds ratio assump-
tionuponwhich cumulative link models rest. To check for the impact of
thisweranindividual binomial generalized linear mixed-effects models
(using function glmer from R package Ime47°) to conduct pairwise
comparisons of outcome levels. These models supported the general
conclusions made in this paper (see Supplementary Information 13
for further details).

Full parameter analyses

Thefocal analysisinevitably is based on somewhat arbitrary model-
ling choices. We therefore ran our models an additional 20 times with
arange of parameter values for decisions such as: the number of years
of countsrequired before and after protection, the threshold at which
we classify ‘all zeroes’, the maximum distance between protected
and unprotected sites for an acceptable match and how similar we
required matched sites to be (Extended Data Table 1). Testing all
parameter combinations was computationally impractical so we used
alatin hypercube sampling method”. This is away to adequately sam-
pleahigh dimensional parameter space whenrandom sampling is pro-
hibitively inefficient; it creates multiple combinations of covariates
that together evenly sample the entire n dimensional sample space.
We randomly created 20 parameter combinations (using func-
tion randomLHS from the R package ‘1hs’”*), which are displayed in
Extended Data Table 1. We call these analyses our ‘full parameter’
analyses (www.govindicators.org).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The waterbird count dataused in this study are collated and managed
by Wetlands International and the National Audubon Society, and are

available on request (http://iwc.wetlands.org/index.php/ and http://
netapp.audubon.org/cbcobservation/, respectively). We requested
all datafromboth providers for the years1900-2018, for all waterbird
families (see Supplementary Information 2), and for sites inall available
countries (though data from Russiawas excluded as permissions were
notgiven). All the data that pertain to explanatory variables are freely
available, as specified in Extended Data Tables 2, 3.

Code availability

The code used to produce all analysis and figures are archived on
Zenodo at https://doi.org/10.5281/zenod0.5794511. Code are also avail-
able on GitHub at https://github.com/hannahwauchope/PAlmpact;
thisis therecommended mode of access asit will contain any updates
or clarifications.
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Extended DataFig.1|Changesinestimates of protected areaimpactunder
different study designs, for all analyses. Proportion of Before-After (BA) or
Control-Intervention (Cl) populations that changed outcome when analysed
under aBACI framework, by each analysis (n =21; 20 full parameter, plus one
focal analysis). Shown for all populations (a), then the proportion of positive
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(b), no (c) or negative impact populations (d) that changed in outcome. Each
pointisananalysis, with boxplots showing distribution (box bounded by 25"
and 75" percentiles, centre shows 50" percentile, whiskers extend to1.5*IQR
above 75" percentile, for maxima, or below 25 percentile, for minima). Large
points show focal analysis estimates.
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Extended DataFig.2|Estimates of protected areaimpactundera BACI
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positively, negatively or notimpacted by protected areas, by each analysis
(n=21;20 full parameter analyses, plus one focal analysis). Each pointis an
analysis, with boxplots showing distribution (box bounded by 25" and 75
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percentiles, centre shows 50" percentile, whiskers extend to 1.5*IQR above 75™
percentile, for maxima, or below 25" percentile, for minima). Large points
show estimates from focal analysis. Panels show estimates under BACI (a),
Before-After (b) or Control-Intervention (c) frameworks.
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Extended DataFig. 3 | Estimates of protected areaimpact under a BA study
design. Proportion of populations (n = 6263) showing various responses to
protection, persite (a; n =860) and species (b; n = 66), whenresponse to
protectionis calculated in aBA framework. Each species/siteis one bar, with
the proportionoftheir populationsin each category shown on the y axis. Bar
widthisscaled tothe number of populations of that species/site in the dataset,

log scaledinthe case of species, with awider bar meaning the species/site has
more populations. Each colour represents a different way a population can
respond to protection, and an example of eachisshown at the bottom. This
figureis based onourfocal analysis; Extended Data Fig.2b shows the
proportion of populations within eachbroad outcome category acrossall full
parameter analyses.
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scaledinthe case of species, withawider bar meaning the species/site has more
populations. Each colour represents a different way a population canrespond
to protection,and anexample of eachis shown at thebottom. This figure is
based on our focal analysis; Extended Data Fig. 2c shows the proportion of
populations within each broad outcome category across all full parameter
analyses.
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We have 6 protected sites, A to
F, varying in their designation
year from 1999 to 2004, and 3
unprotected sites, X, Y & Z.

a) Get covariate values. Each cell
is the average value of each
covariate for all years that are
less than or equal to the
designation year (for BACI
matching), or all years greater
than the designation year (for ClI
matching).

b) Create a mahalanobis
distance (M) matrix. Each cell is
the distance in multivariate space
between sites based on the
covariate means, a greater value
means greater distance.

c) Combine into a full matrix of
distances, using the values from
each designation year matrix.

d) Remove any sites that are
not an exact match (e.g. in
different anthrome, population
showing a different trend
direction).

e) Conduct matching from left to
right. Repeat 1000 times,
randomising column order. The
order with the smallest sum of
distances (in this case 1+2+3=6)
is used for Step f.

f) Assess the distribution of
covariates. If the standardised
difference in means (SDiM) is
>0.25 for any covariate, the worst
match is removed and the SDiM
calculated again.

Extended DataFig. 6 | Schematic demonstrating matching procedure.
Example of the matching procedure for one species, using a toy dataset of 6
protectedsites (AtoF) and 3 unprotected sites (X, Y and Z), with three dummy

For each protected site (columns)
we pick the unprotected site (rows)
with the smallest M.

N < X|=Z

SDiM

E has no exact matches so is
excluded.

A's closest match is X,
removing it as an option for
other sites. B takes Z,
removing that as an option,
etc.

The SDiM of climate
is >0.25, so the worst

M
A X|2 ®0.3 X mach(CY)is
B z|1"/ ——> ¥|0.24 / removed.
CvY|3 %£0.13 /
. Now the SDiM is below

_ﬂ _M 0.25 for all covariates,
A X|2 ®0.19 \/ leaving A-X and B-Z as
B Zl1 \F 0.23 \/ the final matched

i 0.14 \/ dataset.

example covariates, climate (cloud), land use (wheat) and human population
(person).See methods, ‘Matching’ for amore detailed step by step walk
through of this process.



Extended Data Table 1| Parameter estimates and sample sizes across analyses

Analysis  a) Total b) Min number  ¢) Min d) Proportion of  e) Max distance f) Standardised g) Proportion of species’ h) N Protected )N N
years to of measured distance to counts that are between protected difference in populations that must be Sites Species Populations
either side  years to either PA for zero for period and unprotected means threshold  matched to retain species
of PA side of PA unprotected  to be classified sites (km, matching,  (matching, (matching, BACI/CI)
designation _designation sites (km) as “All Zeroes”  BACI/CI) BACI/CI)

Focal 10 7 1.00 0.70 500 0.25 0.70 864 67 7313
1 10 10 0.50 0.68 272 0.12 0.53 209 23 951
2 6 5 1.78 0.71 2091 0.19 0.72 933 77 12475
3 14 13 0.95 0.72 2500 0.25 0.50 282 63 4325
4 7 4 2.95 0.69 587 0.23 0.71 1328 68 6050
5 9 6 2.61 0.70 1986 0.15 0.87 953 17 2709
6 11 10 4.30 0.60 1542 0.21 0.68 395 34 1937
7 12 10 4.73 0.78 785 0.19 0.55 469 55 3784
8 5 4 1.36 0.76 100 0.24 0.63 492 51 1402
9 8 6 222 0.79 1390 0.20 0.84 952 66 11198

10 13 11 349 0.61 1121 0.14 0.53 309 11 677
11 15 10 337 0.62 454 0.17 0.90 493 32 1781
12 12 7 3.83 0.77 2199 0.11 0.81 543 4 686
13 9 8 1.95 0.64 1874 0.22 0.66 592 74 7465
14 5 4 1.56 0.74 1154 0.18 0.85 1115 74 13901
15 11 11 4.08 0.68 648 0.14 0.77 122 7 235
16 6 5 0.88 0.65 1676 0.16 0.64 930 74 11922
17 8 5 4.43 0.62 2402 0.23 0.60 1242 77 8738
18 10 9 3.13 0.80 1401 0.15 0.75 404 16 1184
19 15 10 5.00 0.66 192 0.10 0.57 392 33 1894
20 13 10 2.40 0.75 1010 0.13 0.80 334 5 519

Shows focal parameter estimates, plus 20 estimates from full parameter samples. Parameters are a) the maximum number of years of data the sample can have, to either side of protected area
(PA) designation; b) the minimum number of years that must be sampled, to either side of protected area designation; c) the closest distance an unprotected site can be to a protected area
before it is excluded from analysis; d) the proportion of counts that must be zeroes for the time period to be classified as “All Zeroes”; e) the maximum distance between paired protected and
unprotected sites; f) the standardised difference in means threshold for BACI and Cl matching; g) the proportion of populations that must be matched successfully to retain a species, for BACI
and Cl matching. h), i), j) show the number of protected sites/species/populations in that analysis run (note that BA and Cl will generally be a subset of these). See Supplementary Information 4
for a further taxonomic break down of species in the focal analysis.
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Extended Data Table 2 | Covariates used to perform site matching

Category, reason for inclusion, and variables

Data source

Resolution

Data transformation

to farming land and of potential land value for uses other than protection.
Variables: Nitrogen (g N/m? cropland/yr) & Phosphorous (g P/m? cropland/yr)

(1961-2013)

Climate. This is a key variable that can determine suitability of a site for a species as well as CRU TS4.017 0.5°, monthly | For Dec to Feb values,
likelihood of being designated a PA. (1961-2016) takes value of Dec from
Variables: Total annual precipitation (mm); total precipitation December — February (mm); mean, previous year and Jan &
min, max annual temperature (°C); mean, min, max temperature December — February (°C). Feb of current year.
Fertiliser input. Eutrophication can affect waterbird populations**. It also acts as a metric of distance | Lu & Tian™® 0.5°, yearly NA

Land use. This is a direct measure of nearness to human impact, important for impacts to bird
populations but also for likelihood of protected area designation — protected areas are less likely to be
designated in areas suitable for agriculture and farming”’.

Variables: Anthrome (categorical); grazing land (km%gridcell); irrigated land (not rice,
km?/gridcell); irrigated land (rice, km¥gridcell); pasture land (km?/gridcell); rangeland
(km?/gridcell); rainfed crop land (no rice; km%gridcell); rainfed crop land (rice; km%gridcell)

Human presence. Protected areas are more likely to be designated in areas far from humans’’, and
human presence can also affect waterbird numbers either directly through hunting or through habitat
degradation.

Variables: Human population density (inhabitants/km?gridcell); rural, urban human population
count (inhabitants/gridcell); total built up area (km?/gridcell)

HYDE 3.2.001 ™

5', centennial
(10,000BC-
1600AD)
decadal (1700-
2000), yearly
(2001-2016)

For Anthromes, pre-2000
data taken from nearest
decade. For all other
variables, temporal linear
interpolation to obtain
yearly data between
decades of 1960-2000

Variable: Travel time to nearest city WorldPop 7 1km, yearly Bilinear interpolation to 5’
grid cells

Governance. Governance in a country is a significant predictor of protected area effectiveness'!, World Bank By country, Mean taken across all

meaning it is important we compare protected areas with similar governance. (www.govindicat | 1996, 1998, years because data is only

Variable: Mean of the six World Governance Index metrics (Control of Corruption, Government ors.org) 2000, and available from 1996.

Effectiveness, Political Stability and Absence of Violence/Terrorism, Rule of Law, Regulatory yearly 2002- Therefore, just one value

Quality, Voice and Accountability) 2016 per site for all years.

Water. Water presence is an important covariate for waterbirds, which rely on it for survival. Pekel et al® 30m, 1985- Sum of ‘presence’ 30m?

Variable: Surface water (presence/absence) 2005 cells in each 5’ grid cell

Elevation. Protected areas are biased towards where they can least prevent land conversion’” which WorldPop 7 1km, NA Bilinear interpolation to 5’

often results in them being in high elevation regions. Higher elevation sites are also likely to have grid cells

less pressure and thus have lower biodiversity losses regardless of whether they are protected areas or

not.

Global Region. We wanted populations to be in similar regions to reduce unknown variance in T™M World NA NA

comparisons. Borders #!

Migratory Status. In some cases, species have some migratory and some resident populations. To

Birdlife.org®?

Species range

Each population (site

ensure we were not comparing between populations of different migratory types we exact matched polygons by species combination)
on migratory status. migratory classified based on the
types polygon the site fell within

First, the three categorical variables (anthrome, region and migratory status) were used for exact matching. Next, all continuous variables were assessed for collinearity and highly collinear vari-

ables were removed. The remaining continuous variables were used to calculate mahalanobis distance. Data sources: refs.

75-84




Extended Data Table 3 | Covariates used to assess what factors affect protected areaimpact

within Site)

it was beyond the scope of this study to consider migratory networks). Some species are
migrants in parts of their range and non-migrant in others, so we categorised each population
at each site separately. See Supplementary Information 1 for an extended discussion about
migrants.

Category Variable and reason for inclusion Data source Continuous/Categorical
Species Body Mass. We expected larger species to respond better to protected areas'’, due to the fact | Wilman et al® Continuous
that larger bodied species are more vulnerable to hunting.
Taxonomic group (Order). Different taxonomic groups may respond differently to Birdlife.org® Categorical. Levels:
protection, so we looked for differences between orders. Anseriformes, Pelecaniformes,
Suliformes, Ciconiiformes,
Gaviiformes, Charadriiformes,
Podicipediformes,
Phoenicopteriformes,
Gruiformes.
Species Migration Status. Because migrants are affected by other stressors than just those in their Birdlife.org® Categorical. Levels: Non-
(nested wintering site, we expected migrants would show less responsiveness to protected areas (and migrant, Migrant

Site (nested
in Country)

Anthrome. We expected that sites in more remote regions (i.e. semi-natural, wild) would
show less responsiveness to protection, as these sites are less likely to have been being
exploited in the absence of protection.

HYDE”® (see Extended
Data Table 2)

Categorical. Levels: Urban,
Village, Croplands, Rangeland,
Semi-natural, Wild

Protected area size. We expected larger protected areas to perform better, because of
reduced edge effects. In some cases, sites occurred in multiple protected areas that were of
different sizes and had been designated at different times. In these cases, we used the size of
the largest size protected area, if that area was designated earliest. If not, we took the mean of
the size of all areas.

World Database on
Protected Areas®

Continuous

Protected area Ma t. The best way to assess management would be with the
Management Effectiveness Tracking Tool (METT?®*) but unfortunately this is biased away
from Europe and the USA, unlike our dataset, and only a few of the protected areas in our
dataset are included in the METT. Instead, we chose to compare sites we know to be
managed for birds to other sites, acknowledging that some of the ‘other” sites may also be
managed for waterbirds, but not having the power to ascertain management status of all
cases. We created a category comprised of Ramsar and Special Protected Area (Birds
Directive) sites, which encompasses 55-57% of populations. A full list of waterbird-managed
and other sites is given in Supplementary Information 6.

World Database on
Protected Area®

Categorical. Levels: Waterbird-
managed, mixed managed.

Country

Governance. We expected sites in better governed areas to respond better to protection!!.

World Bank
(www.govindicators.org;
see Extended Data Table
2)

Continuous
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection  Data was received from Wetlands Internation and the National Audobon Society as excel spreadsheets. These were then imported into R
version 4.0.3 for cleaning and collation.

Predictor data were downloaded from various sources online (see Extended Data Table 2 and 3), and were then imported and cleaned in R
version 4.0.3.

Data analysis QGIS 3.10 with plugin NNJoin was used to snap points to data layers when assigning the various predictor variables to each site location,
otherwise R was used for all analysis. Impact legends and other aesthetic figure edits were completed using Inkscape. All R code are available
on GitHub, https://github.com/hannahwauchope/PAlmpact , and final versions will be uploaded to Dryad upon acceptance of the paper.
There are four R scripts used for analysis: 1) Cleaning and Collating Waterbird Data, 2) Extracting Covariate Data, 3) Conducting Matching and
4) Assessing protected area impact, producing figures. All analysis was conducted using R version 4.0.3. Full sessioninfo across the 4 code files
(including all loaded package versions) is as follows:
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Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8

attached base packages:
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grid  parallel stats graphics grDevices utils datasets methods base

other attached packages:

gridExtra_2.3  RColorBrewer_1.1-2 cowplot_1.1.0  ggeffects_1.0.1 ggalluvial_0.12.3 glmmTMB_1.1.2.2 ggbeeswarm_0.6.0
ordinal_2019.12-10 Ime4_1.1-27.1 nlme_3.1-149  Imtest_0.9-38  zoo_1.8-8 DHARMa_0.4.3  car_3.0-11 carData_3.0-4
fields_11.6 spam_2.6-0 dotCall64_1.0-0 DOS_1.0.0 maptools_1.0-2 scales_1.1.1  foreign_0.8-80 resample_0.4
StatMatch_1.4.0 IpSolve_5.6.15 survey_4.0 survival_3.2-7 Matrix_1.2-18 proxy_0.4-24  usdm_1.1-18 MASS_7.3-53
wdpar_1.0.5 sf_0.9-6 ClusterR_1.2.2 gtools_3.8.2  abind_1.4-5 forcats_0.5.0 purrr_0.3.4 readr_1.4.0 tidyr_1.1.2
tibble_3.0.4  tidyverse_1.3.0 rlist_0.4.6.1 chron_2.3-56 dplyr_1.0.2 rredlist_0.7.0 stringr_1.4.0 taxize_0.9.99 ggalt_0.6.2
maps_3.3.0 pbapply_1.4-3  ncdf4_1.17 plyr_1.8.6 rgeos_0.5-5 reshape2_1.4.4 pbmcapply_1.5.0 data.table_1.13.4
raster_3.4-5 ggplot2_3.3.5 rgdal_1.5-18 sp_1.4-4

loaded via a namespace (and not attached):

readxl_1.3.1 uuid_0.1-4 backports_1.2.1 TMB_1.7.18 splines_4.0.3  gmp_0.6-1 foreach_1.5.1  fansi_0.4.1
magrittr_2.0.1 openxlsx_4.2.4 modelr_0.1.8 extrafont_0.17 extrafontdb_1.0 colorspace_2.0-0 rvest_0.3.6 mitools_2.4
haven_2.3.1 xfun_0.19 crayon_1.3.4 jsonlite_1.7.2  iterators_1.0.13 ape_5.4-1 glue_1.4.2 gtable_0.3.0
emmeans_1.5.3  proj4_1.0-10 Rttf2ptl_1.3.8 mvtnorm_1.1-1  DBI_1.1.0 Rcpp_1.0.5 xtable_1.8-4 units_0.6-7
bold_1.1.0 httr_1.4.2 ellipsis_0.3.1  pkgconfig_2.0.3 reshape_0.8.8  dbplyr_2.0.0 conditionz_0.1.0 crul_1.0.0
tidyselect_1.1.0 rlang_0.4.10 munsell_0.5.0  cellranger_1.1.0 tools_4.0.3 cli_2.2.0 generics_0.1.0  sjlabelled_1.1.7

broom_0.7.3 fs_1.5.0 zip_2.1.1 ash_1.0-15 xml2_1.3.2 compiler_4.0.3 rstudioapi_0.13 beeswarm_0.2.3 curl_4.3
el071_1.7-4 reprex_0.3.0 stringi_1.5.3 lattice_0.20-41 classint_0.4-3  nloptr_1.2.2.2 vctrs_0.3.5 pillar_1.4.7
lifecycle_0.2.0 ucminf_1.1-4 estimability_1.3 insight_0.11.1 R6_2.5.0 KernSmooth_2.23-17 rio_0.5.27  vipor_0.4.5

codetools_0.2-16 boot_1.3-25  assertthat_0.2.1 withr_2.3.0 httpcode_0.3.0 hms_0.5.3 coda_0.19-4 class_7.3-17
minga_1.2.4 numbDeriv_2016.8-1.1 lubridate_1.7.9.2 tinytex_0.28 e

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The waterbird count data used in this study are collated and managed by Wetlands International and the National Audubon Society.

The following paragraph is taken from Wauchope et al., 2019, Methods in Ecology and Evolution 10(12):2067-2078, supplementary material. The Audubon
Christmas Bird Count (CBC) has been conducted yearly since 1900, primarily in the US and Canada, and involves a count of all bird individuals within a ‘site’, defined
as a circle 24.1km in diameter. Sites are accessed by a variety of means including foot, car, boat, and snow mobile. Effort varies between sites, but the number of
survey hours spent per count is documented, allowing effort to be accounted for. All CBC data is available on request, from http://netapp.audubon.org/
cbcobservation/.

The following paragraph is taken with thanks from Amano et al., 2018, Nature. 453:199-202, 10.1038/nature25139: Launched in 1967, the IWC is a scheme
involving more than 15,000 observers that monitors waterbird numbers and covers more than 25,000 sites in over 100 countries. The IWC is divided into four
regions, each of which corresponds to a major migratory flyway of the world: the African—Eurasian Waterbird Census (AEWC), Asian Waterbird Census (AWC),
Caribbean Waterbird Census (CWC) and Neotropical Waterbird Census (NWC). The survey methodology is essentially the same across the four regional schemes.
Population counts are typically carried out once every year in mid-January. Additional counts are conducted in other months, particularly in July in the Southern
Hemisphere; for consistency, we used only counts from January and February. Our Northern Hemisphere data therefore relate to non-breeding populations,
whereas those from the Southern Hemisphere also include some breeding populations. In each country that is covered by the survey, national coordinators manage
an inventory of wetland sites (hereafter, survey sites) that include sites of international- or national-level recognition (for example, Ramsar sites, Important Bird
Areas, national parks and so on). Each survey site is generally defined by boundaries so that observers know precisely which areas are to be covered in the surveys.
The observers consist of a wide variety of volunteers, but national coordinators usually train them using materials produced by Wetlands International to ensure the
quality of count data. Survey sites (normally up to a few km2) are typically surveyed by about two observers for up to four hours, but larger sites can require a group
of observers to work over several days. The time of survey on any given day depends on the type of survey sites: inland sites are normally surveyed during the
morning or late afternoon, whereas coastal sites are surveyed during high tide periods (mangrove areas and nearby mudflats are, however, surveyed during low
tides). Surveys cover waterbirds, which are defined as bird species that are ecologically dependent on wetlands29. Counts are usually made by scanning flocks of
waterbirds with a telescope or binoculars and counting each species. Zero counts are not always recorded and are thus inferred using a set of criteria (see below).
Count records and associated information are submitted to the national coordinators, who compile the submitted records, check their validity and submit them to
Wetlands International. Data is available upon request from http://iwc.wetlands.org/index.php/requestingdata

All the data that pertain to explanatory variables are freely available to download, as specified in Extended Data Tables 2 and 3.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[ ] Life sciences [ ] Behavioural & social sciences  [X| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

This study used yearly count data of waterbird species at sites throughout the world, taken from counts made by the International
Waterbird Census and Christmas Bird Count. We analysed how the trend of populations (defined as a species at a site) changed
before and after the designation of protected area, for populations occurring within protected areas, and compared these to how
populations changed in unprotected areas. Protected area data was taken from the world database on protected areas. We used a
number of covariates to identify similar protected and unprotected populations for comparison, these are listed in Extended Data
Table 1. We assessed how various covariates might correlate with protected area impact on population trend, these are listed in
Extended Data Table 2.

We took all count data at all available sites and years for waterbird species (where are a waterbird is defined as any species in the
families Gaviidae, Podicipedidae, Pelecanidae, Phalacrocoracidae, Anhingidae, Ardeidae, Balaenicipi-tidae, Scopidae, Ciconiidae,
Threskiornithidae, Phoenicopteridae, Anhimidae, Anatidae, Pedi-onomidae, Gruidae, Aramidae, Rallidae, Heliornithidae, Eurypygidae,
Jacanidae, Rostratulidae, Dromadidae, Haematopodidae, Ibidorhynchidae, Recurvirostridae, Burhinidae, Glareolidae, Charadriidae,
Scolopacidae, Thinocoridae, Laridae or Rynchopidae) from the International Waterbird Census, acquired by request from Wetlands
International, and the Christmas Bird Count, acquired by request from Audubon

Our sample size was not predetermined and there was no explicit sampling procedure. We conducted site matching to pair protected
and unprotected populations for BACI and Control-Internvention analyses, which could be considered a form of sampling. To do this,
we matched sites using a combination of exact matching and mahalanobis distance matching, conducted by species. For each site by
species combination occurring in a protected area, we identified unprotected sites with the same species that were of the same
anthrome category, continent, and where the species was of the same migratory status (as some species are migratory in some
regions, and resident in others). We then calculated the mahalanobis distance between the two sites, based on a range of climate,
land use and human impact characteristics (see Extended Data Table 2). Within each species, we then removed matches with the
largest mahalanobis distance until the standardised difference in means of matched covariates was below 0.25 (see methods). Any
species for which we could not obtain matches for 80% of sites was discarded, so that we did not get a biased impression of the
impact of protected areas on that species based on the sites we could match. This resulted in an overall bias towards more common
species.

Data was collected from the International Waterbird Census, acquired by request from Wetlands International, and the Christmas
Bird Count, acquired by request from Audubon, for the years 1900 to 2018.

All available counts were taken from 1900 to 2018. Spatially, counts were taken from all available locations in the Christmas Bird
Count and International Waterbird Census, with no filtering, except that counts from Russia (a small amount) were removed as
permissions for use were not given. Further filtering as described in the methods of the paper (e.g. requiring a certain number of
years of sampling before and after the designation of a protected area) meant that the spatial distribution of samples was biased
towards Europe and North America

After acquiring our data we removed the following:

- Samples without coordinate information.

- Samples taken outside the wintering months of December to February (Northern Hemisphere) and June to August (Southern
Hemisphere)

- Christmas Bird Count samples where the effort was listed as zero (i.e. no recording of the amount of effort that went into collecting
the sample)

- Samples where multiple site names were attributed to the same coordinate (indicating confusion as to how multiple sites could
occur in the same place)

- International Waterbird Census samples where coordinates were clearly wrong (e.g. in the center of a city. As decided by Amano et
al., 2018, Nature, 553.

- Any counts of hybrid species

This resulted in a dataset of 749 waterbird species at 45,745 sites

As our analysis was not experimental we could not conduct replicates of experiments. However, we did need to make a number of
decisions regarding various parameter estimates, such as years of sampling required, the maximum geographical distance between
sites, or the strictness of matching. To ensure that our results were not vulnerable to these various decisions, we ran our entire
analysis 21 times: one ‘focal analysis’ using our best guess parameter estimates, plus 20 analyses using estimates sampled from a
plausible range for each parameter using latin hypercube sampling. Because results from these 21 analyses agreed, we can be
confident our results are robust to these parameter estimates.

We did not perform randomisation or allocate samples into groups, due to the observational nature of our study. In order to
approximate a random experimental design, we conducted a BACI (Before-After-Control-Intervention) analysis by matching
protected and unprotected sites. This is described in detail in the methods.

Before conducting analysis we wrote a pre-analysis plan in order to blind ourselves to our analysis, and prevent us from
hypothesising after results were known or adjusting analysis to suit outcomes (Wauchope, H. et al. Quantifying the impact of
protected areas on near-global waterbird population trends, a pre-analysis plan. Peer]) Prepr. 7, e27741v, (2019).) The pre-analysis
plan details our intentions for analysis, and analytical decisions. Once we conducted analysis, we found that we had not anticipated a
number of decisions. Any deviations that we made from the pre-analysis plan are specified in supplementary material section 7.
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Did the study involve field work? |:| Yes No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
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Human research participants

Clinical data
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Dual use research of concern

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals NA

Wild animals We used observation data on 749 waterbird species, age and sex were not identified. This data was collected by the International
Waterbird Census (managed by Wetlands International) for regions outside North America, and the Christmas Bird Count (managed
by Audubon) for North America.

Field-collected samples  NA

Ethics oversight No ethical approval was required as we were using already obtained data from established NGOs.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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