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Modelling the distribution of migratory species has rarely been extended beyond breeding and wintering ranges despite 
many species showing much more complex movement patterns with multiple stopovers. We aimed to create a temporally 
explicit species distribution model describing the full annual distribution cycle, and use it to model the complex seasonal 
shifts in distribution of the common cuckoo Cuculus canorus, a declining long-distance migrant. To do this we used 
full-year satellite telemetry occurrence data, with their associated temporal information, to inform a temporally explicit 
species distribution model using MaxEnt. The resulting full-year distribution model was highly predictive (AUC  0.894) 
and appeared to have generality at the species-level despite being informed by data from a single breeding population. 
Comparison of our methodology with seasonal distribution models describing the breeding, winter and migration ranges 
separately showed that our full-year method provided more general and extensive predictions and performed better when 
tested with an independent dataset. When species distribution models based on a single season exclude environmental 
conditions experienced by birds in other parts of the annual cycle they risk underestimating niche breadth and neglecting 
the importance of stopover habitat. Conversely, models which simply average conditions across a season may miss the 
significance of finer scale within-season movements and overestimate niche breadth. In contrast, our framework for a full-
year migrant distribution model successfully captures the finer-scale changes expected in seasonal environments and can be 
used to inform conservation management at every stage of migration. The full-year model framework appears to produce 
temporal distribution models generalised to the species-level from occurrence data limited to few individuals of a single 
population and may have particular utility when aiming to describe the distribution of species with complex migration 
patterns from telemetry data.

Widespread population declines in long distance avian 
migrants have been observed over the past 25 years (Sanderson 
et al. 2006, Heldbjerg and Fox 2010, Runge et al. 2014, 
Vickery et al. 2014). Migrant species are considered especially 
vulnerable to environmental change due to their dependence 
on multiple locations for survival (Newton 2004, Klaassen 
et al. 2012, Runge et al. 2014, Runge et al. 2015). However, 
addressing these declines is complicated by incomplete 
knowledge of migrant wintering zones and migratory routes 
(Bridge et al. 2011). Although relatively precise migration 
tracks are now published for many migrant species (Klaassen 
et al. 2010, Willemoes et al. 2014) the emerging challenge 
is how to extract species-level distributions from these data 
representing relatively few individuals from relatively few 
breeding populations. Species distribution models (SDMs) 
offer a framework for such general inference from limited 
observational data. SDMs have many practical applications 
for conservation such as highlighting parts of the annual 
range in which species could be habitat limited, or predicting 
future changes in range with contemporary climate change 
(Barbet-Massin et al. 2009).

For migrant species, there are several complications when 
trying to fit SDMs because of migrants’ dependence on 
seasonally changing landscapes and associated movements. 
Existing methodology for migrant SDMs typically do not 
include fine-scale temporal information, and instead cre-
ate separate models to describe different parts of the annual 
cycle, based on seasonally averaged conditions (Peterson 
et al. 2005, Batalden et al. 2007, Gschweng et al. 2012, 
Cardador et al. 2014, Hayes et al. 2015). This seasonal 
approach may be appropriate where research is addressing 
a regional or landscape-scale issue in a subset of the range 
(Gschweng et al. 2012), or when there is strong evidence that 
a species is a niche switcher, changing its ecological require-
ments substantially between seasons (Martinez-Meyer et al. 
2004). In many cases, however, these seasonal models may 
only reflect a small portion of the niche as they draw their 
occurrence data from just a small portion of the annual cycle 
(Colwell and Rangel 2009, Phillips et al. 2009). As such, 
their output may be over-fitted to these seasonal data and 
lack the generality needed to describe distributions at the 
species level, or to project distributions to new regions or 

© 2017 The Authors. Journal of Avian Biology © 2017 Nordic Society Oikos
Subject Editor: Catherine Graham. Editor-in-Chief: Jan-Åke Nilsson. Accepted 6 April 2017

Journal of Avian Biology 48: 1624–1636, 2017 
doi: 10.1111/jav.01476



1625

climates. Creating multiple models for a single species also 
presents a challenge when attempting to describe the com-
plete distribution of complex migrants with multiple stop-
over areas, itinerant species or nomads (Jonzén et al. 2011). 
Stopover conditions have been shown to affect population 
sizes (Runge et al. 2014), but are essentially neglected in 
seasonal SDMs for migrants. To effectively model a migrant 
species’ distribution, therefore, we should not only strive to 
reduce spatial bias in sample data, but also to capture the 
full range of annual conditions experienced by the species to 
more accurately describe the entire niche (Heikkinen et al. 
2006, Kearney et al. 2012, Laube et al. 2015).

Fink et al. (2010) developed a spatiotemporal exploratory 
model (STEM) to deal with the spatiotemporal biases 
inherent in citizen science data (Hochachka et al. 2012). 
They created a range-wide ensemble model by scaling up 
from a set of models of lesser extents (in both space and 
time) and showed that pooling data over a larger region in 
the STEM provided a more realistic model for the changing 
spatiotemporal distribution of a migrant Tachycineta bicolor 
than a static SDM or smaller range STEM models (Fink 
et al. 2010). The temporal variation in distributions is not 
modelled explicitly in the STEM framework where habitat 
choice is only modelled based on static habitat assignments 
and does not take into account the seasonal states of the 
habitat when used by the birds.

Satellite telemetry provides temporally-explicit occurrence 
information for migratory species with quantifiable accura-
cies. Telemetry datasets avoid many of the spatial and tem-
poral biases inherent in traditional occurrence data. For 
example, telemetry datasets allow for regularised temporal 
and spatial sampling schemes thus avoiding the often seen 
discrepancy between high and low latitude datasets (Boakes 
et al. 2010). Satellite telemetry data are also unaffected by 
anthropogenic landscape features such as road proximity 
or by human population size (Reddy and Davalos 2003). 
Furthermore, when considering migrant species, the high 
potential for an individual to move significantly between 
telemetry records implies that each telemetry occurrence is 
spatially independent of the location of the other records. 
However, as satellite telemetry datasets are often based on 
information from relatively few individuals, they can be dif-
ficult to generalise. Despite this drawback, satellite data have 
been successfully used in SDMs highlighting certain seasons 
or regions of migrant species’ ranges (Martinez-Meyer et al. 
2004, Edrén et al. 2010, Gschweng et al. 2012, Limaiñana 
et al. 2015) and it constitutes a promising resource for 
building SDMs (Hebblewhite and Haydon 2010).

One of the many migrant populations to be studied using 
satellite telemetry in recent years is the South Scandinavian 
population of common cuckoos Cuculus canorus (hereafter 
‘cuckoo’). The cuckoo is one of the many sub-Saharan 
avian migrant species in decline (Vickery et al. 2014), with 
the population in Denmark declining by more than 20% 
between 1975 and 2015 (Fenger et al. 2016) and even more 
dramatic declines of almost 50% being reported in the 
United Kingdom over a similar period (Gregory et al. 2004). 
The South Scandinavian population exhibits a complex loop 
migration between its European breeding grounds and its 
main wintering grounds in south-west-central Africa, with 
six distinct non-breeding sedentary periods (stopovers). As 

the tracked cuckoos spent an average of 141 days of the year 
neither actively migrating, nor at the breeding or winter 
grounds (Willemoes et al. 2014), the non-breeding stopover 
sites are likely important habitat with an impact on survival. 
We need to understand the full seasonal distribution of these 
declining migrants (including their stopovers) to enable their 
effective conservation and management.

Here, we use satellite telemetry data from cuckoos 
in a temporally explicit SDM to capture the full annual 
spatiotemporal cycle of a migrant species in a single 
niche model. Unlike previous temporally-specific models 
(Peterson et al. 2005, Batalden et al. 2007, Fink et al. 
2010), this is accomplished with a single underlying model 
describing the full year, rather than separate models for sep-
arate seasons, by averaging the output of multiple models 
or by building an ensemble model. By allowing conditions 
experienced by the cuckoos throughout the whole year to 
influence overall model fit we make the assumption that 
cuckoos are tracking their niche throughout migration, and 
take a broad view of the niche as the full annual set of con-
ditions capable of supporting the species, rather than split-
ting the niche into separate sets of seasonal requirements. 
However, as the cuckoo is a brood parasite the occurrence 
of host species likely affects the breeding distribution of 
the species and could result in apparent niche switching 
between the breeding season and the rest of the year. To 
account for this possibility, we additionally build a model 
for the non-breeding season only and compare its output 
with the full-year model. Finally, for comparison with the 
full-year model, we present a set of seasonal models (each 
built using only occurrence data from within the relevant 
season). We compare the predictive performance of these 
models and the correspondence of their predicted distribu-
tions with published distribution maps and an independent 
data source to test whether models built with occurence 
data from a very limited set of individuals can effectively 
scale up to the population or species level.

Material and methods

Satellite tracking

Seven (four male, three female) adult cuckoos from south 
Scandinavia were caught in mistnets, fitted with satellite 
transmitters (Solar PTT-100s, Microwave Telemetry Inc.) 
and later initiated migration. Transmitters operated on a 10 h  
on and 48 h off duty cycle, with the potential for multiple 
points to be logged within each duty cycle. Data were 
obtained between May 2010 and June 2013. Full details of 
this procedure are described by Willemoes et al. (2014).

Presence data preparation

Occurrence points were filtered to include only points accu-
rate to within 1.5 km (Argos location quality classes 1, 2 
and 3) (Argos 2011). SDMs work under the assumption of 
low spatial and temporal autocorrelation in the occurrence 
data. This is a reasonable assumption for our data, due to 
the high potential for cuckoo movement between points and 
the relatively coarse temporal grain (monthly) which we aim 
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to model. To further reduce spatial autocorrelation in the 
dataset we removed points generated by an individual that 
were located within 1 km of each other or were recorded 
within a two-hour period. We filtered the remaining set to 
only include one point/individual/day between sunset and 
sunrise to avoid nightly roosting locations being over-rep-
resented in the dataset. Finally, to prevent any one month 
or season from influencing the modelling process dispropor-
tionately, the dataset was randomly subsampled to create a 
training dataset with an equal sample size for each month 
(n  50). Where high quality data were sparse in April 
(n  45) and August (n  17), data selection criteria were 
relaxed to allow inclusion of multiple points between sunset 
and sunrise. High quality points discarded during this pro-
cess were saved for model testing. This left a training dataset 
of 600 points and a testing dataset of 542 points (Supple-
mentary material Appendix 1 Table A1).

Whilst we consider most of our data to be representative 
of the cuckoo’s niche and have spatial independence, the 
same is not necessarily true for points collected during the 
breeding season. Firstly, as a brood parasite, the cuckoo’s 
breeding season distribution may be equally affected by the 
distribution of their host species as by their own ecological 
niche. This makes their resource needs more complex in the 
breeding season compared to the rest of the year (Williams 
et al. 2016) and means the inclusion of these data may 
jeopardise the ability of the model to generalise to the full 
year. Secondly, unlike the rest of the dataset, the breeding 
season data do not have spatial independence, as the original 
trapping locations of the satellite tracked birds were selected 
by the researchers and multiple birds were sampled within 
relatively limited areas. An alternate dataset was there-
fore maintained which excluded the breeding season data 
(hereafter called the ‘full-year without breeding’ model) to 
allow for comparison of both model projections.

MaxEnt

We used the MaxEnt software package (ver. 3.3.3k) (Phillips 
et al. 2006, Phillips and Dudik 2007) for modelling, as 
one of the leading algorithms for presence-only data in 
contemporary climate based SDMs (Elith et al. 2006).

As MaxEnt predictions are affected by the extent of 
the background (VanDerWal et al. 2009), the background 
extent should encompass the full geographical range of 
known species occurrence, but not exceed it (Elith et al. 
2011). Given the wide distribution of the cuckoo (BirdLife 
International and NatureServe 2014) this study defined 
a two continent background (Europe and Africa) delim-
ited by –40°–75° latitude and –20°–60° longitude. The 
extent included areas from the western coast of Africa, as 
far east as the Ural Mountains, and from northern Norway 
to the southern tip of Africa. Offshore islands (including 
Greenland, Iceland, Yuzhny Island, Madagascar, Cape Verde 
and the Canary Is.) were removed from the background as 
they are unlikely to be part of the cuckoo’s distribution.

Using the R package ‘dismo’ (Hijmans et al. 2016), we 
randomly sampled 100 000 points within the terrestrial 
background area. Given our large background area and the 
temporal aspect of our model, we used ten times the default 
number of background points (10 000). Background points 

were split evenly into 12 monthly categories. We verified 
that the background points for each month span the range 
(at least 90%) of global values likely to be encountered by 
the cuckoo for each environmental variable (Supplementary 
material Appendix 1 Table A2).

Environmental variables

Simple models, with expertly selected predictors are preferable 
for studies, such as this, aimed at niche description (Austin 
2002, Merow et al. 2014). To this end, we informed the 
model with a limited set of four climatic variables, each with 
a strong ecological rationale. The cuckoo is an insectivore, 
specialising in a caterpillar-based diet throughout the whole 
year (Payne 2005). This leads to the assumption that the 
cuckoo migrates to track invertebrate (principally caterpil-
lar) abundance through space. As forest caterpillar survival 
is optimised by hatching at the time of budburst (van Asch 
and Visser 2007) we expect that caterpillar abundance will 
also peak at this time. As budburst advances with maximum 
monthly temperatures (Buse and Good 1996, Karlsson et al. 
2003), and temperature has been shown to define the dis-
tributions of many species (Root 1988) this was included 
as the first model variable. The average precipitation of the 
month prior to cuckoo arrival was included as the second 
predictor, because of the limiting effect of precipitation on 
budburst in some tree species and regions (Pinto et al. 2011). 
As birds are sometimes thought to maximise primary pro-
ductivity on their migration routes (Bridge et al. 2016) and 
a previous study found that cuckoos track high NDVI val-
ues through space (Thorup et al. 2017), we included mean 
monthly NDVI as our third predictor. Finally, the timing 
of budburst can be described by a sharp increase in local 
NDVI through time (Soudani et al. 2012), so we included 
derived data showing the difference in each month’s mean 
NDVI from that of the previous month, such that positive 
values indicate increased NDVI since the previous month 
and negative values indicate decreasing NDVI.

Precipitation and temperature data for each month 
were obtained from the WorldClim database ver. 1.4 
(Hijmans et al. 2005) at a 30-seconds resolution to make 
an approximate match with the spatial grain of our sample 
data. We extracted NDVI data at a 1 km resolution for 
each month (NASA 2015). We used the R package ‘raster’ 
(Hijmans 2015), to create the NDVI difference layers and to 
extract the temporally relevant data to each presence point 
and each background point.

MaxEnt modelling

As MaxEnt model output can be highly sensitive to model 
settings (Merow et al. 2013) we underwent a model selection 
process using ENMTools ver. 1.4.3 (Warren et al. 2008). 
The monthly outputs of models using each feature type (and 
high ranking combinations thereof ) and different regularisa-
tion values (0.5, 1, 2, 3, 4) were ranked according to their fit 
to the data using AICc (Supplementary material Appendix 
1 Table A3). Feature types allow different transformations of 
the data and regularisation values determine how closely the 
model is fit to the data (with low values being highly fit and 
higher values being more smoothed). The best regularisation 
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Seasonal models

In order to provide a comparison between our modelling 
framework and previous techniques for migrant SDMs, 
we constructed a set of four seasonal models representing 
the breeding season, autumn migration, winter and spring 
migration. We trained each model with data from only the 
corresponding season. Occurrence points from the full-year 
dataset (Supplementary material Appendix 1 Table A1) were 
spatially divided into the four seasons, largely following 
Willemoes et al. (2014) (Supplementary material Appendix 1 
Fig. A2). The same predictors and model settings were used 
as for the full-year model. Seasonal precipitation, NDVI and 
NDVI difference layers were made by averaging raster lay-
ers for each month included in that season (May–July for 
the breeding season, July–November for autumn migration, 
October–April for the winter, March–May for spring migra-
tion). Maximum monthly temperature was calculated as the 
maximum value for the season. Each season was then rep-
resented in a single model projection. To test whether the 
background extent impacted model predictions we repeated 
the process with reduced background latitudinal extents rel-
evant to each season (north of 35°N for the breeding season; 
between 0°N and 55°N for the migration seasons; south of 
15°N for the winter) (Supplementary material Appendix 1 
Fig A3). The resulting projections were qualitatively similar, 
but covered a somewhat reduced total extent. To maintain 
a conservative comparison between the full-year model and 
the seasonal models we only continued analysis with seasonal 
models built using the full-year background extent.

Model analysis

Model performance was assessed using AUC (area under the 
receiver operator curve). Although we are aware of potential 
shortcomings of the AUC statistic as a measure of model fit 
(Lobo et al. 2008), we include it due to its high prevalence 
in the literature and the lack of a threshold-independent 
alternative for presence-only data (Merow et al. 2013). As 
a measure of threshold-dependent model fit we used TSS 
(Allouche et al. 2006). The area of predicted occurrence (area 
with a logistic score above the threshold value) was calculated 
for each month of the full-year model and for the seasonal 
models using the ‘raster’ package (Hijmans 2015) and plot-
ted using ‘ggplot2’ (Wickham 2009).

The full-year model performance was compared to the 
seasonal models in terms of its fit to the data with AUC and 
TSS statistics.

Each monthly projection from the full-year model was 
combined into a single binary map showing the full pre-
dicted annual cuckoo distribution, using the logistic thresh-
old value which maximised TSS (0.12). The same process 
was followed to combine the seasonal models into a single 
binary distribution where thresholds were chosen for each 
season to maximise TSS (0.11 for breeding, 0.18 for autumn 
migration, 0.27 for winter, 0.11 for spring migration). Maps 
showing the estimated annual cuckoo distribution (BirdLife 
International and NatureServe 2014) were overlaid with 
each map and the correspondence visually assessed.

Cuckoo occurrence data were also obtained from the 
GBIF database population (global biodiversity information 

values for each month were averaged for the final output and 
the most appropriate features were selected by a consensus 
approach (Supplementary material Appendix 1 Table A3). 
This process led to our selection of quadratic and linear fea-
tures with a regularisation value of 4.

MaxEnt produces a ‘raw’ output, which reflects the rela-
tive probability that an individual originated in each cell; 
and a ‘logistic’ output which is a rank conserved transfor-
mation of the raw output that defines the probability of 
species presence in each cell and allows for comparison 
between models of different extents and background sam-
pling regimes. There has been recent debate over whether it 
is preferable to interpret only the raw MaxEnt output and 
limit inference to relative probability in order to avoid the 
need to estimate (unknown) prevalence (i.e. the propor-
tion of occupied sites in the landscape) (Royle et al. 2012, 
Hastie and Fithian 2013, Merow et al. 2013, Phillips and 
Elith 2013). As our analysis focuses mainly on thresholded 
output (in which the logistic output is transformed to a 
binary presence/absence grid), which is not sensitive to 
prevalence (Supplementary material Appendix 1 Fig. A1),  
and to allow easier comparison with other models, we 
present the logistic output modelled with the default 
prevalence setting of 0.5.

The objective threshold rule ‘maximum training sensitiv-
ity and specificity’ was applied to convert the probabilistic 
output to a binary prediction showing presence and absence. 
This approach is the statistical equivalent of maximising the 
true skill statistic (TSS) for presence-only data (Allouche et al. 
2006) and has been shown to have low variance irrespective 
of whether presence-only or presence-absence data were used 
(Liu et al. 2013). Furthermore, unlike other popular measures 
of threshold-dependent fit such as kappa, TSS is insensitive to 
prevalence and it gives equal weighting to both sensitivity and 
specificity (Allouche et al. 2006, Liu et al. 2013).

Environmental layers were supplied to MaxEnt in the 
‘samples with data’ format without location information. 
This approach keeps all the temporal information that 
is needed to effectively describe the full distribution of a 
migrant species at a monthly scale and allowed for the same 
geographic location to be associated with multiple environ-
mental conditions at different times of year. The MaxEnt 
model was then projected to geographic space in raster layers 
depicting climatic conditions for each calendar month. We 
then underwent the same process for the ‘full-year without 
breeding data’ model.

Crossvalidation

Crossvalidation checks were performed on the predictions 
to test for individual, annual or monthly idiosyncrasies 
in the model (Gschweng et al. 2012). To achieve this, the 
training data were partitioned to exclude each individual, 
sex, year and month in turn, and model performance was 
then tested with the excluded group. No substantial drop in 
model performance was detected after excluding any month, 
individual, sex or year. This indicates that, in common with 
other recent studies using satellite tracking data in SDMs 
(Gschweng et al. 2012) there is little signal of bias due to the 
low number of individuals in our dataset (Supplementary 
material Appendix 1 Table A4).
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for the cuckoo is at its lowest in Africa between May and 
September. However, as this time coincides with the peak 
availability in Europe, global availability is actually at its 
highest in the summer months (Fig. 2).

Mean monthly NDVI was the greatest single contribu-
tor to AUC for the full-year model (Table 1). Highest mod-
elled probabilities of cuckoo presence occur at high NDVI 
(0.8 and above); moderately high (175 mm) precipitation in 
the previous month; a moderately high (25°C) maximum 
monthly temperature, and a high difference from the previ-
ous month’s NDVI (Fig. 3). However, inspection of response 
curves highlighted a differential response to the predictors 
between the breeding season and the rest of the year, with a 
tight clustering of breeding season points away from the rest 
of the data (Fig. 3). This effect is visible in all four predic-
tors, but is most evident in maximum monthly temperature. 
This is indicative of niche switching where one tempera-
ture is preferred during the breeding season, but another is 
selected in the winter and could argue against the inclusion 
of breeding data in the full-year model. However, excluding 
the breeding season data from the full-year model made very 
little difference to model projections for Africa throughout 
the year, both in terms of the geographic spread of suit-
able areas and the total area of occurrence (Supplementary 
material Appendix 1 Fig. A4, A5). Conversely, excluding 
the breeding season data, unsurprisingly, seems to compro-
mise model fit during the breeding season and results in a 
less close match for what is known of the European cuckoo 
distribution (BirdLife International and NatureServe 2014) 
(Fig. 1, Supplementary material Appendix 1 Fig. A4).

Seasonal models

All four seasonal models generated very high AUC scores 
and a low difference between the training AUC score and 
the test score (breeding season: training AUC  0.987, test 
AUC  0.982; autumn migration: training AUC  0.912, 
test AUC  0.950; winter: training AUC  0.973, test 
AUC  0.961; spring migration: training AUC  0.973, 
test AUC  0.985) (Swets 1988). The true skill statistic also 
indicated a very good model fit under the threshold ‘maxi-
mum test sensitivity plus specificity’ for autumn migration, 
winter and spring migration (TSS  0.670, 0.878 and 0.880 
respectively) and an adequate fit for the breeding season 
(TSS  0.584). All four parameters were maintained in each 
of the seasonal models, but combinations of linear and qua-
dratic features varied between models.

The breeding season model produces a very limited and 
patchy area of predicted occurrence, with the highest prob-
abilities centered on the northern parts of the known breed-
ing range, especially in the United Kingdom, south and 
central Scandinavia and far northeastern Europe (Fig. 4a). 
The output for autumn migration shows a relatively exten-
sive area of predicted presence across a wide longitudinal 
band of sub-Saharan Africa (Fig. 4b). The predicted winter 
distribution is focused on the Congo Basin and Angola (Fig. 
4c). Finally, the spring migration stopovers are predicted to 
occur in a narrow latitudinal band of coastal West Africa and 
northern parts of the Congo Basin (Fig. 4d). According to 
the seasonal models, the lowest area of occurrence is during 
the breeding season (Fig. 4).

facility 2015) to provide an independent dataset with which 
to compare the two models’ abilities to predict the species-
level distribution beyond the population-level data. The 
GBIF records for Cuculus canorus were downloaded and then 
grouped by observation month to match the time-frames 
of each seasonal model. These seasonal GBIF datasets were 
cleaned to remove apparently erroneous records (defined as 
those falling outside of the reduced background extents for 
each season in Supplementary material Appendix 1 Fig A3). 
This left a total GBIF dataset of 177 714 points. However, 
as the data were so heavily weighted towards records from 
the breeding season (with 5844 points available for June 
and only 43 points available for December) we produced 
five replicate datasets (n  516) in which 43 points were 
randomly sampled without replacement from each month. 
Correspondence between these GBIF records and the model 
projections was assessed with the test AUC statistic and by 
considering the percentage of GBIF records covered by the 
predictions.

All analyses (except for the MaxEnt model itself ) were 
performed in R Studio ver. 1.0.44 (RStudio Team 2015).

Results

Full-year model

Our modelling framework resulted in an excellent fit for 
the full-year model with a high AUC value and a low dif-
ference between scores for training and test data (train-
ing AUC  0.894, test AUC  0.893) (Swets 1988). The 
true skill statistic also indicated a good model fit under 
the threshold ‘maximum training sensitivity plus specific-
ity’ (TSS  0.648). Examination of the MaxEnt l output 
showed that all parameters were maintained in the final 
model, with both linear and quadratic features with the 
exception of maximum monthly temperature which was 
only retained with quadratic features.

Monthly projections predict the highest probability win-
ter (November–February) occurrence in southwest central 
Africa (mainly in DR Congo, Congo, Gabon, Equatorial 
Guinea, Cameroon and the Central African Republic) and 
along the south-eastern coast of Africa (largely in Tanzania 
and Mozambique). However, predicted winter presence is 
extensive and encompasses all of sub-Saharan Africa with the 
exception of the western halves of South Africa and Namibia 
and the Horn of Africa. In spring (March–April), this wide 
extent is largely maintained, but the highest probability areas 
move to the northwest, focused around the Gulf of Guinea 
from Sierra Leone to Nigeria. The predicted area of occur-
rence in Africa contracts northwards through the summer 
(May–August), but still leaves substantial suitable areas 
south of the equator. The projection spreads through Europe 
during the summer, and by June Europe is largely predicted 
suitable, with the exception of parts of Spain and north-
ern Scandinavia. The prediction includes much of Russia 
but excludes countries East of the Caspian Sea. In autumn 
(September–October), predicted occupancy in Europe con-
tracts southwards, and the highest probability of occurrence 
is predicted in a latitudinal band across central Africa, south 
of the Sahara (Fig. 1). The total area of predicted occurrence 
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Full-year vs seasonal models

Combination of the model projections (12 months for 
the full-year model and 4 seasons for the seasonal model) 

NDVI was the greatest single contributor to AUC  
for each seasonal model (except the breeding season  
model where it was the second most important factor) 
(Table 1).

Figure 1. Logistic full-year model output showing probability of cuckoo presence throughout the year. Black points show cuckoo 
occurrence points used in model building from each month. Black outlines in Europe and Africa show the estimated area of cuckoo occur-
rence in the breeding and winter seasons respectively according to Birdlife International and NatureServe (2014). Areas of predicted pres-
ence according to the threshold rule are shown in yellows, oranges and reds. Probabilities below the threshold are shown in shades of blue.
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Discussion

Our modelling framework produces an annual species 
distribution model for the common cuckoo with a high 
discriminatory power. SDMs for migrant species tradition-
ally focus on distinct breeding-season and winter-season 
models but we have incorporated conditions experienced 
by the cuckoos in their multiple stopovers. As conditions 
in migratory stopovers can influence population size (Runge 
et al. 2014), this is a critical consideration for conservation 
purposes. By including temporal information describing 
the seasonally changing conditions, our SDM captures the 
full annual range of a migrant within a single framework. 
The framework may be generally applicable when aiming to 
extract species-level generality from population-level data for 
species with complex migrations.

Our SDM was informed by just four climatic vari-
ables: 1) maximum monthly temperature, 2) NDVI, 3) 
mean precipitation of the previous month, 4) difference in 
monthly NDVI from that of the previous month. Whilst 
our study was not primarily focused on optimising the 
selection of the environmental variables, the high model fit 
suggests that these are indeed useful parameters to predict 
the cuckoo distribution. Similar variables (mean precipita-
tion, mean monthly temperature and NDVI) were also used 
in a recent study describing the distribution of 26 Sylvia 

produced quite different pictures of the full annual dis-
tribution of the cuckoo. The full-year model projection 
was very closely matched to the estimated distribution 
from BirdLife International and NatureServe (2014), but 
the combined seasonal models encompassed only a small  
portion of that range with large areas of under-prediction 
in the Eurasian breeding grounds and the South-East 
African part of their winter range (Fig. 5). The complete 
annual distribution from the combined seasonal models 
covered just 45% of the area encompassed by the full-year 
model, with the largest discrepancy in Europe where the 
seasonal models cover just 13% of the area of the full-year 
model.

In terms of AUC score the full-year and seasonal models 
performed similarly at predicting the occurrence of the 
GBIF data (full-year AUC test  0.690; breeding AUC 
test  0.693; autumn migration AUC test  0.780; winter 
AUC test  0.609; spring migration AUC test  0.559, 
mean seasonal AUC test  0.660). However, only an aver-
age of 28% (25.5–29%) of the GBIF occurrence points 
fell within the predicted distribution from the seasonal 
models compared with 90% (88.6–91%) with the full-
year model (Fig. 5), implying that even though the models 
achieve similar AUC, that of the seasonal models may be 
driven by increased specificity without achieving adequate 
sensitivity.
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Figure 2. Predicted area of occupancy for the cuckoo through the full year. Areas above 30° latitude as shown as ‘Europe’ and areas south 
of 30° latitude are denoted as ‘Africa’. Model built using training occurrence data that included breeding season locations. Data are shown 
cumulatively with available European area placed on top of the available African area.

Table 1. Contribution of each variable to full-year model AUC.

Variable

Full-year model 
permutation 

importance (%)

Breeding season 
model permutation 

importance (%)

Autumn migration 
model permutation 

importance (%)

Winter model 
permutation 

importance (%)

Spring migration 
model permutation 

importance (%)

Mean precipitation of previous month 1.3 12.2 39.6 4.9 0.1
Maximum monthly temperature 9.0 59.9 1.7 32.0 21.5
Mean monthly NDVI 76.9 26.6 43.9 57.1 71.9
Difference in monthly NDVI from 

previous month
12.8 1.3 14.8 6.0 6.5
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agreement with a recent study which found that cuckoos 
track high average ‘greenness’ (Thorup et al. 2017) and more 
general theories that migrant birds ‘surf the green wave’ of 
seasonal budburst (Drent et al. 1978).

We compared the performance of our full-year model with 
a set of four seasonal models at predicting an independent 
dataset of cuckoo occurrences from GBIF. The GBIF dataset 

species (Laube et al. 2015) hinting that these factors may be 
generally predictive of the distribution of insectivorous (or at 
least partially insectivorous) avian migrants. As the cuckoo 
is a specialist insectivore, the climate variables used in our 
model may actually only indirectly determine cuckoo distri-
bution, but have a greater direct impact on caterpillar abun-
dance. That NDVI is predictive of cuckoo distribution is in 
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Figure 3. Response curves for each variable in the full-year model. Black lines show the mean values across five crossvalidations. Points show 
occurrences from each stopover location.
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of cuckoo winter distribution (BirdLife International and 
NatureServe 2014) and failed to incorporate the majority of 
the GBIF occurrences (despite attaining similar test AUC 
scores as for the full-year model ). As the seasonal models are 
only informed by occurrence data from a small part of the 
year, they appear to over-fit their projections to these limited 
data. This could imply that single season models generally 
underestimate suitable habitat. Furthermore, in situations 
where birds move between multiple locations within one 
season, single season models using averaged seasonal condi-
tions may inform their model with false presences and end 
up overestimating the niche. In contrast, our full-year model 

showed a strong signal of spatial bias, with a large proportion 
of winter records in South Africa and Tanzania (although 
other populations of cuckoos are known to winter closer to 
the South Scandinavian cuckoos in Central Africa (Hewson 
et al. 2016)) and the vast majority of European records 
coming from the northern parts of the cuckoo’s breeding 
range (BirdLife International and NatureServe 2014). Even 
though not all of these regions were featured in our training 
occurrence data, the full-year model, was successful at pre-
dicting their suitability. By comparison, the seasonal models 
produced a much more spatially restricted overall prediction; 
were a relatively poor match for what is generally known 

Figure 4. Logistic seasonal model outputs showing probability of cuckoo presence during the breeding season; autumn migration; winter 
and spring migration, respectively. Areas of predicted presence according to the threshold rule for each model are shown in yellows, oranges 
and reds. Probabilities below the thresholds are shown in shades of blue.
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Europe (BirdLife International and NatureServe 2014) than 
the equivalent model with breeding data excluded (Supple-
mentary material Appendix 1 Fig. A4) there was a strong 
signal of niche switching between the breeding season and 
the rest of the year. Niche switching between the breeding 
and non-breeding seasons in long distance migrants has 
been detected previously (Nakazawa et al. 2004, Batalden 
et al. 2007, Marini et al. 2012, Boucher-Lalonde et al. 
2014) and may indicate a change in physiological require-
ments between life stages (Alerstam et al. 2003), that an 
abundant food resource becomes temporarily available in 
sub-optimal temperature conditions further north in the 
boreal summer, or that conditions in the non-breeding 
area deteriorate because of other unmeasured environmen-
tal factors. Indeed, the cuckoo is known to have different 
resource needs during the breeding season compared with 
the rest of the year (Williams et al. 2016), principally due 
to its brood parasitic life history. However, as excluding the 
breeding data had very little effect on predictions outside of 
the breeding season, and both the ‘full-year’ and ‘full-year 
without breeding data’ models performed better at predict-
ing an independent dataset than the seasonal models, our 
conclusions remain the same whichever of the two full-year 
models are used. In that sense, the potential niche switching 
displayed by the cuckoo does not seem to have affected the 
generality of our model.

The full-year modelling framework includes temporally 
relevant covariate data from the full annual cycle of a complex 
long distance migrant and avoids many traditional spatial 
and temporal biases. This framework should be especially 
relevant for migrants with complex routes, itinerant species 
and nomadic species, which spend substantial parts of the 
year at stopovers other than the breeding or main wintering 
grounds. The increasing availability of satellite telemetry, 
geolocator and GPS data should make this modelling 

both uses full-year data and incorporates these finer scale 
movements. Therefore, compared to an approach based only 
on a single season, full-year modelling may result in more 
general models for studies aiming at extracting whole-year 
generality at the species level. Conversely, however, if the 
research question is focused on delimiting suitable areas dur-
ing a specific season, or for a specific population, a seasonal 
modelling approach may be preferred as the generality of the 
full-year model may create unhelpful over-prediction.

The cuckoo is an obligate trans-Saharan migrant, but our 
full-year SDM indicated that large areas of Africa remain 
climatically suitable throughout the entire year. Given 
the high potential costs of migration (Sillett and Holmes 
2002), we therefore need to consider why the cuckoos do 
not stay year-round in Africa. The first possibility is that 
this could be simply an erroneous over-prediction of the 
model, and could imply that there are some un-measured 
habitat or climatic features making this region unsuitable for 
cuckoos in the boreal summer months. However, as these 
equatorial regions are relatively aseasonal and the cuck-
oo’s ecologically similar sister species (the African cuckoo, 
Cuculus gularis) has a distribution overlapping the predicted 
areas of summer common cuckoo occurrence in Africa, it is 
also possible that there is a biotic reason for this apparent 
over-prediction. Whilst the full-year model shows that the 
global area of climatically suitable cuckoo habitat appears 
fairly constant through the year, there is a clear constriction 
of African habitat between May and September. As expan-
sion of European climatic suitability occurs concurrently 
with the African habitat constriction it appears possible that  
the cuckoo migrates to the northern hemisphere to exploit 
the relatively untapped resource pulses (Cox 1968) and to 
limit potential competition with the African cuckoo.

Whereas the ‘full-year with breeding’ model (Fig. 1) 
appears more representative of the species’ summer extent in 

Figure 5. Comparison of full-year (a) and seasonal (b) models in terms of model fit and ability to predict GBIF data from other cuckoo 
populations. Areas above the predicted occurrence thresholds have been summed for each month and season, respectively, to produce a total 
annual estimate for each model framework. Turquoise crosses show a seasonally balanced sample of occurrences from the GBIF dataset. 
Black outlines show the estimated area of cuckoo occurrence according to Birdlife International (2014).
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