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Abstract Global climate change, along with continued

habitat loss and fragmentation, is now recognized as being

a major threat to future biodiversity. There is a very real

threat to species, arising from the need to shift their ranges

in the future to track regions of suitable climate. The

Important Bird Area (IBA) network is a series of sites

designed to conserve avian diversity in the face of current

threats from factors such as habitat loss and fragmentation.

However, in common with other networks, the IBA net-

work is based on the assumption that the climate will

remain unchanged in the future. In this article, we provide a

method to simulate the occurrence of species of conser-

vation concern in protected areas, which could be used as a

first-step approach to assess the potential impacts of cli-

mate change upon such species in protected areas. We use

species-climate response surface models to relate the

occurrence of 12 biome-restricted African species to cli-

mate data at a coarse (quarter degree-degree latitude-

longitude) resolution and then intersect the grid model

output with IBA outlines to simulate the occurrence of the

species in South African IBAs. Our results demonstrate

that this relatively simple technique provides good simu-

lations of current species’ occurrence in protected areas.

We then use basic habitat data for IBAs along with habitat

preference data for the species to reduce over-prediction

and further improve predictive ability. This approach can

be used with future climate change scenarios to highlight

vulnerable species in IBAs in the future and allow practical

recommendations to be made to enhance the IBA network

and minimize the predicted impacts of climate change.

Keywords Biodiversity � Climate change �
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Introduction

Over recent decades, species have been declining and

becoming extinct, both locally and globally, at an alarming

rate (BirdLife-International 2000; Brooks and others 2002;

Pimm and others 1995; Thomas and others 2004b). The

conservation of biodiversity is therefore an urgent priority

and much effort has been put into identifying localities of

maximum diversity (Balmford and others 2001; De Klerk

and others 2002; Myers and others 2000) and the protection

of such areas (De Klerk and others 2004; Muriuki and

others 1997).

BirdLife International’s Important Bird Areas (IBA)

network is a biodiversity conservation network that iden-

tifies priority sites for the protection of the global avifauna.

As with most conservation networks, algorithms for the

selection of priority sites are based entirely upon current

species’ distributions. Such networks are essential for the

urgent protection of species of high priority due to their

threat status, restricted distributions, or other factors.

However, they make no allowance for the fact that species’

ranges are dynamic over time, and thus, alone, these net-

works may be inadequate for the conservation of species
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with shifting ranges. Consequently, there is an equally

urgent need to identify those sites that will remain impor-

tant for species over the medium to long term. IBAs

predicted to remain resilient to change in the future should

be prioritized for protection, and the existing network

should be enhanced to minimize the predicted impacts of

climate change.

Global climate change is one major factor that has

already caused recent alterations in species’ ranges

(Parmesan and others 1999; Parmesan and Yohe 2003;

Root and others 2003; Walther and others 2002; Warren

and others 2001) and is likely to become increasingly

important in altering species’ ranges over the current cen-

tury (Hill and others 2002; Thomas and others 2004a).

Biodiversity in Africa

Tropical and equatorial ecosystems are noted for their

relatively high biodiversity; tropical latitudes also contain a

high proportion of the world’s ‘‘biodiversity hotspots,’’

characterized by their concentrations of endemic species

(Myers and others 2000). Of the top 25 global hotspots

recognized by Myers and others (2000), four lie in main-

land sub-Saharan Africa, while Madagascar represents a

fifth. Sub-Saharan Africa plays host to over 1900 bird

species, approximately 20% of species globally. Of these,

947 are confined solely to the Afrotropical region, around

340 being of global conservation concern (Fishpool and

Evans 2001). In addition to the hotspots of endemism, sub-

Saharan Africa has many other areas that harbor local

concentrations of biodiversity. The mountainous areas of

equatorial east Africa are one such example, with high-

altitude cloud forests characterized by a suite of ecologi-

cally restricted species found only in these spatially limited

habitats. During recent decades, similar cloud forests

elsewhere have suffered biodiversity losses, which corre-

spond to regional warming and reduced incidence of cloud

formation in the forests, especially during the dry season

(Pounds and others 1999). Comparisons of future climate

scenarios and current climate have revealed that in the

future there is likely to be a substantial loss of climate

types in mountain regions of Africa and an increase in

novel, no-analogue climates (Williams and others 2007).

Predicted Climate Change

Global climate is expected to change substantially in the

course of the present century, primarily as a consequence

of anthropogenic greenhouse gas emissions (Christensen

and others 2007). In many regions at tropical and sub-

tropical latitudes, the most important changes are likely to

be in precipitation patterns, both spatially and temporally.

The recent IPCC Fourth Assessment Report projects that

by 2080–99 declines in rainfall will be likely in most

subtropical areas, with increases projected in areas of

regional tropical precipitation maxima. Intensity of pre-

cipitation is also projected to increase, particularly in

tropical areas of increasing precipitation, with a tendency

for drying of mid-continental areas (Meehl and others

2007). In the case of the African continent, there is a

general consensus among GCM simulations indicating

modest increases in mean annual precipitation over equa-

torial Africa, particularly eastern regions. Conversely,

northern, southern and parts of western Africa are projected

to have reduced precipitation in most models, soil moisture

being markedly reduced as a result (Meehl and others

2007). Increases in mean annual precipitation in the

equatorial latitudes, however, often mask seasonal shifts. In

equatorial east Africa, for example, GCM simulations

indicate modest changes in precipitation during June–

August but substantial increases in precipitation during

December–February (Meehl and others 2007). Tempera-

ture increases projected for Africa by 2080–99, while

modest compared to high latitudes, are nonetheless 4–5�C

higher than temperatures recorded in 1980–99, based on 20

general circulation models and a medium-high emissions

scenario (Boko and others 2007), with less warming in

equatorial and coastal areas.

Predicting Ranges Using Climate Data

Large-scale distribution patterns of many species, from

autotrophs through to top predators have been reliably

simulated using climate variables (H-Acevedo and Currie

2003; Huntley and others 2004). The geographical ranges

of a majority of the bird species of Europe and Africa can

be been modeled well using a limited number of climatic

variables (Huntley and others 2006, 2007). There is evi-

dence, both from the Quaternary palaeoecological record

(Graham and Grimm 1990; Huntley and others 1997) and

from recent observational studies (Parmesan and others

1999; Parmesan and Yohe 2003; Root and others 2003;

Walther and others 2002; Warren and others 2001), which

shows species responding to environmental changes pri-

marily by shifting their geographical ranges. Simulations

of various European plant and animal species’ potential

future distributions reveal 21st century climate changes

may shift species’ potential range boundaries [1000 km

(Hill and others 2002; Huntley and others 1995; Huntley

and others 2008). There is an urgent need to investigate

the extent to which ranges of African species might also

shift, and to modify conservation management strategies

accordingly.
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Terrestrial ecosystems of many tropical areas, but

especially of Africa, however, are not only threatened by

climate change but also are already under considerable

pressure from the growing human population. Tropical

forest destruction and other human land-use are reducing

the extent of the remaining habitat available to support the

unique and rich biodiversity of these regions. Desanker and

others (2001), while noting that land-use change is and will

continue to be ‘‘the major driver of land-cover change in

Africa,’’ consider that biodiversity losses in Africa are

likely to be accelerated by climate change, citing the Afr-

omontane and Cape centers of endemism and biodiversity

as particularly vulnerable. Jetz and others (2007) also

highlight the likely combined impact of land-use and cli-

mate changes on bird species in the tropics. In Britain, the

combination of climate change and habitat alteration dur-

ing the last 30–50 years has had major impacts upon

butterfly ranges and abundances. Habitat loss has limited

species’ ability to shift their ranges in response to climate

change (Warren and others 2001). Similar impacts can be

expected in the future for many African taxa.

Objective

The overall aim of this study is to assess whether coarse

scale climate-envelope modeling approaches can be used

as a tool to simulate species’ occurrences within networks

of priority sites for conservation. If so, such an approach

could be used with future climate simulations to forecast

species turnover within protected areas and to make prac-

tical recommendations to enhance protected area networks

to minimize the possible impacts of climate change. This

aim is addressed using twelve bird species of sub-Saharan

Africa and assessing our ability to predict their current

known occurrences in IBAs of South Africa.

Methods

We chose to work on birds in Africa because knowledge of

their distribution, biodiversity, and endemism patterns is

better than for any other major taxonomic group and

because an IBA network has been identified and docu-

mented across the region (Fishpool and Evans 2001). Also,

the region is predicted to experience substantial climate

change during this century; the impacts of which will be

exacerbated by intensifying human land-use, rendering

correctly targeted conservation efforts vital if a substantial

part of extant biodiversity is to survive to the 22nd century.

South Africa was chosen as the case study region because

of the more complete knowledge of the aviafuna in the

region compared to many other parts of Africa. We

selected 12 biome restricted bird species (Table 1), two

from each of the six major biome types of South Africa

(Afro-tropical highland, East African coast, Zambezian,

Kalahari-Highveld, Namib-Karoo and Fynbos—Fishpool

and Evans 2001).

We constructed a geographical information system

(GIS) in which a series of spatial data sets were assembled.

The GIS incorporates:

• Meteorological data

• Topographical data

• Bird species’ distribution data—existing 1� resolution

grid data for the whole of sub-Saharan Africa birds

(http://www.zmuc.dk/commonweb/research/blueprint-

africa.htm), replacing this with 0.5� and 0.25� data where

it was available (South Africa, Botswana, Lesotho,

Swaziland, Namibia, Zimbabwe, Kenya and Uganda;

from Carswell and others 2005; Harrison and others 1997;

Lewis and Pomeroy 1989). Note, however, that many of

the chosen species are endemic to southern Africa.

• Late 21st century climate change scenarios—developed

using output from the Hadley Centre’s HadCM3 general

circulation model for the 30-year averages of the period

approximating to 2055, using a B2a emissions scenario

(http://www.ipcc-data.org/sres/gcm_data.html).

• Digitised IBA outlines for South Africa (101 IBAs)

Landuse types within the South African IBAs were

extracted from Fishpool and Evans (2001) and were

assigned to IUCN level 1 habitat types (http://www.

iucnredlist.org/info/major_habitats.html). Habitats used by

the bird species were extracted from the seven-volume

Birds of Africa (Brown and others 1982) and species

assigned to relevant IUCN level 1 habitat types.

Using the topographic data, we made elevation-sensitive

interpolations of the meteorological data and developed

gridded bioclimatic data sets. The relationships between

species’ ranges and climate were then investigated by

fitting species–climate response surfaces (‘‘climate-enve-

lope’’ models) to the species’ distribution and bioclimatic

data (see Huntley and others 1995 for details).

Previous work (Huntley and others 2006) suggested that,

for African birds, good models of fit required bioclimate

variables that incorporated measures of summer and winter

temperatures (MTWA and MTCO = mean temperature

of the warmest and coldest month respectively), water

availability (APET = the ratio of actual to potential

evapotranspiration), and seasonal water availability. The

seasonal variable we use here is a measure of the intensity

of the dry season (DRYINT), derived by summing daily

water deficit during the dry season(s); dry season initiation

and cessation being defined as when the summed water

deficit crossed a threshold value. We used locally weighted

regression to fit climate response surfaces for the 12
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species and assessed their goodness of fit using the area

under the curve of a receiver operating characteristic,

(AUC) (Manel and others 2001). AUC values vary between

0.5–1 with higher values signifying better model fit.

Modeled suitability values for each species in half and

quarter degree cells across southern Africa were then

converted to presence/absence predictions, using a thresh-

old cut-off value that maximized model-fit, as used

elsewhere (Huntley and others 2004, 2006). We then

intersected this presence-absence grid with the South

African IBA outlines to simulate presence-absence in each

IBA. If any half-degree cell that intersected an IBA was

modeled as climatically suitable for a species then the

species was simulated to occur in that IBA. In addition, as

this method takes no account of the habitat available within

an IBA, we incorporated a simple algorithm that modified

our predictions for IBAs that were simulated as climati-

cally suitable for a species, depending upon whether or not

the IBA contained any habitats with which the species was

associated. Finally, as some species might require a mini-

mum area to maintain a viable population, we undertook a

further analysis that incorporated the habitat algorithm but

which considered only those IBAs above a threshold area.

This was repeated four times using different thresholds

to exclude IBAs each time, the threshold values being

\500 ha,\1000 ha,\5000 ha, and\10000 ha. Each of the

above analyses produced predicted presence or absence

data for the 12 species in all of the South African IBAs.

The ability to simulate successfully the species in IBAs

was assessed by producing a 2 9 2 contingency table for

each species and assessing the concordance between the

modeled and recorded presence (as recorded in Fishpool

and Evans 2001—but see discussion) using the True Skill

Statistic (TSS, Allouche and others 2006), a prevalence

independent measure of fit. TSS values vary between 0–1,

with 1 representing perfect agreement.

In order to demonstrate the potential for this method to

simulate changes in species’ occurrences within IBAs in

the future, we applied the climate envelope models for

two species to the HadCM3 B2a climate predictions for

2055 and then used the resultant simulated presence-

absence grid, along with the habitat algorithm, to simulate

Fig. 1 Examples of recorded species occurrence and climate-enve-

lope simulated occurrence for (a) Pycnonotus capensis, (b)

Nectarinia talatala, and (c) Philetairus socius in southern Africa.

Open white cells indicate no recorded occurrences, grey cells indicate

recorded occurrences, and smaller black squares represent cells

modeled as climatically suitable for each species. Cells are positioned

at the center of quarter, half or one degree cells, dependent upon the

resolution of data available in different regions
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potential changes in occupancy of IBAs between now and

2055.

Results

The ‘‘climate envelope’’ models simulating the recorded

ranges of the species across Africa produced a very good

agreement with the recorded ranges for all 12 species (as

assessed from the AUC values and the interpretation of

Thuiller and others (2006)—see Fig. 1 for examples and

Table 1 for AUC values).

When the half degree predictions for presence-absence

were intersected with the IBA outlines there was a very

good agreement between those IBAs that contained the

species and the model predictions (Mean TSS of 0.74,

Table 1, Fig. 2b). The only exception was Spizocorys

sclateri, which had a low TSS value compared to the other

species. This was the most restricted species, only occur-

ring in four IBAs, of which only two were modeled as

being climatically suitable by the climate-envelope model.

After applying the habitat algorithm there was an

improvement in TSS values for nine of the 12 species, no

improvement for two species, and a decrease for one spe-

cies (mean TSS of 0.78). S. sclateri was one of the species

with no improvement in model fit. However, the only

errors in its original model were as a result of simulating

unsuitable climate in two IBAs (errors of omission). Such

errors cannot be improved by applying the habitat algo-

rithm, which can serve only to reduce incorrectly simulated

presences (errors of commission) in IBAs with no suitable

habitat. For the species (Nectarinia veroxii) with reduced

TSS values after applying the habitat algorithm, the total

number of incorrectly assigned IBAs (i.e., errors of com-

mission plus omission) actually declined (7 incorrect

predictions which decreased to 6 for N. veroxii after

applying the algorithm). The decrease in TSS is an artifact

of the way in which the statistic is calculated. Because

N. veroxii is absent from more IBAs than it is present in,

changes in the distribution of errors between commission

versus omission cause the TSS value to decrease.

Overall, the combined climate-envelope-habitat algo-

rithm (CE-HA) method proved excellent in predicting

species’ occurrences in IBAs, correctly simulating on

average 86% of recorded presences and 92% of absences

(Table 1, Fig. 2). This approach produced significantly

better predictions than did intersecting using only the cli-

mate-envelope simulations (paired t-test on TSS values,

comparing values for each species’ predictions with and

without the habitat algorithm: n = 12, t = 2.50, p \ 0.05).

Applying the habitat algorithm reduced errors of commis-

sion by 46% on average (average error of commission

across the species was 12% before applying the algorithm

and 6.5% after).

We also applied the CE-HA method to subsets of IBAs

that excluded smaller IBAs, to determine whether predictive

ability of the method was improved by excluding smaller

protected areas (Table 1). The predictive ability of the

method did not increase significantly when smaller IBAs

were excluded, using any of the four area thresholds (paired

t-test comparing TSS values for each species’ predictions

when using all IBAs with TSS values produced when

smaller IBAs were excluded: excluding IBAs \ 500 ha,

t = 0.15; excluding IBAs \ 1000 ha, t = 0.00; excluding

IBAs \ 2000 ha, t = 1.66; excluding IBAs \10,000 ha,

t = 0.34. n = 12, p [ 0.05 in all cases). Geronticus calvus

was the only species for which excluding smaller IBAs

systematically improved the predicted distribution. After

excluding IBAs with areas \ 10,000 ha, the number of IBAs

correctly predicted (in terms of either presence or absence)

increased to 98%, up from 87% using the CE-HA approach

but including all IBAs.

Figures 3a and 4a show simulations of range shifts that

could occur for Pycnonotus capensis and Nectarinia

Fig. 2 (a) The recorded occurrence of Nectarinia talatala in IBAs of

eastern South Africa and the simulated distribution using (b) a simple

intersection of the species’ climate envelope simulation (TSS = 0.59)

and (c) after applying the habitat algorithm (TSS = 0.64). Grey = -

recorded or simulated absence; black = recorded or simulated

presence
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talatala by 2055 under a HadCM3 B2a climate change

scenario. In a best case scenario, each species would

occupy all of the areas simulated to be climatically suitable

in the future, whereas under a worst-case scenario they

would persist only in those areas of overlap, where climate

was simulated to be suitable in both periods. In the case of

P. capensis range extent under a best case scenario would

be similar to its current extent but in a worst case scenario

would decline considerably. By contrast N. talatala would

remain in much of its range even under a worst case sce-

nario and could become considerably more widespread in a

best-case scenario. Applying the CE-HA method to this

future scenario suggests there would be rather limited

change in IBA occupation between now and 2055, though

under a best case scenario both species would have some

potential to colonise new IBAs (Figs. 3b, 4b). Of the two

species highlighted, only P. capensis is projected to dis-

appear from any IBAs.

Discussion

The agreement between modeled and observed grid data is

very good, suggesting that at a large spatial scale, the

ranges of African birds can be modeled using a small

number of climatic variables. This fits with other studies in

various biogeographic regions that have related the range

extents of taxa at a coarse scale to climate. By intersecting

the quarter degree climate suitability simulations with IBA

outlines, we found an excellent agreement with recorded

occurrences, although there remained a limited tendency to

incorrectly simulate presences in unoccupied IBAs. How-

ever, these errors of commission may be exaggerated as,

for a biome-restricted species to be recorded in an IBA (in

Fishpool and Evans 2001) it must occur at a site in suffi-

cient numbers or with sufficient regularity to trigger

selection (Fishpool and Evans 2001). Hence, it may be that

some IBAs simulated as suitable for a species, but in which

we record it as absent, might actually hold a small number

of individuals or irregularly hold individuals. The simple

‘‘climate-envelope-’’ IBA intersection method produced

good predictive ability for all but three species. These three

included G. calvus, the only species where individuals

require a large home range, and S. sclateri, the most

restricted of the 12 species and a rather nomadic species.

We found that the errors of commission in the simple

intersection models were significantly reduced using the

habitat-matching algorithm and that this did not increase

errors of omission greatly. This combined CE-HA method

provides a relatively simple means of simulating species

current distribution in IBAs and potentially provides a

means of simulating those protected areas that will remain

Fig. 3 (a) The recorded current

distribution (grey cells) and

simulated regions of suitable

climate by 2055 (using the

HADCM3 B2 scenario) (black

squares) for Pycnonotus
capensis across southern South

Africa; (b) Simulated change in

climate suitability in IBAs

between the present and 2055,

using the combined climate

modeling and habitat algorithm

approach: black

shading = suitable now and in

2055; grey shading

(A) = simulated suitable in

both periods but currently

unoccupied; stippling

(B) = simulated climatically

suitable only in the future; cross

hatching (C) currently present

but simulated unsuitable by

2055

Environmental Management

123



suitable for species in the future, or which will become

newly suitable for species. It is possible that by using more

detailed habitat definitions for both species and IBAs, we

would be able to further improve simulations. This com-

bined climate-habitat modeling approach, though useful for

considering likely changes in species ranges over the short

to medium term future, will become less useful in the long

term, as the habitats themselves are likely to alter with a

changing climate. In addition, the future simulations

provide information only on where suitable climate/habitat

occurs in the future, with no assessment of the likelihood of

a species being able to move to newly suitable protected

areas, yet this is a very important factor (Menendez and

others 2006). To get a more realistic estimate of the

impacts of climate change on protected area networks, it

would be necessary to additionally incorporate changes in

vegetation types over time and the likelihood of species

traversing areas between protected areas, using methods

such as least-cost pathways in linked dynamic population-

habitat-climate models. However, for most species, our

ability to parameterize such models is lacking; therefore,

simple methods such as that presented here are the only

means of providing an initial measure of the likely impacts

of climate change for many species.

Removing the smallest IBAs from our analyses did not

improve the predictive ability of the models, with the

exception of the model for G. calvus. Occurrence of

G. calvus in IBAs was predicted successfully for all of the

larger IBAs. Removing the smaller IBAs led to improved

predictions, with accuracy increasing as progressively lar-

ger IBAs were removed. The small IBAs that were

incorrectly predicted to be occupied were all sites in

KwaZulu-Natal, and are all largely surrounded by agri-

culture. As G. calvus can forage up to 20 miles from

breeding sites (Brown and others 1982), it may well depend

upon large IBAs to protect suitably large areas of grassland

habitat.

Our results suggest that caution should be used if

applying this method to species with large home ranges or

where the needs of a minimum viable population exceed

the size of a protected area. This method is also inappro-

priate for species whose current range cannot be related to

climatic factors, such as species that now survive only in a

limited part of their potential range due to factors such as

habitat destruction or persecution.

Although the future simulations of range extent for the

two species shown in this article did not alter dramatically,

other species have been simulated to shift their range

substantially, with varying degrees of overlap between

present and predicted future ranges (see e.g., BirdLife

International 2004). In the most extreme cases there is no

overlap between current and simulated future range,

meaning that a species would have to alter its entire range

in response to climate change or face extinction. The

degree to which best versus worst case scenarios are likely

to be realized will depend very much upon the mobility of

the individual species and the occurrence of suitable habitat

in regions becoming climatically suitable.

In order to simulate the potential effects of climate

change on species protection within IBAs, the first step will

be to predict where suitable climate for species is likely to

exist, within IBAs, under future climate scenarios. This

Fig. 4 (a) The recorded current distribution (grey cells) and simu-

lated regions of suitable climate by 2055 (using the HADCM3 B2

scenario) (black squares) for Nectarinia talatala across eastern South

Africa; (b) Simulated change in climate suitability in IBAs between

the present and 2055, using the combined climate modeling and

habitat algorithm approach: black shading = suitable now and in

2055; grey shading (A) = simulated suitable in both periods but

currently unoccupied; stippling (B) = simulated climatically suitable

only in the future; cross hatching. No currently occupied areas are

simulated unsuitable by 2055
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will give a crude estimate of how robust the current net-

work is likely to be under a best- or worst-case scenario. At

a finer temporal resolution, decadal predictions of climate

over the next 100 years might highlight particular time-

periods when occurrence of suitable climate and areas of

suitable habitat are incompatible.

Comparing simulated future ranges for species of con-

servation concern using several different climate change

scenarios will allow some basic generalizations to be made.

For example, are some reserve types more robust to

changing climate, or are particular regions or habitats more

prone to climate change effects? Such an approach would

also provide some idea of species’ potential future distri-

butions. By identifying regions robust to climate change we

can give confidence in continued management of such areas

for the suite of species they currently contain. Other IBAs

may need to have management prescriptions altered over

time to allow for colonization by new species of conser-

vation concern. To preserve the efficacy of protected area

networks in regions where climate is predicted to change

substantially (and ranges to move corresponding large dis-

tances), it may be necessary to consider a more extensive

system of conservation management, in addition to IBAs, to

allow for a natural, dynamic alteration of ranges in future.

Overall, the method we have developed here works very

well as a means of simulating the current species compo-

nent of the South African IBAs and could prove a very

useful technique in simulating potential consequences of

future climate change over the short to medium term in

other regions or other protected area networks.

The techniques, if applied across all species, could

permit a preliminary assessment of the extent to which

networks of reserves designated on the basis of present

patterns of biodiversity and endemism are likely to be

sufficient to achieve biodiversity conservation in a world

experiencing rapid climate change and a basis for devel-

oping conservation strategies that will facilitate ecosystems

to adapt naturally to climate change. Such assessments may

have very far-reaching significance in relation to the obli-

gations of numerous states to conserve biodiversity.
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