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Using potential distributions to explore
determinants of Western Palaearctic
migratory songbird species richness in
sub-Saharan Africa

M. S. Wisz*, B. A. Walther and C. Rahbek

INTRODUCTION

Every year, millions of songbirds embark on a spectacular

journey from their European breeding grounds to their

wintering ranges in sub-Saharan Africa. These continent-

spanning movements result in a seasonal explosion of local

species richness in places that are otherwise thought to be

relatively depauperate in resident species (Leisler, 1992; Jones,

1995; Hockey, 2000). Over the years, many compelling

hypotheses have emerged to explain why some places are

inundated annually by overwintering birds, while others are

not. However, the paucity of high-quality species locality data

has made it difficult to study patterns of migrant species

richness and the factors that may explain the seasonal influx of

bird diversity to Africa.

One long-standing hypothesis relates to the distance trav-

elled by migratory birds. Theory predicts that a migrant should

return to the breeding grounds as early as possible to compete

Center for Macroecology, Zoological Museum

at the University of Copenhagen, DK-2100,

Copenhagen Ø, Denmark

*Correspondence: Mary S. Wisz, Department of

Arctic Environment, National Environmental

Research Institute, PO Box 358, DK-4000

Roskilde, Denmark.

E-mail: msw@dmu.dk

ABSTRACT

Aim Although the breeding ranges of most Western Palaearctic migratory

passerines are well documented in Europe, their overwintering ranges and

patterns of species richness in Africa remain poorly understood. To illustrate

potential patterns of species richness despite severely limited data, we

extrapolated species ranges from a new and unique data bank of locality

records that documents overwintering locations of these birds in Africa.

Location Sub-Saharan Africa.

Methods We predicted potential geographical distributions of 60 species of

passerine birds based on overwintering records using bioclimatic models. We

then combined these predictions to estimate potential species richness and

explored response shapes using spatial linear regression. We also evaluated the

evidence for a mid-domain effect using a one-dimensional null model.

Results Spatial linear regression analyses of the species richness pattern revealed

non-linear relationships to seasonality in precipitation, minimum net primary

productivity, minimum average temperature, habitat heterogeneity, percentage of

tree cover, distance from the Sahara Desert and inter-annual variability in net

primary productivity. The explanatory power of these variables decreased with

geographic range size. The one-dimensional null model of species richness based

on distance from the Sahara Desert did not show evidence of a mid-domain

effect.

Main conclusions Distributions of migrants seem generally strongly determined

by distance from the Sahara Desert working in concert with climatic effects, but

this cannot adequately explain richness patterns of species with small ranges in

Africa, many of which are of substantial conservation concern.
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Africa, bioclimatic models, contemporary climate, geographic range size,
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successfully for the best breeding territory (Kokko, 1999). Any

increased cost from distance migrated should be offset by

benefits gained for long-term survival and reproduction

(Drent et al., 2003). Some studies have shown a decreasing

north–south gradient of Western Palaearctic migrant species

richness within sub-Saharan Africa (Underhill et al., 1992;

Hockey, 2000). Thus, throughout the Afro-tropics, Western

Palaearctic migrant diversity may be expected to be highest in

the most northern over-wintering locations.

Recent research also points to the importance of seasonality

as a determinant of migrant species richness (Hurlbert &

Haskell, 2003). In particular, seasonality in rainfall, associated

primarily with shifts of the Intertropical Convergence Zone,

appears to trigger the movements of many Palaearctic migrants

in Africa (Moreau, 1972; Curry-Lindahl, 1981; Lack, 1986;

Pearson & Lack, 1992; Jones, 1995). As rainfall increases, plant

productivity and insect abundance increase sharply, providing

insectivorous birds with a rich food supply that presumably is

not exhausted by the resident bird population (Jones, 1995). In

view of this, seasonality and migrant species diversity may be

positively correlated.

Yet another hypothesis relates to available energy. The

species energy theory (SET) proposes that species richness

should increase with some measure of ambient available

energy, because greater resource availability may translate into

larger population sizes for species, lower extinction risk, and

an accumulation in species richness over time (Hurlbert &

Haskell, 2003; Willig et al., 2003). Numerous empirical studies

have revealed a linear or hump-shaped relationship between

species richness and net primary productivity, a commonly

used surrogate for available energy (e.g. Waide et al., 1999;

Balmford et al., 2001; Jetz & Rahbek, 2002). Some similar

relationship might help to describe patterns of migrant species

richness.

Another hypothesis relating to energy suggests that areas

with unpredictable inter-annual resource availability may act

as a selective force against resident birds, leaving more

resources available to migrants in productive years (Alerstam

& Enckell, 1979). Consequently, places with very low

interannual variability in productivity may show relatively

low levels of migrant richness in comparison with locations

with intermediate to high levels.

Many species may be unable to allocate sufficient energy to

growth and reproduction in cold locations, and these places

may provide opportunities for migratory birds to exploit

during warmer months (Hurlbert & Haskell, 2003). Accord-

ingly, in an analysis of country checklists, Hockey (2000)

found that the temperature of the coldest month was positively

correlated with the percentage of resident species in Africa.

However, some empirical studies have revealed a hump-

shaped relationship to temperature, because few species can

utilize locations that are extremely cold or hot throughout the

year (Willig et al., 2003).

An historical hypothesis posits that, after the emergence

of the Sahara in the late Pleistocene, only savanna birds

could maintain their migratory routes to the Palaearctic

(Mönkkönen et al., 1992). Indeed, very few Western Palaearc-

tic migrants are known from forests or desert (Morel & Morel,

1978; Jones, 1995). Hence, a hump-shaped relationship may

exist between Palaearctic migrant species richness and forest

cover, because few migrants are expected to occur in treeless

habitats (e.g. deserts) and continuous forest (e.g. rain forest),

whereas more should occur in savanna-like habitats.

The preference for woodland and savanna habitats among

Palaearctic migrants may also allow them to exploit areas

where continuous forest habitat has been modified recently by

humans (Leisler, 1992), and various observers have noted that

migrants moved into previously forested areas after degrada-

tion or clearance in Africa (Morel & Morel, 1992). Many

migrants seem to have a preference for edge habitats (Lack,

1986), and if migrants are indeed found in areas characterized

by a patchy network of forest and more open habitats, it can be

predicted that habitat heterogeneity (i.e. the number of distinct

habitats within a specified area) will have a positive correlation

with migrant richness.

The overall pattern of species richness of resident birds in

Africa is driven by geographically widespread species (Jetz &

Rahbek, 2002). Moreover, the role of many explanatory

variables has been shown to change dramatically with

decreasing range size, possibly because narrowly distributed

species respond to finer-scale habitat features than do wider-

ranging species, and narrow-ranging species might also be

more sensitive to topographic dispersal barriers (Jetz &

Rahbek, 2002). One might expect not to see the same dramatic

changes among migrant species with different range sizes, as

migrants are certainly not restricted by dispersal ability to the

same extent as narrow-ranging resident birds.

In this paper, we evaluate quantitatively the weight of

evidence supporting these hypotheses in a spatial analysis of

the determinants of Western Palaearctic migrant songbird

species richness in Africa. Owing to the paucity of data on the

African wintering ranges of these birds, we used a new data

base of point-locality records in conjunction with bioclimatic

modelling tools to predict the geographical distributions of 60

individual species of Western Palaearctic migrant songbirds,

and combined these into a predictive map of species richness.

METHODS

Data acquisition

We used a point-locality data base compiled from published

and unpublished records from over 100 individuals, organi-

zations, and ringing schemes within Europe and Africa

(Walther & Rahbek, 2002). Although the data base currently

contains information for almost 300 migrant species, we

excluded species with fewer than 25 individual records dated

between November and February, recorded to a spatial

precision of 5 km. We also excluded species that do not

regularly migrate to the sub-Saharan region, and any species

for which identification problems exist between migratory

Western Palaearctic and resident African subspecies (Anthus
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novaeseelandiae, Lanius meridionalis, L. excubitor, and Saxicola

torquata). In total, we analysed 60 species of migrant passerines

based on 6941 dated point-locality records representing 2327

unique localities at 5-km resolution (Appendix S1).

Environmental predictors

All of the following predictors except distance from the Sahara

Desert were used to predict the distributions of species. All

predictors, including distance from the Sahara Desert, were

used in the analysis of the determinants of species richness.

Where the environmental data were provided at a finer spatial

resolution, we resampled them to a common spatial resolution

of 0.05� using ArcInfo 8.0.

Distance from the Sahara Desert

To estimate the relative distance travelled from the boundary

of the Sahara Desert, we calculated latitudinal distance from

22� N latitude (the approximate southern limit of the Sahara)

to each point-locality record.

Percentage forest cover

We used percentage tree-cover estimates from the Moderate

Resolution Imaging Spectroradiometer (MODIS) satellite

500 m Global Vegetation Continuous Fields data set, which

provides percentage tree-cover estimates from satellite imagery

collected from 31 October 2000 to 9 December 2001 (Hansen

et al., 2003).

Seasonality of precipitation

We used the coefficient of variation of monthly average

precipitation as a measure of seasonality of precipitation. We

derived this layer from the Centre for Resource and Environ-

mental Studies (CRES) African climate data set (Hutchinson

et al., 1995). This continent-wide data compilation is based on

interpolated climatic observations from 6051 meteorological

stations and represents standard mean conditions for the

period 1920–80.

Minimum net primary productivity

To estimate minimum net primary productivity we used a

simple classification of NDVI (Normalized Difference Veget-

ation Index) from AVHRR (Advanced Very High Resolution

Radiometer) satellites. The data are based on 10-day NDVI

maximum-value composite images with stretched NDVI

values in the range 0–255 from 1982 to 1999 that were

originally provided by USGS/USAID. We worked from mean

NDVI values of monthly maximum-value composite images,

processed by Clark Labs (Worcester, MA, USA), which

excluded cloud-covered pixels. We calculated the average

minimum monthly NDVI value for the period 1982–1999.

Thus, for each 5-km pixel across sub-Saharan Africa, we

calculated the average of all the Januarys from 1982 to 1999,

then all the Februarys, and so on, and then identified the

minimum average value across all months.

Inter-annual variability in net primary productivity

(IAV-NDVI)

In order to estimate inter-annual variability in net primary

productivity, we calculated the coefficient of variation of the

mean annual NDVI estimates of the full 18-year period (1982–

99) from the Clark Labs data set. Thus, we calculated average

NDVI values across all months for each year, and then

computed the coefficient of variation across all years.

Average temperature of the coldest month

We calculated the average temperature of the coldest month

from the monthly minimum-temperature layers provided in

the CRES data set. The CRES data set provides average

minimum and average maximum monthly temperatures

interpolated from approximately 1500 meteorological stations

for the period 1920–80. We kept the data at their original

spatial resolution of 0.05�.

Habitat heterogeneity

We calculated habitat heterogeneity using the 1-km-resolution

Maryland Global Land Cover Map. This map is based on

AVHRR, and categorizes the landscape into 13 broad categ-

ories (evergreen needleleaf forest, evergreeen broadleaf forest,

deciduous needleleaf forest, deciduous broadleaf forest, mixed

forest, woodland, wooded grassland, closed shrubland, open

shrubland, grassland, cropland, bare ground, and urban and

built up) (Hansen et al., 2000). We calculated the number of

land-cover categories within each 0.05� pixel (range 1–8) using

ArcInfo 8.0.

Creating species distribution maps using bioclimatic

envelopes

It was not possible to examine species richness patterns using

sparse locality records alone, and it was inappropriate to

aggregate them to coarse-resolution grids. Consequently, we

modelled each species distribution using bioclimatic enve-

lopes (Busby, 1991) and the environmental layers described

above. Our bioclimatic envelope models, given a sample of

locality records, predicted the species to be absent from any

location outside its minimum or maximum observed range of

values for any of the predictor variables, and present

anywhere else.

Bioclimatic models often overpredict species distributions

(Graham et al., 2004). Consequently, we clipped our predic-

tions using a map of all ecoregion polygons (Burgess et al.,

2004) that intersect with a given species’ range as determined

by 1� resolution range maps for that species documented in the

Copenhagen data set (Burgess et al., 1998; Brooks et al., 2001).
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Calculating species richness

After predicting the potential distribution of each species, we

summed the individual species maps to yield five different

maps of potential species richness across sub-Saharan Africa

using ArcInfo 8.0. The first map corresponds to total species

richness for all migrants. The remaining four maps were

calculated for four groups of species based on their member-

ship of each of the four geographic range-size quartiles,

ranging from the most narrowly distributed 25% of species to

the most geographically widespread 25% of species.

Exploring richness patterns with generalized linear

models and spatial linear regression models

For each of the five species richness maps (all species and the

four quartiles), we randomly sampled the values of the

environmental predictors and the values of potential species

richness from 10,000 grid cells, excluding all cells with a species

richness count of zero. To identify the most parsimonious

model that characterizes the African regions used by migrants,

we built multiple Poisson regression models predicting the

number of migrant species per grid cell using information-

theoretic approaches (Burnham & Anderson, 1998, 2002). We

then used spatial linear regression models to obtain parameter

estimates and to calculate the proportion of variation explained

by the global model, as well as each predictor variable.

Information-theoretic methods and generalized linear models

In order to explore determinants of migrant species richness

using model averaging, we built 2186 generalized linear models

(GLMs) with Poisson error structure, thus representing all

possible combinations and subsets of the predictors with and

without their quadratic expressions. The global model (i.e. the

most complex model) was composed of these 14 predictors

(one linear plus one quadratic expression of each of the seven

environmental variables) plus an intercept, while the simplest

model included only the intercept. Because parabolic relation-

ships are rarely selected in model selection exercises (Burnham

& Anderson, 1998, 2002), we did not allow any quadratic terms

(x2) in any model without also including the corresponding

linear term (x) in order to reduce the number of models and

thus model selection uncertainty.

Overdispersion occurs when the residual deviance is greater

than the residual degrees of freedom, and results from the

underlying errors being greater than assumed (i.e. not equal to

the mean) (Crawley, 2002). If efforts are not made to account

for this, standard errors tend to be too small, and the

significance of model terms is overestimated. Our data were

overdispersed because our residual degrees of freedom excee-

ded our residual deviance by a factor of nearly 2. To account

for this phenomenon while evaluating the weight of evidence

for each of these 2,186 competing models, we used QAIC, a

modification of the Akaike information criteria (AIC) (Akaike,

1973) for over-dispersed count data (Burnham & Anderson,

1998, 2002). Within a set of candidate models, models with

relatively low QAIC values are the most parsimonious and

strike a balance between bias and variance of model

predictions. QAIC is a measure of the relative Kullback–

Leibler information lost in using candidate model i to

approximate truth j.

QAIC ¼ �2 logeð‘ðhjdataÞÞ
c

þ 2K;

where log e(‘(h|data)) is the value of the maximized log-

likelihood over the estimated parameters given the data and

the model, c is the overdispersion parameter, and K is the

number of parameters in candidate model i. The overdisper-

sion parameter c can be estimated from the goodness-of-fit

chi-square statistic (v2) of the global model and its degrees of

freedom:

c ¼ v2

d.f.
:

Spatial linear regression models (SLMs)

In order to evaluate and control for spatial autocorrelation, we

estimated the proportion of variation explained by the global

model using SLMs (Cressie, 1993), and report parameter

estimates, confidence intervals, and proportion of variation

explained from these models only.

We defined as spatial neighbours the eight cells immediately

surrounding a cell (the queen’s case), and then estimated the

spatial autocorrelation in our total species richness map, and

in our range-size richness maps using Moran’s I statistic, a

weighted correlation coefficient used to detect departures from

spatial randomness (Moran, 1950). Values range from )1 to

+1 for this statistic. Positive values indicate clustering, values

equal to zero indicate spatial randomness, and negative values

indicate contrasting patterns in neighbouring cells (Goodchild,

1986).

Spatial autoregressive modelling (SAR) has been increas-

ingly used in ecology in recent years (e.g. Keitt et al., 2002;

Tognelli & Kelt, 2004). We used the SAR modelling approach

in S-plus with the following covariance structure:

S ¼ [(I)rhoN))tW)1(I)rhoN)])1sigma2, where S is the cova-

riance matrix, I is the identity matrix, rho and sigma are scalar

parameters to be estimated in the spatial regression model, N is

the weighted neighbour matrix, t indicates a transposed

matrix, and W denotes a diagonal matrix of weights (Ripley,

1981; Cressie, 1993). We estimated the percentage variation in

richness explained by calculating the coefficient of determin-

ation r2 of the fitted spatial regression model to migrant

richness for the global model, as well as the variation in

richness explained by each linear predictor expressed as x + x2.

We performed model selection on the full data set, and

repeated the analysis on four subsets of the data set

representing each of the four geographic range-size quartiles.

Because the global model was supported by the majority of the

evidence in model selection (see Results), we performed spatial
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regression on the global model for the full data set and each

geographic range size quartile.

Distance from the Sahara Desert

We also studied the relationship of species richness to distance

from the Sahara using a one-dimensional null model that

assumed peak diversity occurs at intermediate distances from

the Sahara Desert. We implemented this test using the

program Range Model, a Monte Carlo simulation tool for

visualizing and assessing one-dimensional geometric con-

straints on species richness using the method recommended

for empirical range frequency distributions with random

midpoints (Colwell, 2000). To implement this method in

Range Model, we calculated the midpoint of the distance

between a given species’ most southern predicted occurrence

and 22� north latitude (approximately the southern margin of

the Sahara Desert). Range Model then simulated 10,000

random midpoints for the empirical ranges in each quartile

and predicted a species richness estimate for each 1� bin of

distance. We then compared these simulated species richness

estimates with the species richness estimates derived from our

bioclimatic envelope predictions using the coefficient of

determination, r2.

RESULTS

Continental pattern of migrant richness

Our bioclimatic envelopes successfully generated maps of the

potential distributions of all 60 species (see Appendix S1 in

Supplementary Material). After partitioning species into

quartiles based on potential geographic range size, the 15

geographically most widespread species (fourth quartile)

covered between 8,901,100 km2 (Acrocephalus arundiaceus)

and 15,976,675 km2 (Hirundo rustica). The third quartile

covered between 4,418,575 km2(Motacilla alba) and

8,609,700 km2(Sylvia atricapilla). The second quartile covered

between 1,236,125 km2 (Sylvia hortensis) and 4,286,550 km2

(Acrocephalus palustis). The most narrowly distributed quartile

ranged from 2,900 km2 (Locustella luscinioises) to

1,049,825 km2 (Luscinia svecica). Although there is a longi-

tudinal gradient in rainfall and a latitudinal gradient in

temperature on most continents, the climate gradient from the

Sahara and southwards to the equatorial zone is special

because precipitation increases toward the equator while mean

annual temperature decreases. Our predicted richness patterns

relate to these gradients in a complex manner. Within the

major vegetation zones described by White (1983), potential

species richness peaked in the Sahel Acacia Wooded Grassland

and Deciduous Bushland (up to 46 species in a single grid cell)

and in the Eastern and Western Sudanian Woodlands

(Fig. 1a). The dense Guinea–Congolian Forest had low species

richness, with no more than four migratory species predicted.

In contrast, species richness was as high as 20 species within

more open patches of Lowland Guinea–Congolian Forest, even

when completely surrounded by forests where as few as four

species are predicted. The Zanzibar–Inhambane East African

Coastal Mosaic Forests and the Coastal Woodlands, Grasslands

and Shrublands of Somalia had very low species richness.

Richness declined from the northern Sahel through the East

African Highlands towards the south. South of the Guinea–

Congolian Forests, richness declined sharply moving from the

Zambezian Miombo Woodlands and Dry, Deciduous Forest

and Secondary Grasslands to the east towards the Southern

Mosaic of Lowland Guinea–Congolian rain forest and Secon-

dary Grasslands and Wetter Zambezain Miombo Woodlands

farther west.

Most of the locality records originated from well-sampled

regions, for example parts of Uganda and southern Kenya.

Very few locality records were available for the Guinea–

Congolian Forests or the Sahel Acaica Wooded Grasslands and

Deciduous Bushlands of Sudan. While low species richness was

predicted for the former, some of the highest species richness

was predicted for the latter (Fig. 1b).

Effect of range size on continental pattern of migrant

richness

Of the total of 12,599,085 c. 5-km records comprising the total

migrant species richness occurring in 688,661 grid cells in our

study area, 55.4% were from the 15 widest ranging species

(fourth quartile), while the third, second, and first quartiles

accounted for only 30.3% 12.1% and 2.2% of grid cells,

respectively (Appendix S1). Species richness for the first

quartile explained very little of the variance of all species

(r2 ¼ 0.15), but explained substantially more of the variance

moving through the more geographically widespread quartiles

(r2 ¼ 0.70 for the second quartile, r2 ¼ 0.86 for the third

quartile, and r2 ¼ 0.79 for the fourth quartile).

Species richness was much lower per grid cell for narrowly

distributed species than for geographically widespread ones,

indicating that the narrow-ranging species were not highly

clustered together. However, there were some notable peaks in

richness of narrowly distributed species in the Senegal Delta,

within the Niger Inundation Zone (a major entry point for

many migrants crossing the Sahara), and in the Eastern

Highlands (Fig. 2). These zones also exhibited high richness

for second-quartile species, whose distributions also extended

as a discontinuous northern band across the Sahelian Acaccia

Wooded Grassland and Deciduous Bushland, and in parts of

the Ethiopian Highlands, with some richness reaching farther

south into South Africa. Some species in the third quartile

occupied the Wetter Zambezian Miombo Woodlands south of

the Guinea–Congolian Forests. The fourth quartile had high

species richness nearly everywhere except in the Guinea–

Congolian Forests, Somalia, Ethiopia’s High Montane Veget-

ation, and arid or cool regions of Southern Africa (Fig. 2d).

Very different relationships existed between the predictors and

species richness estimates for narrowly distributed and

geographically widespread species, as indicated by the chan-

ging sign of the slope describing the relationship between
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Figure 1 (a) Species richness pattern of 60 species of Western Palaearctic migrant passerines in sub-Saharan Africa based on potential

distributions. Equal-interval classification is shown, with colour ramps indicating minimum (light, top of legend) to maximum (dark,

bottom of legend) species richness. R2 is the fit of the global spatial linear regression model (SLM) to this pattern. (b) The geographical

pattern of model residuals for the global spatial autoregressive SLM, as presented in Table 1. Standard deviation classification ranges from

dark cyan (< -3 SD) to dark red (> +3SD). Points represent all sampling localities used in our analyses. The spatial correlation in the

residuals (estimated by Moran’s I) is very near zero, indicating that we have successfully corrected for spatial autocorrelation (P ¼ 0.994 for

the null hypothesis of no spatial autocorrelation) in the sample of 10,000 records used to build the model.
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species richness and minimum temperature, seasonality of

precipitation, and inter-annual variability in NDVI (IAV-

NDVI) (Table 1). Richness for the first to third quartiles was

highest within a band 10� south of the Sahara, but gradually

decreased with increasing distance. Richness for widespread

species and all species was highest between 20� S and 10� N,

but then declined nearer the Sahara, while overall richness

peaked at a distance of 10� measured from the Sahara (c. 10� N

latitude). The migrant richness pattern for all species exhibited

positive spatial autocorrelation (Moran’s I ¼ 0.864,

P < 0.001); that is, if one grid cell had high species richness,

so would its neighbouring cells.

Results from GLM model selection and from SLMs

Our data supported the inclusion of each of our predictor

variables and in most cases all of their quadratic terms in the

GLM. For all species and for the second, third and fourth

quartiles, essentially all the weight of evidence supported the

global model (wi ¼ 1),which included an intercept, all seven

linear predictors, and their quadratic expressions (Table 1). In

the first quartile, 66% of the weight of evidence supported the

global model (wi ¼ 0.66), while 33% supported the 14-term

model that excluded the quadratic term for distance from the

Sahara (wi ¼ 0.33). Across the range-size quartiles and all

Figure 2 The geographical pattern of potential species richness for Western Palaearctic migrant passerines in Africa by range-size quartiles.

Quartiles range from first (narrowest ranging 25%) to fourth (widest ranging 25%) of the 60 species overall and the empirical potential

richness pattern. Equal-interval classification is shown, with light colours indicating minimum and dark colours indicating maximum

species richness. r2 compared to the species pattern is the coefficient of determination between the species richness pattern for each quartile

and that of all species. r2 for the fitted global SLM is the coefficient of determination between the spatial linear regression model and the

empirical potential richness pattern.
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species, we saw that the parameter estimates had different

magnitudes, and occasionally different directions (i.e. signs)

for many of the predictor variables, indicating that the

relationship to each predictor variable was not the same for

all groups of species. The direction was maintained across all

quartiles and for all species for the intercept, the quadratic

term for habitat heterogeneity, minimum temperature, the

main effects of inter-annual variability in NDVI (IAV-NDVI),

distance from the Sahara, and tree cover, but not unequivo-

cally for the other terms. Confidence intervals included zero

for some of our parameter estimates in these global spatial

linear regression models, indicating uncertainty in our esti-

mates of the direction of the relationship between species

richness and the predictor. The only terms with such

uncertainty are quadratic terms for tree cover and distance

from the Sahara in the first quartile, minimum NDVI in the

second quartile, the quadratic term for IAV-NDVI in the third

quartile, and the quadratic terms for habitat heterogeneity and

IAV-NDVI for all 60 species together.

In order to examine how the explanatory power of the

global model differed for each geographic range-size quartile,

we compared r2 of the fitted values from each global SLM with

the species richness response used to build each model. r2

increased dramatically from only 0.21 for the first quartile to

0.75 for the fourth quartile. The global model explained 69%

of the variance in total species richness. There was no spatial

pattern in the sample residuals for these models, and values of

Errors Moran’s I were close to zero, indicating essentially no

remaining spatial autocorrelation (Lennon, 2000; Diniz-Filho

et al., 2003).

In order to study the shape of the relationship between

species richness and each predictor for each range-size

category, we plotted response curves for each individual

predictor. In general, relationships to predictor variables were

visually more pronounced for more geographically widespread

quartiles than for more narrowly distributed ones. Clear, non-

linear relationships were found for most of the predictor

variables for all 60 species, third, and fourth range-size

quartiles. However, these relationships were less pronounced

for the first and second quartiles, and difficult to discern from

these plots (Fig. 3), despite the fact that non-linear relation-

ships are suggested for all variables by model selection based

on AIC.

Distance from the Sahara Desert

In order to investigate whether distance from the Sahara

Desert could predict the species richness of migrants in sub-

Saharan Africa, we compared one-dimensional null-model

predictions generated by Range Model with our bioclimatic

envelope predictions (see Methods). A marked simulated

richness peak did not emerge for any quartile, or for all

species (Fig. 4), indicating that the null model does not

explain migrant species richness (see Discussion). Although
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the null model predicted the highest values of species richness

in the fourth quartile for intermediate values of distance, it

could not predict the marked peak in richness near the

Sahara. Species richness in each quartile was always higher

closer to the Sahara than could be explained by the null

model alone.

DISCUSSION

Our results suggest that the potential distributions of these

species are determined by distance from the Sahara Desert

working in concert with climatic effects (Table 1). Moreover,

richness peaked close to the Sahara within the Sahel and
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Northern and Eastern Savanna Zones. Thus, this pattern did

not support the one-dimensional null model, which predicted

that species richness should be concentrated at intermediate

latitudes between the Southern margin of the Sahara and the

Cape. On the contrary, we found that such latitudes are

actually quite low in species richness in the first to third

quartiles, and that richness is always higher in the Savanna and

Sahel zones just south of the Sahara than predicted by the one-

dimensional null model (Figs 2a & 4).

Measures of energy, water, or water-energy have been shown

to explain richness better than any other climatic or non-

climatic variable (Hawkins et al., 2003). Although we were not

able to establish the relative explanatory power of our

predictor variables, our results were consistent with the

predictions of species energy theory. We found that net

primary productivity and temperature bore hump-shaped

relationships to species richness, although we found that

narrowly distributed species lacked this relationship (Fig. 3).

Our hump-shaped relationship to net primary productivity

was also supported in the resident avifauna (Jetz & Rahbek,

2002). Although species energy theory predicts that migrant

richness should be highest wherever there are seasonal pulses

in surplus resource foods that cannot be consumed by the

resident avifauna, we found that richness was lowest at both

extremes of seasonality and peaked at intermediate values

(Fig. 3). We attribute the low potential richness in the highly

seasonal but sparsely vegetated Sahel zones closest to the

Sahara to unsuitability in other important variables, for

example insufficient tree cover or high temperatures. Such

an interpretation is also consistent with recently suggested

modifications to species energy theory that propose that more

combinations of physiological parameters (and thus species)

can survive under warm and wet than cold or dry conditions

(Currie et al., 2004). Our species richness estimates were low

in places where inter-annual variability in NDVI (IAV-NDVI)

was extremely high. These high values usually corresponded to

coastal areas where marine and freshwater communities

experience high inter-annual fluctuations in the amount of

shoreline vegetation.

Percentage tree cover bore a hump-shaped relationship to

species richness for geographically widespread species, sup-

porting the hypothesis that migrants are typically not found in

densely forested or barren habitats, but occur in savanna-type

habitats with intermediate forest cover. This result may be

somewhat confounded by the low number of records from the

forested Congo basin, partly resulting from either low

sampling effort (see Curry-Lindahl, 1981) or the difficulty of

detecting canopy-dwelling insectivores (Walther, 2003). How-

ever, whenever surveys were carried out in tree canopies, only

the canopy-dwelling golden oriole (Oriolus oriolus) and aerial-

feeding species such as swallows were recorded (Pearson &

Lack, 1992).

Although migrants are excellent dispersers, some migrants

occupy rather small wintering ranges in Africa compared with

others. As Jetz & Rahbek (2002) found for resident birds,

geographically widespread migrants drive the overall

continental pattern of species richness. Similarly, we found

that the predictor variables selected based on the hypotheses

presented in the literature explain richness patterns in geo-

graphically widespread species better than those in narrowly

distributed ones, also supporting some of the findings of Jetz &

Rahbek (2002). Furthermore, confirming the pattern for

resident birds, net primary productivity, temperature, and

habitat heterogeneity explain some of the species richness

pattern for migrants. Although we found that the one-

dimensional null model does not explain the distribution of

migrants well at all, we found that other variables (distance

from the Sahara, seasonality in precipitation, and percentage

forest cover) play important roles.

Our results highlight the need for new spatial environmental

predictors that better reflect the habitat needs of some species,

particularly those with small ranges. We expect that the

distribution of small-range species might be determined by

fine-scale environmental features that are not reflected in our

spatial predictor variables. Although currently unavailable,

detailed electronic data sets mapping aquatic vegetation zones

might help us better predict some of the first-quartile species

known to be associated with reed and marsh habitats, such as

the threatened Basra reed warbler, Acrocephalus griseldis, and

aquatic warbler, Acrocephalus paludicola (BirdLife-Interna-

tional, 2000).

Bioclimatic models are sensitive to the number of locality

records used because they can only interpolate between the

extremes of a species range in environmental space (Kadmon

et al., 2003). It is therefore possible that species that are

poorly sampled at the margins of their range could be

predicted to have larger geographic range sizes with a more

complete data set. However, this does not, for example, imply

that narrowly distributed species would be outside the Sahel

or Northern and Eastern savanna zones, because no first-

quartile species has ever been recorded from outside these

areas, except as vagrants (Dowsett & Forbes-Watson, 1993).

Ideally, bioclimatic models should be validated with a reliable,

independent data set of presences and absences (Guisan &

Zimmermann, 2000), but this clearly was not possible for this

small data set based on opportunistically collected records.

Our locality records were compiled over 3 years from a wide

variety of sources, and additional data simply were not

available at an appropriate spatial resolution for validating

these models. As biodiversity data sets become more complete

(Graham et al., 2004), we anticipate that this will become

possible in the future. Nonetheless, we expect that these

predictions offer the most conservative spatial extrapolation

of the overwintering distributions of these species that can be

made with the data available. Further work should quanti-

tatively explore how uneven sampling effort could affect

richness patterns, with and without bioclimatic modelling.

Because the data for each species in our sample are

characterized by sampling biases, an ideal, although ambi-

tious, approach might begin with completely simulated

species distributions (e.g. Minchin, 1987), backed by a real

example using strategically sampled species.
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Other algorithms can result in different predictions for each

species and could yield different predictions of species

richness. Further work with our data could include predictions

from other algorithms and the application of consensus

methods such as those proposed by Thuiller (2004). Moreover,

novel modelling algorithms recently introduced to ecology

(e.g. those rooted in maximum entropy or improved genetic

algorithms) could be considered, as these have been shown to

yield robust predictions (Elith et al., 2006).

Although the variables used in modelling the distribution of

each individual species were also used to investigate overall

patterns of species richness, this is not a circular approach.

First, all our bioclimatic envelope predictions were clipped

using their extent of occurrence and habitat polygons. Second,

the overall pattern of species richness is a composite of many

individually generated and clipped distributions and should

therefore be somewhat independent of the variables that

helped to generate the individual distributions. Nevertheless,

further work should investigate to what degree estimates of

correlations might be upwardly biased by our method.

Based on our comparison of candidate models using QAIC,

the global model including all explanatory variables was the one

most strongly supported by the data. Any other model that

lacked any one of the variables received less support or

essentially no support. However, because all the weight of

evidence was on the global model, it is not possible for us to

rank the importance of the predictor variables using informa-

tion-theoretic approaches (Burnham & Anderson, 1998, 2002).

Thus, our results point towards the importance of all of our

predictors for explaining the distribution of migrant species

richness.

Our analysis of the potential distributions of migrant

songbirds highlighted locations where their richness fluctuates

most throughout the year, and allowed us to investigate

important determinants of migrant species richness. Although

we could not validate predictions of the potential distributions

of individual species, our approach allowed us to address

hypotheses that otherwise could not be explored with the

limited data available. While the determinants examined in

this paper deserve further consideration, they are alone

insufficient to explain the distributions of narrowly distributed

species. Moreover, further work, including field research, is

needed to explore how resident birds and migrants share the

landscape, and to see if other migrant birds, including intra-

African migrants, exhibit similar patterns.
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J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff,

T., O’Brien, E.M., Porter, E.E. & Turner, J.R.G. (2003) En-

ergy, water, and broad-scale geographic patterns of species

richness. Ecology, 84, 3105–3117.

Hockey, P.A.R. (2000) Patterns and correlates of bird migra-

tions in sub-Saharan Africa. Emu, 100, 401–417.

Hurlbert, A.H. & Haskell, J.P. (2003) The effect of energy and

seasonality on avian species richness and community com-

position. The American Naturalist, 161, 83–97.

Hutchinson, M.F., Nix, H.A., McMahon, J.P. & Ord, K.D.

(1995) A topographic and climate database for Africa. Centre

for Resource and Environmental Studies (CRES), Canberra,

Australia.

Jetz, W. & Rahbek, C. (2002) Geographic range size and

determinants of avian species richness. Science, 297, 1548–

1551.

Jones, P.J. (1995) Migration strategies of Palearctic passerines

in Africa. Israel Journal of Zoology, 41, 393–506.

Kadmon, R., Farber, O. & Danin, A. (2003) A systematic

analysis of factors affecting the performance of climatic

envelope models. Ecological Applications, 13, 853–867.

Keitt, T.H., Bjørnstad, O.N., Dixon, P.M. & Citron-Pousty, S.

(2002) Accounting for spatial pattern when modelling

organism–environment interactions. Ecography, 25, 616–

625.

Kokko, H. (1999) Competition for early arrival in migratory

birds. Journal of Animal Ecology, 68, 940–950.

Lack, P.C. (1986) Ecological correlates of migrants and resi-

dents in a tropical African savanna. Ardea, 74, 111–119.

Leisler, B. (1992) Habitat selection and coexistence of migrants

and Afrotropical residents. Ibis, 134 (Suppl.), 77–82.

Lennon, J.J. (2000) Red-shifts and red herrings in geographical

ecology. Ecography, 23, 101–113.

Minchin, P.R. (1987) Simulation of multidimensional com-

munity patterns: towards a comprehensive model. Vegetatio,

71, 145–156.

Mönkkönen, M., Helle, P. & Welsh, D. (1992) Perspectives on

Palearctic and Nearctic bird migrations; comparisons and

overview of life-history and ecology of migrant passerines.

Ibis, 134 (Suppl.), 7–13.

Moran, P.A.P. (1950) Notes on continuous stochastic phe-

nomena. Biometrika, 37, 17–23.

Moreau, R.E. (1972) The Palaearctic–African bird migration

systems. Academic Press, London.

Morel, G.J. & Morel, M.Y. (1978) Recherches écologiques sur
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