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a b s t r a c t

We study climate uncertainty and how managers’ beliefs about climate change develop and influence
their decisions. We develop an approach for updating knowledge and beliefs based on the observation of
forest and climate variables and illustrate its application for the adaptive management of an even-aged
Norway spruce (Picea abies L. Karst) forest in the Black Forest, Germany. We simulated forest develop-
ment under a range of climate change scenarios and forest management alternatives. Our analysis used
Bayesian updating and Dempster’s rule of combination to simulate how observations of climate and
forest variables may influence a decision maker’s beliefs about climate development and thereby
management decisions. While forest managers may be inclined to rely on observed forest variables to
infer climate change and impacts, we found that observation of climate state, e.g. temperature or pre-
cipitation is superior for updating beliefs and supporting decision-making. However, with little conflict
among information sources, the strongest evidence would be offered by a combination of at least two
informative variables, e.g., temperature and precipitation. The success of adaptive forest management
depends on when managers switch to forward-looking management schemes. Thus, robust climate
adaptation policies may depend crucially on a better understanding of what factors influence managers’
belief in climate change.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Climate change is projected to have significant impacts on forest
resources (Kirilenko and Sedjo, 2007; Xu et al., 2009). However,
uncertainty regarding the degree of climate change we are facing,
and uncertainty regarding how forest ecosystems will respond to
climate change (Millar et al., 2007; Xu et al., 2009) present severe
challenges with respect to developing robust adaptive manage-
ment strategies (Kirilenko and Sedjo, 2007; Yousefpour and
Hanewinkel, 2009). While previous studies have addressed adap-
tive decision approaches in relation to climate change (e.g. Jacobsen
and Thorsen, 2003; Armstrong et al., 2007; Prato, 2008; Heltberg
et al., 2009; Probert et al., 2010; Williams, 2011), few have
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explicitly considered how uncertainty influences the adaptive de-
cision making process (Williams, 2012), or how managers’ beliefs
regarding climate change will influence their management
decisions.

Information about climate change is dynamic and as more
reliable information becomes available, the uncertainty that the
decision maker deals with is reduced over time (Prato, 2008;
Heltberg et al., 2009; Probert et al., 2010; Bernetti et al., 2011;
Williams, 2011). The aim of this study is to evaluate how managers
may use a combination of information sources to update knowl-
edge and beliefs relevant for adaptive decision making. Most
studies of adaptive forest management implicitly assumemanagers
to be rational and to have perfect knowledge of both the state of the
system and its possible future trajectories or distributions, given
available information (Pukkala and Miina, 1997; Jacobsen and
Thorsen, 2003; Yousefpour and Hanewinkel, 2009). However, for-
est managers often base their decisions on multiple information
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sources that may be contradictory or be associated with varying
uncertainty (Ducey, 2001; Ananda and Herath, 2005; Hoogstra,
2008). In response to this divergence decision-making models
incorporating various levels of ‘bounded rationality’ have been
developed to address variations in forest managers’ use of infor-
mation and formation of expectations regarding the future
(Hoogstra, 2008; Jacobsen et al., 2010; Probert et al., 2010).

In a general adaptive management approach, each decision is
based on observed trends and fluctuations of particular sto-
chastic variables and the resulting beliefs about the future states
of nature. Since we are not always able to describe and quantify
uncertainty comprehensively, it is useful to include the formation
of beliefs in the decision making model. A central aspect of such
an approach is to decide what information and observations to
include in belief formation and in which combinations. In the
case of climate change and decision making for forest resources,
one could argue that there are two obvious main sources of
natural science information for assessing on-going and future
climate change: climate and forest variables. Repeated, direct
observations of climate variables have the advantage of providing
reliable information on variations and changes of climate. Infor-
mation on the development of forest variables is less direct
measures of climate change, as they are influenced also by other
factors, and subject to lagged effects of past conditions. However,
they have the advantage that that there is a long tradition of
observing forest resources in established monitoring frame-
works. Furthermore, forest variables e in the long run e contain
information on the response of forests to climate change.
Therefore, we consider climate and forest variables and mixtures
thereof as the basis for forming beliefs about on-going climate
change and its impacts.

We used climate scenario simulations and climate sensitive
forest ecosystem model to address three research questions: 1)
What is the relative value of climatic and forest state data for
updating beliefs regarding future climate trajectories? 2) Does
combining multiple data sources lead to a quicker convergence of a
manager’s belief state about climate change? 3) How do informa-
tion and updated beliefs affect adaptive decisions on forest re-
sources under climate change impact?

We seek to answer these questions for a case study in the Black
Forest area of Germany by investigating decision making patterns
for amanagermaximizing at each decision node the expected value
of objective function, using available information to form beliefs
about forthcoming climate changes, and deciding upon a set of
alternative actions. In this process, decision-maker applies Demp-
ster’s rule (Dempster, 1967) for combining evidence from both
climate state and forest state observations, and by using Bayesian
theory (Bayes and Price, 1763) for updating beliefs. Thus, the
modelling concept in this study is a combination of microeconomic
and experience-based decision-making in the modelling context of
coupled human-natural systems (An, 2012).
2. Material and methods

We consider a decision maker who aims to optimize manage-
ment so as to maximise either long-term forest productivity (Total
Biomass Production,1 TBP) or minimize forest windthrow damages.
These objective functions, OBJ, are optimized by choosing at a given
time step the best performing. We calculate the expected OBJ to
1 The total biomass production (TBP) at a given time is defined as a flow con-
sisting of the sum of harvested biomass (HB), biomass from mortality (BM:
competition, fire, windthrow, dieback) and the decadal biomass increment (DBI:
cumulated growth (not harvested) in the forest (biomasstebiomasst�1)).
determine the optimal decision, taking into account the process
and value of learning about climate and forest variables. The OBJ
measure represents the expected value of a particular management
of the forest area that has been found as the best available condi-
tional on the beliefs about the different climate change scenarios
being true. In the following, we first describe a generic approach of
how to apply the method for a given case, and thenwe specify how
specific data are used for the case study.
2.1. Generic model

2.1.1. Climate scenarios
We consider I scenarios of climate development (e.g. as

Kirilenko and Sedjo, 2007 used realizations of in IPCC A1f) and
calculate a time series of mean values (trajectories) for a given
climate variable (e.g. temperature, precipitation). We add a sto-
chastic component capturing the uncertainty and variation around
any scenario development by including i.i.d. stochastic shocks ac-
cording to aWiener noise process with variance s2i across state and
time. Thus, the observed state of the climate related variable bqt at
time t for scenario i is given by:

bqtðscenarioi; tÞ ¼ xitðscenarioi; tÞ þ 3it

and 3itwN
�
0; s2i

� (1)

where t ¼ 1,.,T, i ¼ 1,.,I, xit denotes the mean trajectory of sce-
nario i at time t, and 3it is an error with normal distribution around
mean 0 and scenario-specific variance, s2i .

2.1.2. Decision maker’s beliefs and information processing
We set up a decision frameworkwhere the decisionmaker holds

a set of beliefs regarding the likelihood of each climate scenario
being true. We also define how the decision maker may change his
beliefs using Bayesian updating given new observations. Let wit
(wit ¼ Pr(scenarioi, t)) be the belief at a given point t that a
particular climate scenario i is unfolding, such that beliefs are
complete:

Xm
i¼1

wit ¼ 1; wi;t � 0 (2)

As time passes and new information on the climate (either from
forest or climate variables), as given by bqt, is obtained, the plausi-
bility of each climate change scenario is reassessed and the weights
wit are updated using Bayes’ theorem (Bayes and Price, 1763):

witþ1

�bqt� ¼ Pr
�
scenarioi

��bqt
�

¼
Pr
�bqt jscenarioi

�
Prðscenarioi; tÞ

PI
i¼1 Pr

�bqt jscenarioi
�
Prðscenarioi; tÞ

(3)

The weights at time t þ 1 depend on the belief in a climate
change scenario and on the observed climate state at time t. The
observed bqt is a measure indicating the present climate state, and
its values are simulated as described in Eq. (1). Based on the
updated probability values (witþ1), we assign a belief mass to each
scenario to be the actual development of the climate state.

2.1.3. Combination of evidence
We applied Dempster’s rule (Dempster, 1967; Bernetti et al.,

2011) for the combination of multiple updated beliefs (each based
on a different observed variable) to produce a single combined



Table 1
Climate change scenarios i.e. regional circulationmodel realizations for the IPPC AR4
A1b emission scenario at 828 m a.s.l. in the Black Forest case study area.

Climate scenario Temperature [�C] Precipitation [mm]

Annual Summera Winterb Annual Summera Winterb

Historic (1950e2000) 7.1 12.4 1.8 1086 573 513
SMHI (2081e2100) 9.3 14.6 4.0 1041 491 550
HCCPR (2081e2100) 11.7 17.3 6.1 1042 473 569

SMHI: Model (RCA30/CCSM3) realization by the Swedish Meteorological and Hy-
drological Institute (Kjellström et al., 2011), HCCPR: Model (HadRM3Q0/
HadCM3Q0) realization by the Hadley Center for Climate Prediction and Research
(Collins et al., 2006).

a AprileSeptember.
b OctobereMarch.
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belief in each climate change scenario. The combination of two
beliefs wit(A) and wit(B) based on two sorts of evidence, A and B,
and supporting a climate change scenario (scenarioi) is calculated
in the following manner:

witðscenarioiÞ ¼

P
AXB¼ scenarioi

witðAÞwitðBÞ

1� k
when scenarioi;Ø ^ witðØÞ ¼ 0

where k ¼ P
AXB¼Ø

witðAÞwitðBÞ

(4)

where k measures initial beliefs in conflict between different sorts
of information and is determined by summing the products of the
beliefs for all sets where the intersection is null, i.e. where one of
the pieces of information does not support scenarioi at all. This rule
is commutative, associative, but not idempotent or continuous
(Dempster, 1967; Jøsang and Pope, 2011). The denominator in
Dempster’s rule, 1 � k, is essentially a normalization factor, which
has the effect of leaving out conflict and attributing beliefs associ-
ated with conflict to the null set. Dempster’s rule can easily be
generalized for a combination of three (or more) different sources
of information.

2.1.4. Choice of management actions
We determine the management action as a function of the

objective, time, and current observed state of the system and the
beliefs in the various climate change scenarios (wit). At each deci-
sion point, alternative decisions are evaluated for all possible
combinations of scenario weights, Wt ¼ {w1t; w2t;.; wIt}. There-
fore, the decisions depend on the forest managers belief-type
probabilities for the transition from one state to another (Eq. (3))
and the value associated to that state.

We use E(Wt, t; qt, xt) to denote the expected value of a man-
agement strategy, atj, from time t to the end of planning period T,
given the observed state of information and other relevant state
variables x so that the optimal action atj satisfies

max=min
atj

EðWt ; t; qt ; xtÞ ¼
XI

i¼1

witOBJit
�
atj; qt ; xt

�
(5)

The value function E(Wt, t; qt, xt) is the weighted sum of the
expected rewards at decision point t from action j given scenarioi
(Eq. (5)). The scenario weightswit are the updated beliefs as in Eqs.
(3) and (4), and it is this updating and combination process that
ensures that our management is adaptive by definition.

2.2. Case study

2.2.1. Study area
The simulated landscape is a 570 ha block of even-aged Norway

spruce forest located between 500 and 800 m a.s.l. at the westerly
side of the Northern Black Forest mountain range (48�400 N, 8�130

E), Germany. The forest is comprised of 401 stands that range in size
from <0.1 ha to 11.5 ha. Norway spruce dominates the forest
because of afforestation and historic management. Under non-
managed conditions, a mixed European beech (Fagus sylvatica L.)
forest is expected, with oaks (Quercus spp.) increasing in proportion
towards lower elevations, and Silver fir (Abies alba Mill.) and Nor-
way spruce (Picea abies (L.) Karst) increasing at higher elevations
(Müller et al., 1992; Ludemann, 2010).

2.2.2. Data for climate scenarios
In our analysis, climate data are used in twoways. First, they are

one of the primary drivers of forest dynamics in the applied forest
ecosystem model LandClim model and therefore influence forest
state through time. Second, they influence the forest manager’s
belief about climate state (wit), and therefore the manager’s pro-
pensity to adopt and implement alternative management actions.

We used three different climate scenarios (Table 1): A no-
change scenario (Historic), a moderate (SMHI) and a high
(HCCPR) climate change scenario (Collins et al., 2006; Kjellström
et al., 2011; Temperli et al., 2012). The Historic climate scenario is
based on observed monthly temperature and precipitation data
from 1950 to 2000. The climate change scenarios cover a range of
uncertainty about predicted mean figures of climate variables over
time. The influence of climate uncertainty on managers’ belief state
was included by assuming that all forest and climate variables had a
standard deviation of si ¼ 0.3 (in Eq. (1)) that follows Allen et al.
(2000), Collins et al. (2006) and Kjellström et al., 2011, studying
the forecasting uncertainty of climate change, and Xu et al. (2009),
studying the uncertainty of forest landscape response to climate
change.

2.2.3. Simulation of forest development and management
We simulated forest development and forest management ac-

tions in the case study region using the forest landscape model
LandClim (Schumacher, 2004, 2006; Elkin et al., 2012; Temperli
et al., 2012). The model simulates forest development (regenera-
tion, growth and mortality of 32 tree species represented as age
cohorts) within 25 � 25 m grid cells on a yearly time step, while
landscape disturbances (fire, wind) and forest management are
updated every decade (Schumacher, 2004; Schumacher and
Bugmann, 2006). Fire disturbances are climate dependent and
reflect the influence that climate change has on fire occurrence and
spread, whereas the frequency and size of windthrow disturbances
is a user defined variable. The three climate scenarios that we
tested did not include any projected shifts in wind disturbances,
and we therefore use the same wind disturbance settings in each.
Climate change driven shifts in forest composition and structure
will alter windthrow risk depending on tree species and tree size,
but these long term indirect changes are not projected to impact
windthrow occurrence until the later part of the 21st century.
Nevertheless, risk of extreme events and observation of consequent
damages is very important for the behavioural study of forest
managers’ perceptions and beliefs about climate change and
consequent decisions (Spence et al., 2011). For a more detailed
description of the application of the model to the case study region,
see Temperli et al. (2012) with similar simulation basis. However,
we include different timings when the management actions are
implemented (2010 vs. 2050) and in the forest stand level than the
entire landscape. Moreover, the set of simulations in this study
involves shifts in management regimes (i.e. from mixed forest to
Douglas fir in 2050), which do not occur in Temperli et al. (2012).
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We simulated four alternative management regimes (atj) by
varying species- and age class-specific thinning intensities and
assuming that future management will vary along a gradient of
timber production vs. biodiversity provision oriented manage-
ment goals. The first represents a business-as-usual scenario that
continues even-aged Norway spruce management. The other
three regimes represent potentially adaptive alternatives that aim
to convert the current monocultures of even-aged spruce to
uneven-aged forests, and to promote a transition to more
regionally adapted deciduous species. These alternatives were
developed using descriptions of the management regimes that
are currently applied or recommended for the study area (MLR,
1999; Spiecker et al., 2004; Duncker et al., 2007; cf. Temperli
et al., 2012 for details). The management alternatives are
described in order of decreasing management intensity and
timber production focus.

M1: Under the past (business-as-usual) even-aged Norway spruce
regime, highest possible timber production is achieved by
clear-cutting stands when dominant trees reach a target
diameter (DBH) of 45 cm. Following clear-cutting, the stands
are replanted with Norway spruce and thinned to foster
growth and maintain the monoculture.

M2: The first adaptive strategy converts stands to uneven-aged
mixed Douglas-fir/silver fir using target diameter harvesting.
Windthrow resistance is believed to be improved and the
species mixture is better adapted to a warming climate while
valuable coniferous timber is still produced (Schütz et al.,
2006).

M3: The second adaptive strategy is an uneven-aged mixed forest
management regime, combining timber production with
promotion of biodiversity; a structurally rich Norway spruce-
dominated forest with continuous cover was promoted,
allowing naturally regeneration of deciduous trees, Douglas-
fir and silver fir comprising 20e40% of the species mixture.

M4: The third adaptive strategy aims at biodiversity promotion by
conversion to natural vegetation, e.g. beech. To this end,
Norway spruce is thinned strongly. Otherwise, forest man-
agement is restricted to a minimum of infrastructure main-
tenance (e.g. hiking trails).

We simulated forest development between 2010 and 2100,
and incorporated two decision points (2010 and 2050) when
each of the four management alternatives could be implemented
resulting in 16 different forest management pathways. All man-
agement pathways were simulated for each of the three climate
scenarios that we used. To account for stochastic processes in
LandClim (e.g., windthrow disturbance), we ran 15 independent
forest simulation replicates. For this analysis we aggregated the
results at the landscape level, and averaged the results over the
15 replicates.

2.2.4. Input for belief updating
Three forest variables, total biomass production, windthrow

damage (expressed as annual biomass loss at the landscape level)
and a biodiversity indicator (Shannon diversity, see Temperli et al.,
2012), were selected as the observed forest variables. Three climate
state variables were selected: two visible and known climate var-
iables namely average minimum temperature and annual precipi-
tation, and an annual drought index (ADI) as more complex and
scientific understanding of climate condition. ADI was used to
capture average dryness over the m ¼ 12 months of the year. It
measures amount of water transpired by the trees relative to their
evaporative demand for soil water (see details in Schumacher
2004).
2.2.5. Implementation of the analysis for belief updating and
decision-making

For each climate change scenario, we started the analysis with a
simulation of the mean trajectories of climate variables (as
described in Section 2.2.2) and the development of forest state
under management actions (cf. Section 2.2.3). Monte Carlo sam-
pling was carried out for the climate and forest variables (100,000
iterations for each period with replacement), from which sets of
realizations were drawn, thereby providing information for the
decision maker. Based on the simulated data, the belief in each
climate change scenario was updated applying the Bayesian theo-
rem (Eq. (3)). The process of acquiring climate data, implementing
actions and updating beliefs was repeated at 10-year intervals.
Simulations were run from current states of forest and climate
(Temperli et al., 2012), thus establishing initial priors (w1, w2, .,
wI) to express the beliefs in the different climate scenarios. We
analysed the sensitivity of the procedure to different sets of initial
beliefs (wit ¼ {0,0.2,0.4,0.6,0.8,1} and subject to Eq. (2)) and applied
Bayes’ theorem (Eq. (3)) to update beliefs at each period (2010,
2020, .) and based on the observation of different climate and
forest variables (Eq. (2)). At each decision point (i.e., 2010, and
2050), we combined the evidence using Dempster’s rule (Eq. (4)) to
calculate a unique updated belief about each climate change
scenario (wit). We investigated different combinations of
the examined evidence (e.g., temperature þ precipitation,
temperatureþ TBP, or TBPþwindthrow) to evaluate how different
combinations affected the speed towards certainty in belief in the
actual scenario. Subsequently, we considered the performance of
management actions as measured by OBJit (ajt) until the end of the
planning horizon (2100) to identify the optimal adaptive action (Eq.
(5)) incorporating the manager’s current belief (wit). The entire
exercise was undertaken for three different climate change sce-
narios being the underlying true scenario, allowing us to assess
interactions between type of future and belief formation.

3. Results

3.1. Learning about the actual climate development

Fig. 1 shows the results of a sensitivity analysis for different
underlying true scenarios (left-most column) and across the set of
initial beliefs (wit ¼ [0,1]). Different sets of initial beliefs result in
different updatings, we show the mean and variance of the beliefs
masses across initial beliefs. These are shown in Fig. 1, where the
size of squares represents the mean degree of beliefs in the actual
realization and the shade of squares illustrates the variance of
updated beliefs across initial beliefs. The bigger the square, the
stronger the belief and the darker the square, the larger variance
between updated beliefs and the less sensitivity to initial beliefs
and the less difference between initial and updated beliefs over
time. The beliefs over the nine time, wi1ewi9 periods are shown
until certainty is reached. Depending on the source of informa-
tion, the average time needed for the decision maker to be certain
of the actual climate change scenario varies considerably. For
some sources of information (e.g. ADI), the signals are so weak
that the decision maker remains unsure for the entire period
(wi9 < 50%). This is particularly true for SMHI and HCCPR. How-
ever, if there are very large change in climate states, e.g. in the case
of precipitation under HCCPR, typical changes over the next ten
years will allow the decision maker to make up his mind already
by 2020.

Climate variables like temperature and precipitation were
evidently more reliable sources of information under some cli-
mates than forest variables. In contrast, the climatic and ecological
index ADI performed poorly. Within the forest variables, the



Fig. 1. Updating beliefs about actual climate change scenario, when Bayesian updating is based on the observation of different climate and forest variables drawn from 100,000
Monte Carlo samplings. Size of squares shows the mean degree of beliefs in the actual realization (the bigger the square, the stronger the belief) and the shade of squares illustrates
the variance of updated beliefs across initial beliefs (the darker the square, the less sensitivity to initial beliefs). Scenario ¼ Actual climate change scenario i.e. Historic, SMHI and
HCCPR (see details in Table 1), ADI ¼ Annual Drought Index & TBP ¼ Total Biomass Production, yAverage belief mass in the actual climate change scenario (the bigger the square, the
stronger the belief), where averaging is across initial beliefs varied systematically in 20% intervals, w1i ¼ {0, 0.2, 0.4, 0.6, 0.8, 1} and summing up to 100% (i.e.

P
wit ¼ 1, e.g.

w1(Historic) ¼ 0.2, w1(SMHI) ¼ 0.6 and w1(HCCPR) ¼ 0.2), zStandard deviation in the measured belief mass in the actual climate change scenario (the darker the square, the larger
variance between updated beliefs and the less difference between initial and updated beliefs over time), w1ew9 ¼ Belief on the actual climate change scenario over time (2010e
2090, e.g. w5 ¼ belief at 2050), cf. y and z.

R. Yousefpour et al. / Journal of Environmental Management 122 (2013) 56e6460
development of annual biomass production, TBPwould be the best
choice compared to the observations of windthrow damage or
species diversity, which are much less sensitive in the short term.
Note that forest properties are influenced by a range of other factors
besides climate. In this model, climate may change the species
composition which in turn changes the forest’s windthrow sus-
ceptibility and consequently would affect windthrow damage and
species diversity. In this case these indirect climatic effects were not
strong enough and/or were masked by other factors influencing
forests dynamics to serve as reliable sources of information about
climatic developments.
3.2. Combining different sources of evidence

When several lines of climatic evidence are used in combina-
tion, the manager’s belief state can converge on the actual climate
scenario in a single 10 year time step (Fig. 2). This happens no
matter what the actual scenario is. For forest variables, however,
the time needed before complete confidence in the actual scenario
is reached is somewhat longer (20 years). Combining two forest
variables i.e. TBP and biodiversity (species richness) may yet delay
the inference and add more uncertainty e.g. w2 ¼ 76% (standard
deviation around 42%), when the actual climate change scenario is



Fig. 2. Combining evidence about the actual climate change scenario and based on the observation of different climate and forest variables at 2020 (w2). Historic, SMHI and
HCCPR ¼ Climate change scenario (see details in Table 1) , ADI ¼ Annual Drought Index & TBP ¼ Total Biomass Production, w2 ¼ belief about the actual climate change scenario at
2020 (after ten years of observations).
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SMHI or HCCPR compared to climate variables (temperature and
precipitation). This is less (w2 ¼ 65%) when we combine all three
evidence from forest variables TBP, species richness and wind-
throw damage (standard deviation ¼ 42%).

Under the climate change scenarios SMHI and HCCPR,
combining a forest variable (i.e. TBP) with a climate variable (i.e.
temperature) was not as efficient as combining two climate vari-
ables. When forest and climate variables were combined, 100%
confidence in the actual climate was not achieved for twenty years.
In this case, a confident belief in the actual climate change scenario
could be reached after two decades of observations (i.e. after
twenty years at 2030).

3.3. Management decisions over time

With the adaptive management concept of this paper it turns
out that in the Black Forest area, at the initial decision point (2010),
the optimal decision for TBP maximization throughout the entire
planning horizon (2010e2100) would be M2 (Uneven-aged mixed
forest), irrespective of the initial beliefs. In this case,M2 is therefore
dominant. Note that this result also depends on the initial state of
our case study in the Black Forest area (Temperli et al., 2012) and
the values for maximum TBP varies between 7.2 and 9.5 m3/ha/
year. However, although M2 is the optimal choice at the first de-
cision point (2010), it loses dominance at the next decision point in
the middle of the planning horizon (2050), where a change in
management scheme may be considered. Thus we focus the pre-
sentation of results under TBP objective on the 2050 decision point,
cf. Table 2. As shown in Fig. 1, the decisionmaker will know the true
underlying climate with some certainty by 2050. At this point, if
climate change is taking place and the objective is to maximise
biomass production, TBP, adaptationwill result in a switch fromM2
to M4 (i.e. natural vegetation, see detail in Section 2.2.3). Table 2
shows details of the changes in management regimes for the de-
cision point in 2050.

Tomaximize TBP, the adaptive decision under SMHI orHCCPR is
to switch to M4, whereas continuing with M2 is only best option if
there is no change in climate state (Historic scenario). Perfect de-
cisions (grey areas e and perfect in the sense of having beliefs in
accordance with the true scenario) may not be different from de-
cisions under doubt (wi5 < 100%), but they support decision-
makers with correct expectations about the performance of man-
agement actions e.g. for the maximization of TBP. For example, the
perfect decision on TBP maximization under the actual scenario
SMHI will be M4 with TBP ¼ 8 m3/ha/year, where the same deci-
sion M4 will be made under a high uncertainty (w5 ¼ 34%,
evidence¼ ADI) with a misleadingly high estimate of TBP¼ 10 m3/
ha/year (þ25% comparing to the factual case).

To minimize windthrow damages, optimizing management
decisions is more complicated even if changes in windthrow ac-
tivity were not included in the scenarios. As we show in Table 3, the
initial decisions (in 2010), are slightly more sensitive to the initial
beliefs regarding the future climate development. Depending on
the set of initial beliefs, any of the management regimes, exceptM1
(Even-aged Norway spruce, the business as usual management
regime), may come into consideration. However, M4 (relying on
natural vegetation) is dominant under strong HCCPR beliefs and, in
most cases, the dominant choice under the SMHI and Historic
scenarios. M2 (Uneven-aged mixed forest) and M3 (Uneven-aged
Douglas/silver fir) would be optimal decisions if the initial belief in
theHistoric scenario is strong (>60%) under theHistoric and SMHI
climate scenarios, respectively.M4 is the optimal adaptive decision
if the simulated realised scenario is SMHI and results in a minimum
of 0.19 m3/ha/year biomass loss for the planning horizon (2010e
2090). The decision is changed to decision M3 if the initial belief is
imperfect (w21 ¼ 0e40%) based on a misleadingly high expected
biomass loss of 0.23e0.27 m3/ha/year (þ2e4% compared to the
simulated realised case in grey area).

However, in spite of this initial variation, once the decision
maker reaches the next decision point (2050), there is a general
preference for switching to M3 (see Table 2) in order to minimize
the windthrow damage for the rest of the planning horizon (2050e
2090). This adaptation is not needed if SMHI is the realised climate
change scenario andM3was already chosen as the optimal solution
in 2010. Similar to TBP maximization, decisions for the minimiza-
tion of windthrow disturbances under the condition of imperfect
knowledge about the actual climate change scenario (wi5 < 100%)
are the same aswhen beliefs coincidewith perfect knowledge (grey



Table 2
Optimal decisions for adaptation to climate change at the foreseen decision point (2050) depending on updated beliefs and using different climate or forest variables.

Actual scenario Variable w5 (%, belief at 2050) Decision on management scheme

Historic SMHI HCCPR TBP[ OBJ WindthrowY OBJ

Historic Temperature 100 0 0 Continue with M2 14 Switch to M3 0.21
Precipitation 100 0 0 Continue with M2 14 Switch to M3 0.16
ADI 35 33 32 Continue with M2/Switch to M4 10 Switch to M3 0.27
TBP 100 0 0 Continue with M2 14 Switch to M3 0.16
Biodiversity 100 0 0 Continue with M2 14 Switch to M3 0.16
Windthrow 84 6 10 Continue with M2 13 Switch to M3 0.19

SMHI Temperature 0 65 35 Switch to M4 8 Continue with/Switch to M3 0.32
Precipitation 0 100 0 Switch to M4 8 Continue with/Switch to M3 0.32
ADI 32 34 34 Switch to M4 10 Continue with/Switch to M3 0.29
TBP 0 100 0 Switch to M4 8 Continue with/Switch to M3 0.32
Biodiversity 0 90 10 Switch to M4 8 Continue with/Switch to M3 0.32
Windthrow 7 91 2 Switch to M4 9 Continue with/Switch to M3 0.31

HCCPR Temperature 0 35 65 Switch to M4 8 Switch to M3 0.32
Precipitation 0 0 100 Switch to M4 8 Switch to M3 0.32
ADI 32 34 34 Switch to M4 10 Switch to M3 0.29
TBP 0 0 100 Switch to M4 8 Switch to M3 0.32
Biodiversity 0 10 90 Switch to M4 8 Switch to M3 0.32
Windthrow 11 3 87 Switch to M4 9 Switch to M3 0.31

Historic, SMHI and HCCPR¼ climate change scenario (see Table 1), ADI¼ Annual Drought Index, TBP¼ Total Biomass Production,M1eM4¼Management schemes implying
different set of silvicultural interventions in planning horizon (see details in Section 2.2.3), [ ¼ Objective is to maximize a service, Y ¼ Objective is to minimize a damage.
OBJ ¼ Value of the adaptive decision in biomass (m3/ha/year), Grey area ¼ The realised adaptive decision including perfect knowledge i.e.wi5 ¼ 100% about the actual climate
change scenario.
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area) and the decision (continue with or switch to M3) is constant,
but the expected outcomes can be different and misleading.

4. Discussion

4.1. Belief updates based on different sources of information

When uncertainty cannot be described by a simple known
stochastic process or probability density function, but is instead
reassessed in the form of beliefs, the adaptive decision behaviour
Table 3
Optimal decisions at t ¼ 2010 depending on initial beliefs, when the objective is to
minimize windthrow damage.

w1, (%, initial belief) Decision on management scheme

Actual scenario

Historic SMHI HCCPR Historic OBJ SMHI OBJ HCCPR OBJ

0 0 100 M4 0.19 M4 0.19 M4 0.19
0 20 80 M4 0.19 M4 0.19 M4 0.19
0 40 60 M4 0.19 M4 0.19 M4 0.19
0 60 40 M4 0.19 M4 0.19 M4 0.19
0 80 20 M4 0.19 M4 0.19 M4 0.19
0 100 0 M4 0.19 M4 0.19 M4 0.19
20 0 80 M4 0.29 M4 0.22 M4 0.17
20 20 60 M4 0.29 M4 0.22 M4 0.17
20 40 40 M4 0.29 M4 0.22 M4 0.17
20 60 20 M4 0.29 M4 0.22 M4 0.17
20 80 0 M4 0.29 M4 0.22 M4 0.17
40 0 60 M4 0.40 M4 0.25 M4 0.15
40 20 40 M4 0.40 M4 0.25 M4 0.15
40 40 20 M4 0.40 M4 0.25 M4 0.15
40 60 0 M4 0.40 M4 0.25 M4 0.15
60 0 40 M2 0.45 M3 0.27 M4 0.13
60 20 20 M2 0.45 M3 0.27 M4 0.13
60 40 0 M2 0.45 M3 0.27 M4 0.13
80 0 20 M2 0.46 M3 0.25 M4 0.12
80 20 0 M2 0.46 M3 0.25 M4 0.12
100 0 0 M2 0.47 M3 0.23 M4 0.10

Historic, SMHI and HCCPR ¼ Climate change scenario (details in Table 1),
OBJ ¼ Minimum windthrow damage (m3/ha/year) expected in average over the
planning horizon (2010e2100), M1eM4 ¼ Management schemes implying
different set of silvicultural interventions in planning horizon (see details in Section
2.2.3), Grey area ¼ The realised adaptive decision including perfect knowledge i.e.
wi1 ¼ 100% about the actual climate change scenario.
depends strongly on what sources of information that beliefs rely
on, and how these are linked to the underlying stochastic process
of interest (Yousefpour et al., 2012). The implementation of
effective adaptive management in response to climate change
requires that managers have access to accurate information
regarding the direction and magnitude of climate change, and an
accurate assessment of how the systemwill respond to the climate
drivers. Climate variables may be direct evidence of climate
change, but are not necessarily easily available or straightforward
to interpret. In contrast, forest data are well known to forest
decision-makers, but may be influenced by factors other than
climate, and there may be significant time lags before the forest
ecosystem responds to the climate signal. However, monitoring
forest state to adapt the management actions to the new condi-
tions e.g. simulating forest growth under climate change is
currently the most applied and recommended procedure in forest
management (Jacobsen and Thorsen, 2003; Millar et al., 2007;
Bernetti et al., 2011). We found that climate variables were the
most efficient sources of information for rapidly revealing the
simulated climate change scenario to a manager. Simulations
suggested that an aggregate climate variable, such as a drought
index, and forest response variables were less efficient. Moreover,
if there is no change in climate conditions, most climate sensitive
variables will be able to reveal this fact with certainty sooner
(w2 ¼ 100%) or later (w6 ¼ 100%) depending on the variable under
observation (Fig. 1). The reason for this in our model is the
considerable difference between climate variables across climate
scenarios as defined in Table 1.

Evidently, the results of the present study are subject to a set of
assumptions especially about the trends and variability of forest
and climate variables and the set of climate change realizations.
Assuming a higher standard deviation than si ¼ 0.3would delay the
recognition of the actual climate change realization e.g. to several
decades and a lower standard deviation would accelerate the
recognition unrealistically e.g. to less than a decade. Considering
different set of potential climate change realizations in the study
will affect the results. The more divergent climate change re-
alizations, the faster recognition of the actual realization. The
important qualitative contribution of our study; that the type and
combination of information matter for expectation formation and
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adaptive behaviour, remain valid in spite of the model
determinism.

Focussing on short-term climate changesmay be a poor basis for
long-term decisions in forest management (Bugmann, 2003). Long-
term analysis of management strategies for multiple rotations has a
long tradition in forestry (Pukkala and Miina, 1997; Jacobsen and
Thorsen, 2003; Spiecker et al., 2004). Adaptation to climate
change necessitates the implementation of actions in the short
term (Kirilenko and Sedjo, 2007; Yousefpour and Hanewinkel,
2009; Williams, 2011) to prevent forests from being adversely
affected in the long term (Millar et al., 2007; Xu et al., 2009).
Analysing the impacts of climate change on the risks of forest dis-
turbances (e.g. windthrow, fire) may improve decisions about the
timing and the appropriate adaptive actions tomitigate the loss and
severe damages (Millar et al., 2007; Bernetti et al., 2011). In our
study, the risk of windthrow is not related to the climate state but to
the forest state, which in turn is affected by climatic conditions. This
is the reason why windthrow was a poor variable for the recogni-
tion of actual climate state (Fig.1) andmay have beenmore affected
by management actions than climate change.

4.2. Combination of evidence and effects of adaptation on forest
management

We applied Dempster’s rule of combination (Senz, 2002; Raje
and Mujumdar, 2010) for considering more than one source of in-
formation to simulate the process of forming a belief about climate
change. The combination results show that direct climate obser-
vations outperform forest variables as short-term indicators of
climate state. Furthermore, we combined climate and forest vari-
ables to examine the efficiency of such combinations and found
that they were less efficient than a combination of two climate
variables, but equally efficient as two forest variables. Nevertheless,
combining a climate variable with supplementary evidence, either
in the form of forest state or additional climate variables generally
does speed up updating the beliefs towards the recognition of the
true climate trajectory. We note, however, that the application of
Dempster’s rule should be investigated further for the case of
climate change in order to apply a suitable type of Dempster’s rule
for data fusion (e.g. Jøsang and Pope, 2011).

Adaptive management has been suggested as the most prom-
ising avenue of research to deal with decision making under un-
certainty (Williams, 2012) especially the uncertainty inherent in
climate change (Heltberg et al., 2009; Probert et al., 2010; Williams,
2011; Yousefpour et al., 2012), whether this will in fact lead to a
change in management or not. Moreover, Hahn and Knoke (2010)
outline that adaptive management maintains or even increases
future options depending on the adaptive capacity of a system. In
our example of adaptive forest management in the Black Forest, we
found that a decision maker who focuses on total biomass produc-
tionwill initially favour conversion to an uneven-agedmixed forest.
If the objective is to minimize windthrow damage, there will be a
need for diverse interventions and adaptation measures by
switching themanagement scheme throughplanninghorizon. After
revealing the actual scenario at the middle of planning horizon
(2050), all management schemes would be switched to the robust
strategy of uneven-aged Douglas/silver fir to maintain awindthrow
resistant uneven-aged stand structure by adapting species mixture
to dryer climate for the rest of the period (2050e2100, Table 2).

4.3. Implications for future research

Wehave focusedonDempster’s rule of combination, butwe stress
that there are alternative rules for the combination of information in
evidence theory. Many of these are adapted versions of Dempster’s
rule (e.g. Senz, 2002; Raje andMujumdar, 2010; Bernetti et al., 2011),
whereas others are more general (Jøsang and Pope, 2011).

In the simulations undertaken in this study, we found swift
convergence in the decision maker’s beliefs towards the actual
scenario. This is true for the updating based on a single variable
(Fig. 1), and even more so for the case of combined evidence. The
scenarios (Historic, SMHI andHCCPR) are quite different from each
other. This, in combination with the limited variation we allow
around the inherent trend of the scenarios, implies that the dis-
tributions over a few decades diverge enough for most of the in-
formation sources to result in full or almost full concentration of the
belief mass. Future research should focus on relaxing this restric-
tion of the current simulations, and analyse the effects of variation
in climate state variables across a more comprehensive set of
possible climate scenarios. Furthermore, due to the computation-
ally heavy forest simulation model used here, our simulations had
to be restricted to ten-year intervals and two decision points only.
While this has no influence on the qualitative results of our study, it
does not suffice to answer important “real-world” questions such
as those referring to the optimal timing of management switches.
The conceptual approach presented in this study may be combined
with balancing economic and environmental optimization pro-
cedures to chive multiple goals and manage the decisions’ risks.

5. Conclusions

Uncertainty regarding climate change and its impacts on forests
identifies the need for more accurate regional climate projections
and forest models, and highlights the fact that forest managers
make decisions within an uncertain environment. Modelling and
analytic approaches that explicitly take into account howmanagers
may update their beliefs about actual climate developments have
the potential to lead to more robust policies regarding adaptive
management. Continuous observation of climate states by the de-
cision maker, and comparisons with the predictions of various
climate models should ensure advancements in knowledge and
updated assessment of the likely degree of changes. In the appli-
cation analysed in this paper we find that updating climate beliefs
based on climate data is superior to forest data, because the latter
may include feedback processes and lags whereas the former
directly and more rapidly indicates the direction and the degree of
changes in climate. Finally, it should be stressed that the observa-
tions are of course case specific i.e. there may be sites where the
predicted climate changes, e.g. those related to precipitation, are
very variable and hence has little signal and value for indicating the
direction of change. This is important for forest management as the
tradition of forest managers is to observe what is happening in the
forest and climate data may not be so easily acceptable and un-
derstandable. We found that a combination of evidence increase
the value of the information considerably, but still information
reflecting more directly climate change variables are the most
important sources. Our results stress the importance of getting a
better understanding of how forest managers form beliefs about
future climate change and its impacts. If substantial groups of forest
managers are reactive or base their beliefs on past observations and
experiences from forest management (Hoogstra, 2008; Jacobsen
et al., 2010), our results shows that they may continue to rely on
risky non-adapted forest management strategies for a considerable
part of the next century.
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