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Abstract We employ size-based theoretical arguments to
derive simple analytic predictions of ecological patterns
and properties of natural communities: size-spectrum expo-
nent, maximum trophic level, and susceptibility to invasive
species. The predictions are brought about by assuming that
an infinite number of species are continuously distributed
on a size–trait axis. It is, however, an open question whether
such predictions are valid for a food web with a finite num-
ber of species embedded in a network structure. We address
this question by comparing the size-based predictions to
results from dynamic food web simulations with varying
species richness. To this end, we develop a new size- and
trait-based food web model that can be simplified into an
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analytically solvable size-based model. We confirm existing
solutions for the size distribution and derive novel predic-
tions for maximum trophic level and invasion resistance.
Our results show that the predicted size-spectrum exponent
is borne out in the simulated food webs even with few
species, albeit with a systematic bias. The predicted max-
imum trophic level turns out to be an upper limit since
simulated food webs may have a lower number of trophic
levels, especially for low species richness, due to structural
constraints. The size-based model possesses an evolutionary
stable state and is therefore un-invadable. In contrast, the
food web simulations show that all communities, irrespec-
tive of number of species, are equally open to invasions. We
use these results to discuss the validity of size-based pre-
dictions in the light of the structural constraints imposed by
food webs.

Keywords Biodiversity · Food web assembly ·
Individual size distribution · Size spectrum · Traits ·
Maximum trophic level

Introduction

Dynamic food webs are a common modeling framework
for simulating complete communities (Loeuille and Loreau
2005; Brose et al. 2006a; Rossberg et al. 2008; Boit et al.
2012; Gomez-Canchong et al. 2012). A food web model is
constructed from a set of species represented as nodes in a
network where each species is characterized by its biomass.
An alternative representation of a community is through
the abundance distribution of individuals as a function of
their body size, the size spectrum (Sheldon et al. 1972;
Reuman et al. 2008). This approach has been most success-
fully applied to aquatic ecosystems. The most celebrated
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result of size-based theory is that the size spectrum fol-
lows a power law with an exponent such that the biomass in
logarithmic size groups is approximately constant (Sheldon
et al. 1977; Benoı̂t and Rochet 2004; Andersen and Beyer
2006). Besides the size-spectrum exponent, it is possible to
derive trophic and individual efficiencies (Borgmann 1987;
Andersen et al. 2009) and, as we will demonstrate, max-
imum trophic level and resistance towards invasions. The
predictions of size-based models are all achieved by ignor-
ing the specifics of the species and the topological structure
of the underlying food web through the assumption of a con-
tinuum of species or an “infinite diversity.” The question is
whether these predictions are relevant for situations where
the diversity is not infinite but instead characterized by a
finite number of species. The aim of this work is to examine
how well results based on the continuous size-based rep-
resentations of communities correspond with simulation of
food webs with a finite number of species. This aim will
further contribute to a unification of size-based theory and
food web theory.

To this end, we develop a trait-based food web model
where each species is characterized by two traits: body size
and spatial habitat preference. Body size is used to scale
vital rates (Yodzis and Innes 1992), while the habitat trait
is used to characterize a population’s distribution in space
which is motivated by the classic niche model for species
competition (MacArthur and Levins 1967). The strength
of predator–prey interactions is jointly determined by both
traits of prey and predator. By ignoring the trait for spatial
habitat preference, the model becomes purely size-based,
and we can derive analytic and semi-analytic predictions
for the size-spectrum exponent, maximum trophic level,
and resistance to species invasions into the established food
webs.

Food webs are constructed using community assembly.
This process mimics the natural assembly of communi-
ties by building food webs through sequential additions
of species picked from an external species pool (Post
and Pimm 1983; Taylor 1988; Drake 1990). Early meth-
ods of community assembly provided invading species
with random interactions to the other species, while recent
approaches have added more mechanistic procedures where
species interactions are partly determined by predator–prey
body mass ratios (Virgo et al. 2006; Lewis and Law 2007).
This approach serves as a starting point for the trait-based
assembly model where the size trait is supplemented by an
additional habitat trait and where the interaction is deter-
mined entirely by the traits. Food webs are assembled
from species sampled from a two-dimensional species pool
spanned by the two traits. From each realized food web,
we can calculate size-spectrum exponent and the maximum
trophic level. Further, the trait-based approach enables us
to use concepts from evolutionary ecology to explore the

stability of the food web towards invasions from alien
species, i.e., species not belonging to the species pool.

We demonstrate how the size-spectrum exponent con-
verges as the size of the species pool size is increased.
We further demonstrate how the maximum trophic level
is determined either by energetic constraints on the pro-
ductivity of the resource when the species pool is densely
packed or constrained by the topology of the emerging
interaction matrix when the species pool is dilute. The max-
imum trophic level is therefore not determined by a single
constraint. Finally, we demonstrate how the stability of
the emerging food webs towards alien invasive species is
independent of the species richness of the food web. We dis-
cuss how the trait-based food web model concept may be
generalized to other traits.

Food web model

A species i is characterized by two traits: body size mi and
habitat trait xi . Size is given in terms of mass, and habitat
is dimensionless. Body size is employed to scale vital rates
of search volume and respiration. The habitat trait is used to
characterize a population’s spatial location and distribution;
for simplicity, a one-dimensional abstract representation of
space is used (Hartvig 2011): each species is centered on
a position in space, with a home range that increases with
body size mi . Predator–prey interactions between spatially
co-occurring organisms take place through predation fol-
lowing the rule of “big-eat-small” (Cohen et al. 1993; Brose
et al. 2006b; Barnes et al. 2010) (Fig. 1). Formally, this
interaction is described by a size-selection kernel ϕ(mi/mj )

and a spatial interaction kernel ψ(xi − xj ). Together they

Fig. 1 Illustration of how the prey preference depends on the size trait
m and the habitat trait x for two species shown with asterisks. The
prey preference (shaded areas) are constructed by multiplying the size
selectivity, shown by the bell-shaped curves on the horizontal axis,
with the habitat preference which are shown on the vertical axes. The
two species have the same preferred predator–prey size ratio, but the
habitat range is wider for the large species
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determine when predation may occur and their product
constitutes the interaction strength.

The size-selection kernel is a lognormal function (Ursin
1973), describing the preference of mi sized predators to mj

sized prey:

ϕ(mi/mj ) = exp

(
−

(
ln

mi

βmj

)2

/
(

2σ 2
m

))
(1)

that peaks when mi/mj equals the preferred predator–prey
mass ratio β. Thus, individuals with mass ratio far from β

have negligible interactions. The range of prey sizes that
a predator can consume is determined by the width of the
selection function σm.

The spatial kernel ψ(xi − xj ) describes the strength of
the interaction which is given by the spatial overlap of the
interacting populations. It is assumed that abundance Ni of
a species i is normally distributed in space with a center at
xi (Hartvig 2011):

ψ(xi − xj ) = 1√
2π

(
σ 2
x (mi)+ σ 2

x (mj )
)

× exp

(
−(xi − xj )

2

2
(
σ 2
x (mi)+ σ 2

x (mj )
)
)
. (2)

The width of the spatial distribution is determined by
σx(mi), which is an increasing function of body size
(Kramer and Chapmanm M 1999; Haskell et al. 2002; Jetz
et al. 2004) and interpreted here as the home range of
species i:

σx(mi) = σ0 + 1

2
log10(mi/m0),

where σ0 is the home range of m0 sized species.
Population dynamics of Ni is prescribed by the Yodzis

and Innes (1992) model:

dNi

dt

1

Ni

= ε(ER.i + EC.i)m
−1
i − k̃mn−1

i − μi, (3)

where the food encountered from the resource (ER.i ) and
other species (EC.i ) is described using the interaction ker-
nels (1) and (2):

ER.i = γm
q

i

∫
R(x)ϕ(mi/m0)ψ(xi − x)dx,

EC.i = γm
q
i

∑
j

mjNjϕ(mi/mj )ψ(xi − xj ),

where individuals within consumer species i obtain food
from resources R(x) (hereafter denoted by R, but keep in
mind that it is a density distribution of the habitat trait)
and other smaller consumer species with a mass-dependent
volumetric search rate γm

q

i (Ware 1978). Intrinsic losses
k̃mn−1

i represents metabolic costs and mortality from other

sources than predation. Population abundance is regulated
by predation from larger species with a mortality:

μi =
∑
j

γm
q
jNjϕ(mj /mi)ψ(xj − xi)

Resource biomass density R is described using logistic
growth and assumed to be continuously distributed along
the spatial direction x with constant carrying capacity K:

dR

dt

1

R
= r̃mn−1

0

(
1 − R

K

)
︸ ︷︷ ︸
Intrinsic growth rate

−
∑
j

γm
q
jNjϕ(mj /m0)ψ(xj − x)

︸ ︷︷ ︸
Loss due to predation

, (4)

where the intrinsic growth rate is scaled with body size as
r̃mn−1

0 (Savage et al. 2004). m0 is the resource body size
as well as the smallest body size of consumer species. The
right-hand side of (3) is the per capita growth rate of a
species with trait values mi and xi . We use the per capita
growth rate as a measure of the invasion fitness of an invad-
ing species, i.e., a species with negligible abundance, into
an established community (Metz et al. 1992).

To avoid results that depend on the specific choices of
m0 and γ , Eqs. (3) and (4) are scaled by setting τ =
tγm

q

0 , wj = mi/m0. The equations for biomass Bi = wiNi

then become

dBi

dτ

1

Bi

= εw
q−1
i

(∫
Rϕ(wi)ψ(xi − x)dx

+
∑
j

Bjϕ(wi/wj )ψ(xi − xj )

⎞
⎠ − kwn−1

i

−
∑
j

w
q−1
j Bjϕ(wj/wi)ψ(xj − xi), (5)

dR

dτ

1

R
= r

(
1 − R

K

)
−

∑
j

w
q−1
j Bjϕ(wj )ψ(xj − x), (6)

where r = r̃m
n−q−1
0 /γ and k = k̃m

n−q−1
0 /γ . Thus, γ and

m0 disappear from the system, while two new parameters r
and k emerge representing scaled productivity and intrinsic
losses. Parameter values are given in Table 1.

Analytic approximations

Three analytic and semi-analytic solutions to (5) are devel-
oped: size-spectrum exponent, maximum trophic level, and
resistance to invasions. All analytic solutions rely on ignor-
ing the habitat trait such that species are characterized only
by their body size. The habitat trait will be considered in the
full food web solution in Section “Community assembly”.
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Table 1 Model parameters

Parameter Value Interpretation

β 100 Preferred predator–prey mass ratioa

ε 0.2 Conversion efficiencyb

q 0.75 Exponent of volumetric search ratec

n 0.75 Exponent of metabolic costsd

k 3.3 Prefactor for intrinsic mortalitye

σm 1 Width of selection functiona

σ0
√

2/2 Home range of m0 sized speciesf


x 50 Ecosystem sizeg

r 30 Prefactor for the scaled resource generation ratee

K 510m0/vol Resource carrying capacitye

aUrsin (1973)
bRossberg et al. (2008)
cTheoretically expected value is 0.8 (Andersen and Beyer 2006), but q = n is employed to ease analytic analysis
dWest et al. (1997)
eAdjusted to produce up to five trophic levels above the resource
fHartvig (2011)
gThe total spatial size of the ecosystem is set to be 
x = 50 (� σx(wmax)) such that the largest species (wmax ∼ 1010) have sufficient room for
roaming. We use periodic boundary condition in the niche direction when performing community assembly

Size-spectrum solution

The relationship between body size and individual abun-
dance can be derived from (5) under three assumptions: (1)
no variation in the x direction, (2) that there is a contin-
uum of species along the body size direction, and (3) that
the range of body sizes spans the interval (0, ∞). Assump-
tions 2 and 3 imply that we can ignore resource dynamics,
i.e., R = 0. We introduce a population density distribution
function B(w) defined such that B(w)dwdx is the biomass
of individuals in the size- and x-ranges [w,w + dw] and
[x, x + dx]. When this definition is introduced in (5), we
can derive an equation for B(w):

1

B
dB
dτ

= εwq−1
∫ ∞

0
B(w′)ϕ(w/w′)dw′

−
∫ ∞

0
w′(q−1)B(w′)ϕ(w′/w)dw′ − kwn−1. (7)

We seek an equilibrium solution where dB/dτ = 0 in the
form of a power law B(w) = ρ0w

1−λ1 , where λ1 is the
size-spectrum exponent, and ρ0 is a constant. Inserting this
ansatz into the right-hand side of (7) and integrating over
the size preference function lead to

εβλ1−2e(λ1−2)2σ 2
m/2 − β1+q−λ1e(q−λ1)

2σ 2
m/2

= k√
2πρ0σm

wλ1−(2+q−n). (8)

As w enters into the last term in (8), Eq. (7) does not admit
a pure power-law solution. By neglecting intrinsic losses,

i.e., setting k = 0, we obtain an approximate solution
to λ1

λ1 = 1

2

(
2 + q − ln ε

ln β + σ 2
m(q − 1)/2

)
≈ 2.05, (9)

where the numerical values of the parameters are those in
Table 1.

Trophic chain solution

An alternative way to derive the size-spectrum exponent is
by assuming that the food web is organized in a trophic
chain where species are pooled into discrete trophic levels.
Mathematically, it is equivalent to a set of species with a
separation in weight equal to predator–prey mass ratio, i.e.,

wi/wi−1 = β, (10)

and the size-selection function ϕ(s) = 0 for s �= β. Thus,
Eqs. (6) and (5) can be written as follows:

dB0

dτ

1

B0
= r(1 − B0/K)−w

q−1
1 B1,

dBi

dτ

1

Bi

= εw
q−1
i Bi−1 − kwn−1

i −w
q−1
i+1 Bi+1, i = 1, 2, . . . .

where B0 = ∫ ∞
−∞ ψ(x)Rdx = R. Let us assume that q = n

and w0 = 1. Then we have a linear recurrence relation for
the equilibrium solution

Bi+1

Bi−1
= ε

βq−1
− k

βq−1Bi−1
, i = 2, 3, . . . . (11)
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By using the ansatz Bi ∝ w
2−λ2
i and, as in Section

“Size-spectrum solution”, neglecting intrinsic losses
(k = 0), we can find an approximate exponent explicitly

λ1 = 1

2

(
3 + q − ln ε

ln β

)
≈ 2.05. (12)

Maximum trophic level

In the previous solution, intrinsic losses were ignored. As
w increases, specific intrinsic losses kwn−1 constitutes an
increasing fraction of specific consumption ∝ w1−λ+q .
At some size ∝ k1/(2−λ+q−n), all consumption is used
for intrinsic losses. This maximum trophic level can be
determined accurately by solving the recursive Eq. (11):

MTL = max

⎧⎨
⎩1 + 2

⎢⎢⎢⎣ ln
(

1 + Kr(b−1)
ar+aKβq−1

)
ln b

⎥⎥⎥⎦ ,

2

⎢⎢⎢⎣ ln
(

1 + Kr(b−1)
ar+aKβq−1/b

+ (b−1)aKβq−1

arb+aKβq−1

)
ln b

⎥⎥⎥⎦
⎫⎬
⎭ ,

where a = k/ε and b = βq−1/ε. 
M� means the maxi-
mum integer smaller than M . Therefore, increasing K and
r prolongs the trophic chain. The chosen parameter values
(Table 1) yield five trophic levels above the resource.

Resistance to invasions

A system where the per capita population growth rate of
all resident species is zero and where no other species can
invade is said to reside in an evolutionary stable state (ESS)
(Maynard Smith and Price 1973). An ESS means that no
species with trait values differing from those of the resi-
dent species can invade. The system is therefore completely
resistant towards invasions of other species. In order to
examine whether an ESS exists, we assume p coexisting
species and a resource B0 at equilibrium of (5):⎧⎪⎨
⎪⎩

0 = r(1 − B0/K)− ∑p

j=1 w
q−1
j Bjϕ(wj /w0),

0 = g(wi) = εw
q−1
i

∑p

j=0 Bjϕ(wi/wj )− kwn−1
i

− ∑p

j=1 w
q−1
j Bjϕ(wj /wi)

where wi > wi−1. There are three necessary conditions for
the p resident species to form an ESS:

Bi > 0, g(wi) = 0 and g′(wi) = 0. (13)

The first two conditions ensure that the p species can coexist
at the equilibrium, while the last condition implies that the p
species are at the local minimum or maximum on the fitness
curve.

Solving (13) is mathematically challenging. Inspired by
the simulated communities, we make the ansatz of p =

5 coexisting species separated approximately by the pre-
ferred predator–prey mass ratio β. This separation means
that effectively only neighboring resident species interact.
Solving (13) numerically for wi of the five species gave
the solution (w∗

1 , . . . , w
∗
5) = (0.9167 × 102, 0.7953 ×

104, 0.7424×106, 0.6463×108, and 0.6463×1010), which
indeed is an ESS as g(w) ≤ 0 for all w (Fig. 2). Fur-
ther, numerical examinations (not shown) demonstrated that
there is no other ESS for this set of parameters, suggesting
that the ESS (w∗

1 , . . . , w
∗
5) is unique. Note that w∗

i ≈ βi

which justifies the assumption (10). We expect that similar
ESS states exist for parameters where the maximum trophic
level is different from 5.

Community assembly

Numerical analysis of model (6)–(5) is performed using
sequential community assembly (Post and Pimm 1983;
Taylor 1988; Drake 1990). This approach constructs a com-
munity by introducing species with low density one by one
from an external pool of species. Two types of species pools
are employed: discrete and continuous. The discrete pool
contains a finite number of species with trait values ran-
domly selected from a two-dimensional trait space (x, w) ∈

 = [−25, 25] × [1, 1011]. Four sizes of finite species
pools are constructed with 25, 50, 100, and 200 species. For
each pool size, 50 pool replicates are generated, and from
each species pool, 20 communities are assembled yielding
4,000 communities in total, 1,000 for each pool size. In
the continuous species pool, trait values (x, w) are drawn
at random from 
. In both discrete and continuous cases,
x is chosen uniformly, while w is chosen log-uniformly.
Details of the assembly algorithm are provided in the
Appendix.
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Fig. 2 Fitness landscape of the ESS when only mass trait is con-
sidered and five trophic levels are assumed. The ESS is unique and
contains five species (crosses) sitting separately on the peaks of the
fitness curve with a body size separation that roughly equals the
predator–prey mass ratio β
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To analyze community-level properties of the size-
spectrum exponent, maximum trophic level, and resistance
to alien invaders, we collected the final communities emerg-
ing from the four discrete species pools, usually reached
within 800 successful invasion attempts. In the cases where
the assembly ends on a cyclic endstate (Morton and Law
1997), which occurs occasionally for species pools of size
200, but always for the continuous species pool (Fig. 3),
we collect all realized communities after 1,000 successful
invasions and use their averaged community-level proper-
ties. Results from numerical simulations are compared to
the results from the analytic predictions.

The size-spectrum exponent is estimated using the gen-
eralized cumulative distribution function (CDF) (Reuman
et al. 2008). In ecological networks where species rich-
ness is low and/or total population abundance is dom-
inated by few species, the generalized CDF method is
more appropriate than other methods such as the bin-
based approach, the CDF method, and the maximum like-
lihood estimation (Reuman et al. 2008). When assem-
bling communities from the continuous species pool,
we found that the bin approach produces much less
bias than the general CDF method. This is because
species are usually aggregated at different trophic lev-
els (Fig. 4e), which naturally partitions species into
several nonempty bins with roughly equal logarith-
mic bin width in the size direction. For the simula-
tions with the continuous species pool, we therefore
employ the bin approach to estimate the size-spectrum
exponent.

The maximum trophic level is defined as the β-based log-
arithmic value of the size of the largest species in the system,
i.e., maximum trophic level (MTL) = logβ(max{wi}). The
resistance of the community to invasions by alien species
that do not belong to the species pool is calculated as
the size of the area with positive invasion fitness once the
community is assembled (Fig. 4d).
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Fig. 3 Number of species in assembled communities as a function
of successful invasions from the continuous species pool. Communi-
ties are collected after 1,000 successful invasions (dashed line) for
calculating community-level metrics
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Fig. 4 Assembly of a model community from a finite pool of 100
species (light gray crosses) (a–d) and from the continuous species pool
(light gray dots represent previously successful invaders) (e). a Fitness
landscape of the pristine environment showing areas where the inva-
sion fitness is positive (gray). After each successful invasion (black
stars), the fitness landscapes changes such that successful invaders sit
on the boundaries of the gray islands where fitness is zero (b–d). d
shows the final un-invadable endstate where no species in the species
pool have trait values in the gray areas. In the final assembled com-
munity, 45 species coexist. Panel e shows the final state from the
community assembly based on the continuous species pool. The distri-
bution of previous successful invaders (gray dots and solid line) shows
how species are grouped along the body size axis in integer multiplies
of the predator–prey mass ratio from the resource. The habitat trait
ranges from −25 to 25 in each panel

Results

The characterization of species by traits makes it possible
to visualize the process of the food web assembly using the
concept of invasion fitness (Fig. 4). In the pristine environ-
ment, the basal resource creates a positive fitness landscape
where species with a size of w ∼ β are able to colonize
(Fig. 4a). After the first successful invasion, the fitness land-
scape is reshaped, and a new area of positive fitness values
is opened that can be invaded by larger predators (Fig. 4b).
This process continues (Fig. 4c) until none of the species in
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the species pool are able to invade the community, leading
to an un-invadable endstate (Fig. 4d). The fitness landscape
shows that there are still possibilities for species that are not
part of the species pool (alien species) to invade, as there are
islands with positive invasion fitness.

When assembly is performed from the continuous
species pool, a closed endstate is unreachable because of
frequent intermittent extinction avalanches (Fig. 3). How-
ever, a pattern of organization of the species in distinct
trophic levels emerges (Fig. 4e). The emergence of this pat-
tern may also be glimpsed from the pool with 100 species
(Fig. 4d). It is this pattern that inspired to the ansatz (10)
used in Sections “Trophic chain solution” and “Resistance
to invasions” for the trophic chain solution and to find an
ESS for the body size trait.

An example of the trophic structure and biomass size
spectrum as a function of body size is presented in Fig. 5.
The trophic pattern shows that up to five trophic levels were
developed in the endstate. The distribution of individual
abundance over size reveals that the size-spectrum pattern
is well approximated by a power law with an exponent
λ = 2.14. This exponent is slightly larger than the predicted
values from the size-spectrum solution (9) and the trophic
chain solution (12), where intrinsic losses and habitat trait
are ignored.

As the pool size increases, both the average slope and
the variance of the slope decrease (Fig. 6), and the size-
spectrum exponent converges towards a value of 2.13 that
is greater than that estimated from the size-spectrum and
trophic chain solutions. The large variation in small pools is
due to many small webs with a sparse species distribution
in the mass-habitat trait space.

The maximum trophic level that an assembled commu-
nity can reach varies markedly within small species pools
(less than 50 species) but insignificantly within large species
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Fig. 6 Mean values (solid circles) and standard deviations (vertical
lines) of the size-spectrum exponent as a function of the species pool
size. Analytic solution from the size-spectrum and trophic chain solu-
tions are shown with dashed and dotted lines. The result from the
continuous species pool is denoted by an infinity sign

pools (Fig. 7a). The general pattern is that the larger the pool
size, the higher the probability of a high MTL. The resource
productivity plays a role by setting the maximum possible
MTL (Fig. 7b) in agreement with the analytic prediction
(12).

The invasion resistance to alien species that do not belong
to the species pool displays remarkably small variation
across species pool size (Fig. 8).

Discussion

We have developed a trait-based food web model where
interactions between species are characterized solely by the
traits of the involved species: body size and habitat trait.
Analytic and semi-analytic solutions of the model have been
developed by reducing the model to a purely size-based
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Fig. 5 Trophic structure (a) and biomass size-spectrum (b) of the
assembled community in Fig. 4d (pool size, 100). Trophic level is
fractional and calculated as the average trophic level of the prey of
the focal species plus 1 (Odum and Heald 1975; Levine 1980). Two
species (nodes) are connected from prey (low) to predator (high) if
the prey makes a contribution greater than 5 % to the total diet of the
consumer. In panel b, the solid line indicates fitted individual biomass
size spectrum with a slope of −0.14, which corresponds to a density

size-spectrum exponent of 2.14. The theoretical predictions (that
ignore intrinsic losses and the habitat trait) from the size-spectrum
solution (9) and the trophic chain solution (11) are shown with
dashed and dotted lines. Gray dots denote species biomass. Note
that the individual biomass spectrum almost, but not quite, follows
the species biomass distribution (gray dots). There is a slight devi-
ation between the two due to the decrease in species diversity with
size



30 Theor Ecol (2014) 7:23–33

65 125 250 510 1000
0

0.2

0.4

0.6

0.8

1

Resource carrying capacity (K)

1

1

5

6

4

3

2

1

B

25 50 100 200
0

0.2

0.4

0.6

0.8

1

Pool size

M
T

L 
di

st
rib

ut
io

n

∞

A

Fig. 7 The impacts of species pool size (a) and the resource produc-
tivity (b) on the maximum trophic level. In both panels, the proportion
of communities with the various MTL is shown in the vertical direc-
tion, and each bin represents the fractional trophic value in the range

between two integer values. In panel a, the continuous species pool is
indicated by an infinity sign. In panel b, communities were assembled
from the continuous species pool with resource carrying capacity (K).
The predicted MTL is shown on the color bar

model. Simulations of the full food web models were com-
pared to the analytic predictions. The general conclusions
are that the analytic solutions to the size-based models are
good predictors of the size-spectrum exponent and the max-
imum trophic level, provided that the species diversity in
the food web is sufficiently high. The size-based model was
predicted to be un-invadable because there existed an ESS
solution. This prediction was proven not to hold in the food
web model.

Size-spectrum exponent

We derived two almost identical analytic solutions to the
size-spectrum exponent. The difference between the solu-
tions stems from the difference in approximation: one
solution assumed a continuous and infinite size spectrum,
while the other assumed a binning in trophic levels. Our
food web model ignores ontogenetic growth, but theoretic
arguments that takes ontogenetic growth into consideration
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Fig. 8 Mean values (black dots) and standard deviations (vertical
lines) of invasion resistance as a function of the species pool size.
Invasion resistance is measured as the ratio of the areas with negative
fitness (white areas in Fig. 4) to the total area of the trait space 


lead to very similar predictions of size-spectrum exponent
(Benoı̂t and Rochet 2004; Datta et al. 2011). A common
characteristic of these explanations is that they are derived
by considering the balance between growth of predators and
the mortality they inflict on their prey. There exists another
class of theoretical explanations for the size-spectrum expo-
nent derived by employing the “metabolic” assumption that
the consumption rate is ∝ m3/4 (see review by Borgmann
(1987)). The metabolic assumption leads to two predic-
tions: Kerr (1974) and Sheldon et al. (1977) described
a community divided into discrete trophic levels, as in
our trophic chain solution, and found a scaling exponent
λ ≈ n + 1 − ln(εT )/ ln(β), where εT is the trophic effi-
ciency. In contrast, Andersen and Beyer (2006) considered
a continuous spectrum and found an exponent 2 + n − q .
Thus, the metabolic argument apparently leads to conflict-
ing results. These two results can be united by relating
the trophic efficiency εT to q , β and the metabolic expo-
nent 3/4 (Borgmann 1987; Andersen et al. 2009). The two
classes of theoretical explanations (growth–mortality bal-
ance and metabolic) can be combined by requiring that the
predicted consumption from the growth–mortality type of
explanations corresponds to the metabolic assumption. In
our explanation, that would require q = 1, which is in cor-
respondence with observations (Andersen and Beyer 2006).
Rossberg (2012) created a general theory that yielded
both the “growth–mortality” and the “metabolic” solutions,
termed the “ologitrophic” and “eutrophic” regimes. The
important conclusion is that even though there are appar-
ently conflicting explanations for the exponent of the size
spectrum, their numeric predictions are very similar and
they can be united theoretically.

The food web simulations yielded communities where
the size distribution roughly followed a power law in accor-
dance with theory, and the exponent of the power law
converged to a constant value with increased pool size. The
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size-spectrum exponent has been shown to be robust also
to changes in other food web parameters than species pool
size (Gomez-Canchong et al. 2012). The exponents from
the simulated food webs were slightly, but significantly,
larger (steeper spectrum) than the predicted exponents. We
propose two candidate mechanisms for this discrepancy.
One is the ignored intrinsic losses. Intrinsic losses are most
strongly felt in the highest trophic levels, which lead to
slightly smaller biomasses than predicted by the theory,
which again would lead to a slightly higher fitted expo-
nent than predicted. A second mechanism is the decrease in
diversity with size and trophic level (see Fig. 5b). A smaller
diversity makes it harder to construct the last trophic level
which again leads to the fitted exponent being slightly larger
than predicted.

Maximum trophic level

When intrinsic losses are taken into account in the size-
spectrum and trophic chain solutions, the scaling solution
disappears, and the spectrum diverges towards zero at a
maximally possible trophic level. The maximum trophic
level from the food web simulations is never higher than
the predicted upper limit, but often smaller. This result can
be used to qualify the debate on whether the maximum
trophic level is limited by energetic or structural constraints
(Post 2002). The analytic prediction of an upper limit to
the maximum trophic level is in agreement with the general
energy limitation hypothesis (Lindeman 1942) which posits
that the maximum trophic level is constrained by energy
flow through the trophic levels determined by the resource
availability and individual losses through efficiency and
metabolic costs (Oksanen et al. 1981; Yodzis 1984). The
limit set by the energetic constraint is an upper maximum
trophic level that may not be realizable due to structural con-
straints: a species-poor food web might be unable to con-
struct a food chain long enough to realize the energetically
possible maximum trophic level, as intermediate species
required by large trophic level species may be absent. The
topology of the food web thus introduces a structural con-
straint: the smaller the pool size, the more heterogeneous
the pool structure, and the harder it is to construct a long
food chain within the energetic limits (Fig. 7). As pool size
increases, the distribution of species in trait space becomes
more homogeneous, and the effects of structural constraints
are gradually lost. Taken together, the model illustrates that
maximum trophic level is not determined solely by energetic
or structural constraints. Both constraints act in concert with
one of them taking a dominant role depending on diver-
sity and dimensionality of the trait space which determines
predator–prey interactions. In this manner, the maximum
trophic level in a particular system will appear to be limited
by just one constraint.

Community stability

The ultimate stable community is one that has reached
a global ESS. If this state exists, no mutants of existing
species or species from outside the community will be able
to invade. We found an ESS for the size-based model where
species are organized in a trophic chain with a body size
spacing approximately equal to the preferred predator–prey
mass ratio. Assembled communities from the full food web
model, however, did not reach an ESS since they can always
be invaded by alien species that do not belong to the species
pool due to the existence of islands of positive invasion
fitness in trait space (gray areas in Fig. 4). It should be
noted that the resistance to alien species is different from
the resistance of invasion from nonalien species, i.e., species
which do come from the species pool. For that case, Post
and Pimm (1983) determined invasion probability, and Law
and Morton (1996) found the invasion resistance to be an
increasing function of pool size, meaning that species-rich
systems are less vulnerable to species invasions from the
species pool (i.e., surrounding communities). In contrast,
the resistance to alien invasions (i.e., species from outside
the community) turned out to be independent of species pool
size (Fig. 8). The differences between the analytic results
(invasion impossible) and the simulation results (invasion
is always possible) suggest that increasing the dimension-
ality of trait space might alter the nature of the attractor
contained in low-dimensional trait space: a low-dimensional
trait space (in this case, just size) leads to a community
with an ESS, while the addition of an extra trait dimension
removes the ESS. In other words, increasing trait diversity
decreases the stability of the community towards invasions.

Model architecture

The construction of the interaction matrix through a speci-
fication of traits makes it possible to (1) create food webs
that naturally respect the trade-offs between the traits in the
model; (2) to use the concept of fitness from evolutionary
ecology to visualize the assembly process and characterize
the endstate; (3) to construct a measure of density of species
within the trait space; and (4) to determine the stability of
the assembled food web to invasions from alien species, i.e.,
species not belonging to the species pool. The traits cho-
sen here are body size and a habitat trait. The habitat trait
is inspired by the classic niche model for species compe-
tition (MacArthur and Levins 1967), which was also used
in a simpler form to examine the relation between preda-
tion and competition by Chesson and Kuang (2008). The
home range of the habitat trait, σx , is increasing with size,
since larger individuals may roam over a larger area than
smaller individuals. If the home range did not increase with
body size, the assembled communities would be weakly
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coupled parallel food chains. The increase of σx couples the
food web across the habitat trait in a similar manner to how
large species combine different basal energy pathways in
an ecosystem (Rooney et al. 2006). Therefore, even though
we have made the x-trait inspired by the spatial extent of a
habitat, it may also represent more abstract notions of food
selection choice.

The most important aspect of the trait-based formu-
lation of the food web model is that it lends itself to
generalization to other traits where appropriate trade-offs
can be constructed. In this study, we ignore ontogenetic
growth. This is a strong assumption for marine ecosys-
tems, but the methodology can be extended to include this
(Andersen and Beyer 2006; Giacomini et al. 2009; Hartvig
et al. 2011; Rossberg 2012; Maury and Poggiale 2013).
Reduction of the trait space can be achieved formally (Ross-
berg et al. 2010). Traits can be roughly divided into three
categories: (1) trophic traits that determine the interaction
matrix. Examples are the way size and habitat are used
here, or investments into defense or attack traits (Rossberg
et al. 2010); (2) physiological traits, like activity which has a
trade-off between the benefit of higher attack rate γ at a cost
of higher metabolic losses k; and (3) environmental traits
which specify the specialization to an external environment,
like the optimal temperature.
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Appendix: Assembly algorithm

The assembly algorithm is a replicate of that by Hartvig
(2011), but presented below for completeness.

Model communities are formed using sequential assem-
bly by introducing one new species at a time in low density
(10−10 g/vol) (Post and Pimm 1983; Drake 1990; Law 1999)
from a species pool. If invasion fitness is positive, then the
system is stimulated till it reaches steady state which can
be a fixed point, periodic, or even chaotic, detected using
heuristic algorithm. Fitness is measured using the per capita
population growth rate (i.e., the evaluation of the right-hand
side of Eq. (5)). A species is assumed to be in steady state
if its absolute fitness is smaller than 1/1,000 year−1. Dur-
ing simulation, species are removed if they are going to
extinction, defined as (1) population biomass falls below the
extinction threshold 10−20 g/vol; (2) fitness is smaller than
−1/250 year−1, while the biomass is below 10−5 g/vol;
or (3) fitness is smaller than −1/1,000 year−1, while the
biomass is below 10−10 g/vol. The assembly proceeds to a

new invader if the introduced invader has negative invasion
fitness, or if the augmented community (resident commu-
nity plus invader) has reached equilibrium state.

In addition, the continuous species pool is discretized
evenly in the x direction with a step size δx = 0.2 and
logarithmically evenly in the w direction with a step size
δ logw = 0.1. Results appear independent of the choice of
discretization.
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Rossberg AG, Brännström Å, Dieckmann U (2010) How trophic
interaction strength depends on traits. Theor Ecol 3:13–24

Rossberg AG (2012) A complete analytic theory for structure and
dynamics of populations and communities spanning wide ranges
in body size. Adv Ecol Res 46:429–522

Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL (2004)
Effects of body size and temperature on population growth. Am
Nat 163:429–441

Sheldon RW, Prakash A, Sutcliffe WHJ (1972) The size distribution
of particles in the ocean. Limnol Oceanogr 17:327–340

Sheldon RW, Sutcliffe WHJ, Paranjape MA (1977) Structure of
pelagic food chain and relationship between plankton and fish
production. J Fish Res Board Can 34:2344–2353

Taylor PJ (1988) The construction and turnover of complex commu-
nity models having generalized Lotka-Volterra dynamics. J Theor
Biol 135:569–588

Ursin E (1973) On the prey size preferences of cod and dab. Med-
delelser fra Dammarks Fiskeri- og Havundersøgelser 7:84–98

Virgo N, Law R, Emmerson M (2006) Sequentially assembled food
webs and extremum principles in ecosystem ecology. J Anim Ecol
75:377–386

Ware DM (1978) Bioenergetics of pelagic fish: theoretical change in
swimming speed and ration with body size. J Fish Res Board Can
35:220-228

West GB, Brown JH, Enquist BJ (1997) A general model for the origin
of allometric scaling laws in biology. Science 276:122–126

Yodzis P (1984) Energy flow and the vertical structure of real ecosys-
tems. Oecologia 65:86–88

Yodzis P, Innes S (1992) Body size and consumer–resource dynamics.
Am Nat 6:1151–1175

http://dx.doi.org/10.1016/j.jtbi.2013.01.018

	Size-based predictions of food web patterns
	Abstract
	Introduction
	Food web model
	Analytic approximations
	Size-spectrum solution
	Trophic chain solution
	Maximum trophic level
	Resistance to invasions

	Community assembly
	Results
	Discussion
	Size-spectrum exponent
	Maximum trophic level
	Community stability
	Model architecture

	Acknowledgments
	Appendix: Assembly algorithm
	References


