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Abstract The Caatinga is a semiarid biome of the northeast of Brazil with only 1 % of its

territory currently conserved. The biome’s biodiversity is highly threatened due to exposure

to land conversion for agricultural and cattle ranch. Climate forecasts predict increases in

aridity, which could pose additional threats to the biome’s biodiversity. Here, we ask if the

remnants of natural vegetation in Caatinga biome, where endemic terrestrial vertebrate

species occur, are likely to retain more climatic suitability under climate change scenarios

than other less pristine areas of the biome. In order to assess changes in climate suitability

across individual species ranges, ensemble forecasting was used based on seven bioclimatic

envelope models, three atmosphere–ocean general circulation models, and two greenhouse

emission gas scenarios for 2020, 2050, and 2080. We found that most species will gain

climatic suitability in the natural vegetation remnants of the Caatinga. Such gains are even

greater than the expected to occur within random sets of areas with size similar to the natural
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M. B. Araújo � D. Alagador
Rui Nabeiro Biodiversity Chair, CIBIO, University of Évora,
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vegetation remnants. Our results suggest that natural vegetation remnants will likely play a

role of climate refuges for endemic vertebrate species, so efforts should be concentrated in

these regions.

Keywords Ensemble of forecasts � Species climatic suitability �
Natural vegetation remnants � Endemic vertebrates

Introduction

The Caatinga is a biome composed predominantly by xerophytic, woody, thorny, and

deciduous physiognomies (Da Costa et al. 2007; Sampaio 1995), with a hot and dry climate

(Veloso et al. 1991), occupying more than 750,000 km2 in the northeast of Brazil. This is a

semiarid region with drought periods lasting longer than 11 months per year (Ab’Saber

1977). The Caatinga’s unique climatic conditions, hot and dry, provide adaptive singularities

on its biodiversity, driving species to evolve specific physiologies and reproductive behaviors

(e.g., Rodrigues 1996, 2003; Vieira et al. 2009). Thus, Caatinga contains a great number of

singular hot-and-dry-adapted species. Nonetheless this biome has been described as a region

with a low number of endemic (e.g., Andrade-Lima 1982; Prance 1987; Vanzolini et al.

1980). Consequently, its biodiversity has been widely ignored by conservation policies, with

only 1 % of its territory included within protected areas (Leal et al. 2005).

The perception that the Caatinga has low biodiversity might be partly due to the region

being poorly sampled. Indeed, some studies concluded that the biome has higher species

richness and a greater number of endemic species than previously thought (see Leal et al.

2003, 2005). All in all, there are good reasons to start investigating the main threats to

biodiversity in the region and develop conservation priorities, particularly because the area

is already being exposed to high level of conversion of natural land by agriculture, mainly

slash and burn (Mamede and Araújo 2008), and cattle ranches (Pereira et al. 2003).

Currently, almost half of the Caatinga is already converted (Castelletti et al. 2004).

Existing human pressures are likely to threaten species’ persistence in the biome, and

the situation could be worse if climate changes in a way that further disturbs the Caatinga’s

biodiversity. The slight variation in temperature and precipitation of Caatinga (Silva 2004)

has an important role in the spatial patterns of its species richness (de Oliveira and Diniz-

Filho 2010). Predicted climate change scenarios (i.e., drier and warmer), might turn the

Caatinga into a desert (Salazar et al. 2007), with worrying consequences for biodiversity.

The aim of this paper is three-fold. Firstly, we examine if natural vegetation remnants

will retain climatic suitability for Caatinga’s terrestrial vertebrate endemic species under

climate change scenarios. Secondly, we examine if losses of climate suitability in natural

vegetation remnants are greater or smaller than across the other areas of the biome.

Thirdly, we investigate the relationship between species’ climatic suitability gains against

species’ climatic suitability losses across natural vegetation remnants in the Caatinga, so to

identify areas that are more suitable for conservation efforts in the future.

Materials and methods

Species and climate data

The Caatinga region was divided into 296 grid cells of 0.5 9 0.5� of spatial resolution

(Fig. 1a), and overlaid with maps of extent of occurrence of 32 terrestrial vertebrate
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species that are endemic to this region (Leal et al. 2003). Data were retrieved from

NatureServe (www.natureserve.org), the Eisenberg and Redford (1999) field guide, and

reviews from scientific literature and museum collections (Appendix A—Supplementary

Material), and were then used to derive maps of species’ presences and absences in our

grid. Originally, there are 46 Caatinga’s known vertebrate endemics (Leal et al. 2003; de

Oliveira and Diniz-Filho 2011), but because of the requirements of the modeling methods

we excluded species occurring in less than five cells, as well as species occurring in all

cells (see Appendix A—Supplementary Material).

Climatic data for species modelling were compiled from WorldClim online database

(www.worldclim.org; Hijmans et al. 2005) for both baseline and future conditions. Future

scenarios for 2020 (averaged from 2010 to 2039 interval), 2050 (averaged from 2040 to

2069 interval), and 2080 (averaged from 2070 to 2099 interval) were based on three

atmosphere–ocean general circulation models (AOGCMs), including the Canadian Centre

for Climate Modelling Analysis (CCCMA), the Australia’s Commonwealth Scientific and

Industrial Research Organization (CSIRO), and the Hadley Centre for Climate Predictions

and Research’s General Circulation Model (HADCM3). Two families of greenhouse

(A) (B)

Fig. 1 Geographical region of Caatinga showing a 296 grid cells with 0.5� latitudinal and longitudinal
spatial resolution and b proportion of natural vegetation remnants
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emission gas (GEG) scenarios (A2 and B2) were used. For each period we averaged values

of mean of maximum temperature, the sum of annual precipitation and the standard

deviation of annual precipitation within each cell.

The A2 scenario reflects a world where global population will increase, and economic

development is regionally oriented (IPCC 2000). While B2, on the other hand, emphasizes

local solutions on economic, social, and environmental sustainability, the population

growth will increase at a rate lower than A2 scenario, and is also oriented toward local

protection and social equity (IPCC 2000). Thus, one can state that A2 GEG scenario is

more pessimistic than B2.

Bioclimatic envelope modelling

Ensemble forecasting methodologies for defining the species’ potential distributions

(Araújo and New 2007; see also Peterson et al. 2011) were implemented following the

methodology described in Diniz-Filho et al. (2009a, 2010). For each species, we randomly

divided occurrence data into 75 % for calibration and 25 % for validation, and this process

was repeated 50 times. Seven different bioclimatic envelope models (BEMs) were used,

including BIOCLIM (Busby 1991), Euclidian and Mahalanobis Distances (Farber and

Kadmon 2003), Generalized Linear Models (GLM) (McCullagh and Nelder 1989),

machine learning approaches such as Genetic Algorithm for Rule Set Production (GARP)

(Stockwell and Noble 1992), Random Forest (Breiman 2001), and Maximum Entropy

(MAXENT) (Phillips et al. 2006).

These models were run with BioEnsembles software (Diniz-Filho et al. 2009a), which is

an integrated computational platform that implements some methods as BIOCLIM and

distance-based BEMs, and also includes source code translated from different sources (e.g.

GARP from OpenModeler, http://openmodeller.sourceforge.net/), integration with external

software (e.g. MAXENT uses the original software), or methods implemented in R (e.g.

GBM, FDA, ANN) (see Thuiller et al. 2010) when presence-absence data are available. We

use all seven possible combinations of climatic variables described above (2n - 1, where

‘‘n’’ is the number of variables). Thus, for each species and BEM run, we have a final

number of 350 models, referring to the multiplication of 50 cross validated sets by seven

possible combinations of climatic variables. We presented the results as a proportion of the

presences predicted by each of the seven BEMs for baseline and for each combination of

AOGCMs and GEG scenario for the years 2020, 2050 and 2080 in all 350 models,

converted as frequency values. Herein we use these frequencies as a proxy of climatic

suitability of each species in each of the 296 grid cells.

Finally, we matched species’ climatic suitability with regions that have remnants of

Caatinga’s natural vegetation (sensu Araújo 2004; Alagador et al. 2011). We multiplied

model frequencies for the baseline and for each combination of AOGCMs and GEG

scenarios for the years 2020, 2050, and 2080 by the summed proportion of ‘‘wildlands’’

and ‘‘forested’’ anthropogenic biomes (Ellis and Ramankutty 2008; see Fig. 1b) within

each grid cells. These anthropogenic biomes are global surrogates of lands where there is

no human occupation by urbanization, agriculture or pasture, in Caatinga region, ‘‘wild-

lands’’ refers to regions where sparse tree covers are, and ‘‘forested’’ are related to forests

that have minimum traces of human occupation practices. Thus they were used as a

generalization of where species are expected to find suitable environments and where

conservation conflicts can be minimized (sensu Balmford et al. 2001; Araújo and Rahbek

2007; and reviewed by Luck 2007).
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Verifying the gains and losses of climate suitability for species

We used a null model to evaluate the extent to which regions that have natural vegetation

remnants will retain more (or less) species’ climatic suitability relatively to randomly

selected regions in the Caatinga area (Alagador et al. 2011; Araújo et al. 2011). First, we

subtracted the proportions of species’ climatic suitability inside regions of natural vege-

tation remnants forecasted for the combinations of AOGCMs and GEG scenarios in the

years 2020, 2050, and 2080 by the baseline proportions, to evaluate the empirical number

of winner (positive differences) and loser (negative differences) species inside these areas.

Next, we rearranged, with 1,000 random permutations, the empirical total coverage of

natural vegetation remnants, totaling the amount of 58.44 cells, across the 296 grid cells.

All 296 cells in our grid had the same chance to be filled by natural cover on proportions

that varies according to the real grid cells’ proportions. By multiplying the baseline and

forecasted species climatic suitability across the entire biome by each of these randomized

proportions of natural vegetation remnants, and subtracting them, we obtained a frequency

distribution of the number of climate change winner and loser species across Caatinga. So,

the projected number of winners and losers inside the natural vegetation remnants were

compared with the values from the randomized ones to establish significance levels. These

randomization analyses were performed with the R statistical package (R Development

Core Team 2009), using code published by Araújo et al. (2011).

Proactive conservation planning

Regions of natural vegetation remnants with greater gains of climatic suitability for some

species may also have others species losing climatic suitability. Such conflicting patterns

would lead to optimization problems in conservation planning because priorities would

have either to focus on a number of species, leaving others aside, or focus on all species

thus increasing conservation costs.

To evaluate the degree to which conservation conflicts may arise when planning for

climate change (Garcia and Araújo 2009), we split the expected climatic suitability trends

into two spatial layers. One containing only the sum (across species) of positive suitability

shifts into the future (gains). The other containing the sum (across species) of negative

suitability shifts (losses). Notice that regions that have a great amount of natural vegetation

remnants could have highest values of gains or losses of climatic suitability only because

of size effects. To correct for this bias, we divided the values of gains and losses by the

proportion of natural vegetation remnants. Then we made a regression analysis (ordinary

least squares—OLS) between the sum of all species climatic suitability gains across natural

vegetation remnants and the sum of all species climatic suitability losses in the same

remnant vegetated areas.

Grid data display strong spatial structure (autocorrelation), which can inflate the Type I

error of the significance tests due to non-independence of the cells (Diniz-Filho et al. 2003;

Legendre 1993). We measured this spatial structure using Moran’s I coefficients calculated

from the model residuals, which ranges between -1 (completely negative spatial auto-

correlation) to 1 (completely positive spatial autocorrelation). For the present analyses,

these Moran’s I coefficients were calculated for 10 geographic distance classes in the

Caatinga grid system, forming a spatial correlogram. Once autocorrelation is observed, it is

necessary to apply methods of spatial regression to avoid misinterpretation of partial

coefficients (see Bini et al. 2009; Dormann et al. 2007; Hawkins et al. 2011).
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To correct the interpretation of the direction of the standard coefficients of the species

suitability losses in the natural remnant vegetation areas (see below), we used eigenvector

spatial filters (see Griffith 2003). These filters were obtained using Spatial Eigenvector Mapping

(SEVM) (Borcard and Legendre 2002; Diniz-Filho and Bini 2005; Griffith and Peres-Neto

2006), and are given by the eigenvectors extracted from a pairwise geographic distance matrix,

truncated at a distance of 175.25 km (note that analyses were restricted to cells with natural

vegetation remnants). Eigenvectors extracted from this matrix represent the spatial structure at

multiple scales, the first of which refers to broad and the last of which to fine scales (Diniz-Filho

and Bini 2005). We selected all filters that, together, minimized the spatial autocorrelation in the

residuals model, using the gains of climatic suitability inside cells that have natural vegetation

remnants as response variable and the losses as predictors, at a Moran’s I as low as 0.05 for the

first distance class (see Griffith and Peres-Neto 2006). Then these selected spatial filters were

used as explanatory variables in the OLS together with the losses of species climatic suitability

within natural vegetation remnants areas. The spatial analysis was performed using SAM

(Spatial Analysis in Macroecology) software v.4.0 (Rangel et al. 2006, 2010).

The interpretation of the relationship between the amount of species gains and losses of

climate suitability is straightforward: if the standard coefficient of the losses within natural

vegetation remnants is positive, this suggests that regions where some species will have

more gains will be the same where other species will have more losses, and vice versa. To

guide secure conservation efforts for all species together we expected a negative standard

coefficient of the losses of climatic suitability within natural vegetation remnants.

Results

Most endemic species are projected to gain climatic suitability in natural vegetation

remnants of the Caatinga, and this is true across all combinations of AOGCMs and GEG

for the years 2020, 2050, and 2080 (Table 1). In general, all mammals and lizards with

small observed range sizes that inhabit sand dunes will gain climatic suitability inside

natural vegetation remnants. On the other hand, birds and lizards with large observed range

sizes in forests and sand dunes will lose climatic suitability inside these areas (see

Appendix B—Supplementary Material).

Moreover, vegetation remnants will retain more climate suitability for species than

random regions across the biome, while losses of climate suitability in vegetated remnants

is no different than the random regions (Table 1). However, only CCCMA-AOGCM

presented acceptable significance levels (i.e., P lower than 0.05 critical value) for most of

the winner-species across the model combinations. All the results of HADCM3-AOGCM,

and more than a half of the results of CSIRO-AOGCM presented values for winner-species

that can occur by chance only.

The highest gains in climate suitability for species were recorded in the eastern natural

vegetation remnants, while losses of climate suitability were mainly recorded in the western

regions of Caatinga (Fig. 2, and for all combinations of AOGCMs and GEG scenarios for the

years 2020, 2050, and 2080 see Appendix C—Supplementary Material). All combinations of

AOGCMs and GEG scenarios for the years 2020, 2050, and 2080 have a significant spatial

structure (Moran’s I in the first distance class ranging from 0 to 200 km, P \ 0.01), so SEVM

was applied to correct for bias in Type I error of regression coefficients. Thus, after correcting

these biases, all standard coefficients of climatic suitability losses presented a negative

relationship in all scenarios (Table 2), indicating that species, together, will have opposite

patterns of gains and losses of climatic suitability in natural vegetation remnants.
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Discussion

Species’ gains and losses

Caatinga’s biodiversity has been affected by rudimentary agricultural and cattle ranches

practices during more than 500 years, since colonization periods in the XVI century (Coimbra-

Filho and Câmara 1996; Leal et al. 2005). Thus, the current species that occur in the biome are

what remains after this extinction filter effect (Cardillo et al. 2005, 2006) of natural land

conversion. Here, we assumed that only purely ecological and phylogenetically structured

species’ traits that respond to environmental variation (i.e., niche conservatism) will affect

future range shifts on Caatinga’s terrestrial vertebrates (Diniz-Filho and Bini 2008). Thus

Caatinga’s species that could not shift their ranges to places climatically suitable after their

habitat degradation (i.e. driven only by strong phylogenetic components) were already extinct.

We excluded from the analyses 12 endemic species that have less than five cells of

range size, due to the limitation of our analyses. However, some of these species are

Fig. 2 Spatial patterns of the sums of gains (WIN) and losses (LOS) of species’ climatic suitability within
areas that have natural vegetation remnants for the year 2080, using the CCCMA atmosphere–ocean general
circulation model (AOGCM) for the families A2 and B2 of greenhouse emission gas (GEG) scenarios.
Results for all combinations of AOGCMs and GEG scenarios for the years 2020, 2050 and 2080 are
presented in Appendix C—Supplementary Material
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considered under threat of extinction, for example the Lear’s Macaw (Anodorhynchus
leari) and the Araripe Manakin (Antilophia bokermanni), that are bird species classified as

endangered and critically endangered, respectively (IUCN 2011). Currently the Araripe

Manakin range contains no natural vegetation remnants and the Lear’s Macaw has only

31 % of its range covered by pristine vegetation, due to agriculture pressures, mainly by

slash and burn activities (IUCN 2011). Projections of climatic change induced suitability

gains or losses for these species is challenging, because data are at very coarse resolution

(for discussion see Diniz-Filho et al. 2009b; Engler et al. 2011).

Also it should be noted that we forecasted species’ distributions within the Caatinga and

disregarded dynamics occurring elsewhere. The distribution of the entire biome can change

(Salazar et al. 2007) and species occurring in transition regions between Caatinga and

Amazonian Forest, Cerrado, and Atlantic Forest might, in the future, find climatic suit-

ability inside Caatinga region. For example, gallery forests in the southern part of the

Caatinga are used by primates allowing them to penetrate into the biome (Marinho-Filho

and Verı́ssimo 1997). This phenomenon provides evidence that species of the Atlantic

Forest fauna can penetrate into the Caatinga. If such a scenario was verified, it would be

possible that new predators, parasites, and competitors could invade the Caatinga thus

threatening local endemics (e.g., Kleinbauer et al. 2010; Thomas 2010).

Another possibility is that, with climate change, new suitable areas might emerge

prompting endemics to move in order to track climate suitability (e.g., Marini et al. 2009).

Whatever the scenario, biodiversity conservation in such a changing environment will

certainly offer additional challenges to the existing ones. In some cases, vegetated areas

characteristic of the Caatinga biome might be modified, thus threatening local endemic

species and in other cases new opportunities for conservation will emerge outside tradi-

tional Caatinga’s pristine areas.

Proactive conservation planning

Regions predicted to have the greatest gains of species’ climatic suitability do not coincide

with the regions predicted to witness the greatest climatic suitability losses for others

species. This pattern of impacts of climate change suggests that effective conservation can

be achieved at a relatively low cost. However, underlying the spatial structure of climate

impacts are human occupation pressures and land degradation. In particular, the regions

with natural vegetation remnants, where species are likely to have more gains of climatic

suitability, are located in the central Caatinga (see Fig. 2; Appendix C—Supplementary

Material). This area is known to be susceptible to desertification (Salazar et al. 2007),

because of the coupled effects of increasing temperatures, reduction of precipitation, and

land degradation (Darhoh 1998; Geist and Lambin 2004; Sivakumar 2007).

Moreover, under future climate scenarios, potential displacements of Caatinga’s biome

can affect the spatial pattern of human occupation practices. This is because most of the

agricultural practices and cattle ranches in this region use rudimentary techniques that are

strongly dependent on climatic characteristics (e.g., Mamede and Araújo 2008). Further-

more, changes in land use in the Caatinga can influence the regional climate and thus alter

the structure of surrounding biomes (e.g., Malhado et al. 2010) making a redistribution of

agriculture and cattle ranches scenarios more probable. Thus, if the neighboring regions of

natural vegetation remnants gaining climatic suitability for species will become climati-

cally appropriate for practices of agriculture, cattle ranches, and urbanization, conservation

strategies will compete with socioeconomics interests (sensu Balmford et al. 2001; and

discussion on Diniz-Filho et al. 2009b). On the other hand, if these regions become hostile
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enough to avoid land degradation by human occupation practices, they have the potential

to become important regions for conservation.

Uncertainties from AOGCMs and GEG scenarios

Forecasting species’ distributions under climate change can generate different results

depending on the models used, resulting in uncertainty sources coming from environmental

and species data sets and the techniques used for this purpose (Araújo and New 2007).

Some previous studies have shown that the main sources of uncertainty in modeling are

related to BEMs and AOGCMs (e.g., Buisson et al. 2010; Diniz-Filho et al. 2009a; Garcia

et al. 2012). Thus we opted to present the results for all BEMs as a probabilistic density

function, and separately for combinations of AOGCMs and GEG scenarios. When we

compared the spatial patterns of species climatic suitability gains and losses within

Caatinga natural vegetation remnants in the A2 and B2 GEG scenarios across AOGCMs

(see Appendix C—Supplementary Material), they did not present marked differences,

suggesting that Caatinga’s endemics will respond similarly under different concentrations of

CO2 on the atmosphere resulting from different human socioeconomic behaviors. Other-

wise, comparing the AOGCMs, HADCM3 presented discrepant results from CCCMA and

CSIRO, where species will gain climatic suitability at northwest region of natural vegetation

remnants, and will lose it at centre-south regions (see Appendix C—Supplementary

Material). Nonetheless, HADCM3 presented the same contrasting patterns of gains and

losses of species climatic suitability of the others AOGCMs, and the interpretation of

conservation efforts remains similar as for CCCMA and CSIRO.

Concluding remarks

Despite the low conservation priority that is usually given to the Caatinga, the biome

contains a greater number of species and endemic species that is often admitted. Climate

change is projected to cause some areas to present higher climatic suitability for species

than others, but areas with important natural remnants of vegetation tend to be among the

areas winning climatic suitability. These are good news as it suggests that current

important areas for biodiversity in the biome are also likely to play a role as climate refugia

towards the end of the century. Obviously, fine grained studies would be required in order

to provide detailed analysis about the location of these refugia. Else, coarse data can be

used to statistically downscale projections, but there are associated uncertainties with this

process that need being understood (Araújo et al. 2005). In our study we adopted a coarse

filter approach (Whittaker et al. 2005) to identify the biogeographic regions that will likely

play a major role for the conservation of endemic species in the region. The identification

of such coarse areas can be taken as a first step of systematic conservation planning

(Margules and Pressey 2000), aiming at discriminating regions of conservation importance

that would be further subjected to more detailed planning (e.g. Araújo et al. 2002; Williams

et al. 2005).

Proactive conservation action in the Caatinga is timely since natural vegetation rem-

nants are likely to suffer modifications with climate change and these changes might

coexist with alterations in the spatial patterns of socioeconomic pressure and land con-

version into agriculture and cattle ranches. One example is the Integration Project of the

São Francisco basin (Ministério da Integração Nacional) which is designed to facilitate

irrigation for croplands and livestock in the region.

Biodivers Conserv (2012) 21:2913–2926 2923

123



Acknowledgments The authors are grateful to two anonymous reviewers, and to the cooperation project
of Fundação para Ciência e a Tecnologia and Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior (FCT-CAPES, Portugal–Brasil). GO is supported by Conselho Nacional de Desenvolvimento
Cientı́fico e Tecnológico (CNPq) doctoral fellowship (Proc. No. 552961/2008-6), and work by TFR and
JAFDF on climate change and BEMs have been continuously supported by CNPq productivity grants and
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Kissling WD, Kühn I, Ohlemüller R, Peres-Neto P, Reineking B, Schröder B, Schurr FM, Wilson R
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