
Contents lists available at ScienceDirect

Ecological Informatics

journal homepage: www.elsevier.com/locate/ecolinf

Probabilistic description of vegetation ecotones using remote sensing

H.M. de Klerka,⁎, N.D. Burgessb,e, V. Visserc,d

a Department of Geography and Environmental Studies, Chamber of Mines Building, c/o Ryneveld & Merriman Streets, Stellenbosch University, Stellenbosch 7599, South
Africa
bUN Environment World Conservation Monitoring Centre (UNEP-WCMC), 219 Huntington Road, Cambridge, UK
c SEEC (Centre for Statistics in Ecology, the Environment and Conservation), Department of Statistical Sciences, University of Cape Town, Rondebosch 7701, South Africa
d African Climate and Development Initiative, University of Cape Town, Rondebosch 7701, South Africa
e CMEC, The Natural History Museum, University of Copenhagen, Denmark

A R T I C L E I N F O

Keywords:
Ecotone
Vegetation transition
Remote sensing
Probabilistic classifier

A B S T R A C T

Ecotone transitions between vegetation types are of interest for understanding regional diversity, ecological
processes and biogeographical patterns. Ecotones are seldom represented on vector, line-based vegetation maps,
which imply an instantaneous change from one vegetation type to another. We use supervised, probabilistic
classification of remotely sensed (RS) imagery to investigate the location, width and character of ecotones be-
tween acid Sandstone and alkaline Limestone fynbos on the Agulhas plain at the southern tip of Africa, known
for rapid speciation of plants and exceptional plant biodiversity at the global scale. The resultant probability
map, together with the probability graphs developed for a few transects across the transition, are able to map
and describe (1) sharp, narrow ecotones (under five meters); (2) moderate ecotones that have a distinct band of
transition (over a few hundred meters); and (3) complex ecotones that include slow transitions, interdigitated
boundaries and outliers. The latter class of transitions include portions where vegetation types change sharply
over a few meters, but due to the interdigitated boundaries they are mapped over hundreds of meters to a
kilometre at a landscape scale. In this study area, our findings suggest that the character of the Agulhas lime-
stone-acid ecotone is probably more complex than often noted. Moderate transitions and broad mosaics are
difficult to indicate in a vector vegetation map, whereas RS probabilistic classifications can output images in-
dicating core areas, important for key species and biodiversity pattern, and transitional zones, important for
ecosystem processes and perhaps plant evolution, which distinction is important for conservation planning.

1. Introduction

Ecotones, or vegetation transitions, have long been the focus of
scientific study due to their effects on both beta and gamma diversity
and thus local and landscape level diversity and pattern (Whittaker,
1960). More recently, interest has arisen from the recognition of the
role of ecotones in driving genetic diversity, gene flow and speciation,
as well as ecosystem processes, including population and metapopula-
tion dynamics, provision of diverse resources, modification of flows of
material across the landscape, movement corridors, and being re-
sponsive to changes in climate (Hou et al., 2017; Hufkens et al., 2009;
Kark et al., 2007; Risser, 1993; Rouget et al., 2003; Strayer et al.,
2003a). This has reached the extent where some authors (e.g. Fagan
et al. (2003)) state that “habitat boundaries profoundly influence the
structure and function of landscapes”.

On both paper maps and GIS databases, ecotones are most fre-
quently mapped as single lines regardless of their actual extent on the

ground, or whether they are derived from field mapping (e.g. SANBI
2006-), expert synthesis (Dinerstein et al., 2017), or statistical analysis
of gridded databases (Linder et al., 2012). However, the breadth and
strength of different ecotones on the ground vary dramatically ac-
cording to a number of factors (Williams, 1996), meaning that single
lines are often neither accurate nor appropriate.

Both gridded or extrapolated point-locality species data can provide
continuous variables as inputs to various measures of the placement,
strength and breadth of ecotones, and have been developed to distin-
guish sharp ecotones from gradual transitions and map the approximate
area across which the transition occurs (e.g. Williams et al., 1999; see
also Hufkens et al., 2009, for a comprehensive review). However, for
most parts of the world, continuous data derived from ground-based
botanical (or zoological) surveys is seldom available over large spatial
extents due to constraints of time, money, and the physical and safety
challenges involved (Buchanan et al., 2009). Moreover, global and re-
gional gridded biodiversity databases are generally only available at
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coarse scales (e.g. South African National Biodiversity Institute's
(SANBI) Integrated Biodiversity Information System (SIBIS) at a
quarter-degree (http://newposa.sanbi.org). However, data derived
from remote sensing (RS) holds much potential to provide finer scale
(down to a few meters and sometimes sub-meter) and data that are
continuous, both in space and time, for maps of vegetation types and
ecotonal areas between them. This is based on the spectral signatures
that can be recognised from individual, or combinations, of plant
communities. RS has been extensively shown to be useful for vegetation
or land cover/class mapping (Xie et al., 2008).

A large number of ecotone types have been studied using RS; these
include examples across a large number of biome and land-use
boundaries: taiga-tundra (Ranson et al., 2011); tundra-woodline; Al-
pine-subalpine (Resler et al., 2004); forest-woodland; forest-savanna,
all reviewed by Hufkens et al. (2009) wildland-agriculture or -urban
interfaces (Feng et al., 2015); forest-farmland transitions (Hou and
Walz, 2014); urban-wildland econets (Hou et al., 2017) and elevational
gradients (see Gallardo-Cruz et al., 2009). Ecotone studies use a range
of sensors, from passive MODIS (Ranson et al., 2011; Ali et al., 2013),
Landsat, Sentinel, SPOT (Radoux et al., 2016), RapidEye and aerial
photography (Martin et al., 2007; Resler et al., 2004) to active airborne
laser scanner (Hou and Walz, 2014) and Lidar (Guo et al., 2017). For
ecotone classification, studies use various subsets of electromagnetic
energy (sensor bands) as well as vegetation indices developed from the
bands (Hou and Walz, 2014), and then apply various classification
approaches, from manual mapping off of aerial photographs (Martin
et al., 2007), to object- and rule-based classification (Hou and Walz,
2014). Hard classifiers include agglomerative, divisive/partitioning,
moving window, and rate of change approaches (see Fagan et al.,
2003).

Remote sensing is often used in vegetation research to help develop
maps of different land use and land cover that can be further used to
develop vegetation maps (e.g. South African National Biodiversity
Institute, 2012). Here we test the use of fuzzy probabilistic classifiers to
assign graded (fuzzy) membership to remote sensing imagery pixels, to
map the location, extent (Strayer et al., 2003b), and character of eco-
tones at a landscape level on the Agulhas Plain at the extreme southern
tip of South Africa. Field data were obtained from fine-scale vegetation
maps (Euston-Brown, 1999; South African National Biodiversity
Institute, 2012) and applied to imagery obtained from NASA/USGS,
which we pre-processed. We use these data to produce a supervised,
probabilistic classification of alkaline Agulhas limestone fynbos and
acidic Overberg sandstone fynbos (Cowling et al., 1988), showing the
extent of each vegetation type as well as the nature of the ecotone
between these two vegetation types. We look at the vegetation ecotone
across this alkaline-acid transition as it has provided opportunity for
genetic exchange and rapid divergence of subspecies and species
(Thwaites et al., 1988), resulting in high beta diversity as well as local
endemism.

2. Materials and methods

2.1. Study areas

The Cape Region of southwestern South Africa has remarkable
patchworks of vegetation types, each supporting exceptional plant
species diversity, localised endemism (Cowling et al., 2009; Olson et al.,
2001) and high beta diversity between vegetation types. The Agulhas
Plain at the southern tip of this region (coordinates top-left: 24° 26′
51″S, 19° 15′ 05″E; bottom-right: 34° 52′ 08″S 19° 14′ 57″E), is a bo-
tanically rich area with more than 1700 species (Thwaites et al., 1988).

There are 85 local endemics, in part driven by speciation across the
ecotone between the alkaline-neutral sands, acid sands and acid loams
(Cowling et al., 1988; Oliver and Oliver, 2002; Thwaites et al., 1988).
For example, Erica plukenetii has different subspecies on both acidic
sandstone and alkaline limestone, such as subsp. plukenetii (sandstone),
subsp.lineata (limestone), subsp. breviflora (sandstone) and subsp. bre-
densis (limestone) (Oliver and Oliver, 2002). Similarly, Erica regia
subsp. regia grows on acidic sandstone, whereas the subsp. maraie
[mariae] grows on limestone (Oliver and Oliver, 2002). For the purposes
of this paper we are specifically interested in studying the ecotones
between Agulhas limestone fynbos (hereafter referred to as limestone),
which is restricted to alkaline soils, and Overberg sandstone fynbos
(hereafter referred to as sandstone), which is restricted to acid soils
(Cowling et al., 1988) (see Fig. 1), names follow the South African
National Biodiversity Institute (South African National Biodiversity
Institute, 2012). Indicator species of limestone fynbos are Protea obtu-
sifolia, Leucadendron meridianum, and Leucospermum truncatum, while
indicator species of sandstone fynbos are P. compacta (sister species to
P. obtusifolia), Leucadendron xanthoconus or L. eucalyptifolium (Rebelo
et al., 2006). The latter situation is sometimes complicated by the ob-
servation that quite shallow sands overlaying limestone can alter the
species present. While structurally similar, limestone fynbos largely
lacks graminoids and ericaceous fynbos elements.

Mean annual rainfall ranges from 450mm in the east, to 540mm in
the west and 650mm in the northern hills (South African Weather
Service). Most (65% and 75%) of the annual precipitation occurs during
the winter months of May–October, which is characteristic of a
Mediterranean-type climate. The topography is flat to undulating with
some small peaks, and rises from sea level to 772m a.s.l. (Stellenbosch
University, Digital Elevation Model).

2.2. Remote sensing approach

Our approach to classifying remotely sensed imagery was to start
with a set of decisions on which satellite-borne sensor to use, the time of
year, pre-processing of the sensor data in parallel with planning and
collection of training and verification, or accuracy, data. The imagery
was then classified with the training data (for supervised classifica-
tions), and the accuracy of the output then evaluated using the ver-
ification data.

2.3. Field data and accuracy assessment

Training and verification polygons were captured off of the
Vegetation Map of South Africa (2012 beta version, (South African
National Biodiversity Institute, 2012)) and checked against the field
map used as input to this national standard (Euston-Brown, 1999). The
total of 144 polygons were split roughly 70/30 split (sensu Lillesand
et al., 2008) to yield mutually exclusive, independent training (100)
and verification (44) polygons (Table 1). Some field work was

Fig. 1. (a) Study area location (black dot) within the Western Cape Province (dark grey) of South Africa (light grey). (b) Location of 10 transects (numbered black
rectangles) showing the acidic Overberg sandstone (mountain) fynbos (dark grey, Vegetation Map of South Africa) and alkaline Agulhas limestone (lowland) fynbos
(light grey). Local towns are shown as black dots and roads as the black line.

Table 1
Numbers of training and verification polygons captured for Overberg sandstone
and Agulhas limestone fynbos.

Training data Verification data

Number of polygons Number of polygons

Overberg Sandstone Fynbos 53 23
Agulhas Limestone Fynbos 47 21
Total 100 44
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conducted around transects four and five to check results that classified
some areas as mosaics of limestone and sandstone, while the Vegetation
Map of South Africa had mapped these as limestone. An observer fa-
miliar with the local floral species and indicator species of the different
vegetation types participated in the field trip.

2.4. Satellite data and pre-processing

Landsat 8 Operational Land Imager (OLI) sensor imagery
(30m pixel size, downloaded from EarthExplorer, https://
earthexplorer.usgs.gov/) were obtained for September 2017 for a re-
cent representation of the growing season and of the field work con-
ducted in November 2017. Unfortunately imagery for November 2017
was too cloudy for analyses. Land transformation, such as newly
ploughed fields, that are not represented on the National Land Cover
raster were manually digitised and excluded from the analysis of the
2017 imagery. Imagery was atmospheric corrected (Richter and
Schläpfer, 2014) using IDL's ATCOR.

Areas transformed by human infrastructure, ploughed lands and
dense stands of invasive alien plants were removed using the
2013–2014 National Land Cover raster (NGI, 2015), as were fire scars
of the previous two years (2015–2016), as well as non-target vegetation
types, such as narrow bands of Western Coastal Shale Band Vegetation,
Cape Lowland Freshwater Wetlands and Southern Coastal Forest.

2.5. Classification of RS data

Band statistics for images were checked for normality (band corre-
lations and ellipsoidal relationships), as well as class separability using
two common separability tests, namely the Jeffries Matusita test
(Nussbaum et al., 2006) and Transformed Divergence (TD) separability
measure using ERDAS Imagine software (Hexagon Geospatial 2014).
Band correlations generally fit the patterns, except for band five which
consistently did not show any ellipsoidal pattern. Separability of
sandstone and limestone across all bands was moderate at TD of 1.67.

2.6. Classifications

Traditional hard classifiers map feature space into binary classes
whereas fuzzy classifiers assign graded (fuzzy) membership to pixels.
Probabilistic soft classifiers provide a probability distribution over a set
of classes, where each pixel is assigned a strength of membership value
for each class being mapped. We applied a Bayesian-based Class
Probability algorithm in ArcMap 10.4 (ESRI, Redlands, California).

To illustrate the nature of the change of classified probabilities
(class membership) from sandstone to limestone, ten transects were
drawn across various parts of the transition. Transects were located
using the Vegetation Map of South Africa (South African National
Biodiversity Institute, 2012) so that for each 3 km transect, approxi-
mately 1.5 km stretched across sandstone and another 1.5 km across
adjacent limestone. We attempted to locate these transects along parts
of the transition that had not been heavily impacted by land-use
transformation and across as much of the study area as possible.
However, as can be seen in Fig. 1, we were restricted in our choice of
locations for transects by the limited extent of natural vegetation along
the ecotone boundary. Transects were 1 km wide (Fig. 1). Vegetation
class probabilities were binned over the 1 km width every 30m along
the 3 km length and the mean and variance of the vegetation class
probabilities were calculated.

2.7. Accuracy assessment

Standard tests of agreement between classification outputs and the
verification data were conducted (R package caret, Kuhn 2008) in-
cluding overall accuracy (percentage correctly classified), Kappa, sen-
sitivity, which is the ratio of true positives to all positives (i.e. true

positives+ false positives or commissions) and specificity, which is the
ratio of true negatives to the sum of true negatives and commissions.

3. Results

The probability map of vegetation type shows that there are gen-
erally high probabilities of sandstone in the east, in areas indicated to
be sandstone in the Vegetation Map of South Africa, and high prob-
abilities of limestone generally in the west, in areas mapped as lime-
stone in the Vegetation Map of South Africa. This is confirmed by ac-
curacy statements (accuracies and kappa values of over 90% with
similarly high sensitivities and specificities, Table 2, Fig. 2).

The probability map suggests that the transition between sandstone
and limestone is narrow and sharp in some areas (see extended areas
where groups of solid red pixels are replaced by groups of solid blue
pixels, Fig. 2). More often this transition is slower and broader, taking
place over a number of pixels (grey areas between the red sandstone
and blue limestone, Fig. 2). Complex transitions with convoluted
boundaries and outlier patches are also seen, where outlier patches of
sandstone occur into the limestone. Some of these sandstone outliers
are mapped in the Vegetation Map of South Africa.

The graphs of vegetation class probability values over the transects
provide a second means of representing and interpreting the output of
the classification, and again three patterns are seen: sharp, slow, and
complex. Transect two shows a sharp transition from sandstone to
limestone (Fig. 3 b) where the graph line representing sandstone
probabilities shows high sandstone values in the east (right of the
graph) that decrease with a steep slope towards the west (left of the
graph). Over the same geographical space, the graph line representing
limestone probabilities starts off with low values in the east and then
shows a steep increase in probabilities as the limestone replaces the
sandstone rapidly over a short distance. The rapid switch from high
probabilities of sandstone to high probabilities of limestone over a short
distance on the graph is interpreted as a sharp ecotone with rapid
transition of vegetation types.

A slow or gradual transition is seen in transect nine and ten (Fig. 3i
and j), where high probabilities of limestone in the west (left of the
graph) drop to medium values over a stretch of a few hundred meters.
Sandstone probabilities increase over the same geographical space,
from low values in the west to high values in the east. This can be
interpreted as a distinct ecotone over specific area between limestone in
the west and sandstone in the east.

Transect four (Fig. 3d) is an example of a complex transition where
probabilities of sandstone and limestone oscillate over the middle sec-
tion of the transect.

The probability map also reflects important detail of limestone in
lower lying areas within the main body of sandstone, generally along
valleys (Fig. 2). In a few cases linear groups of pixels are classified with
a high probability of limestone while the Vegetation Map of South
Africa maps the area as sandstone, which may be due to spectral con-
fusion along highly reflective roads and fire breaks.

4. Discussion

Traditional line (polygon) maps can only provide an indication of

Table 2
Accuracy assessment of Bayesian probability
classifiers of sandstone and limestone from
Landsat 8 imagery.

Image 2017
Overall accuracy 95.5
Kappa 91
Sensitivity 93
Specificity 98
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Fig. 2. Probability values for Overberg sandstone fynbos (white) and Agulhas limestone fynbos (black) with the Vegetation Map of South Africa extent of the
Overberg sandstone fynbos in horizontal hashing.

Fig. 3. Graphs (above) and maps (below) of probability values for Overberg sandstone fynbos (grey) and Agulhas limestone fynbos (black) over transects 3000m in
length generally running east (right) to west (left). For the graphs values are binned at 30m intervals over the 3000m length of a transect. The Vegetation Map of
South Africa extent of the Overberg sandstone fynbos is represented by white lines on the maps.
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the location where one vegetation type is replaced by a neighbouring
vegetation. However they provide limited or no information on the
distance (or width) over which transitions take place, or the hetero-
geneity within vegetation types (e.g. Duff et al., 2014). The proposed
methodology of mapping vegetation probability works well to provide
information on ecotone location, width and character. The probability
map, together with the probability graphs developed for a few transects
across the transition, are able to map and describe (1) abrupt, sharp
transitions that take place over a very short distance; (2) moderate
transitions that have a distinct band of transition; and (3) complex
transitions that include slow transitions, interdigitated boundaries and
outliers. In this study area, findings suggested that the character of the
Agulhas limestone-acid ecotone is probably more complex than often
noted. Interestingly, different portions along the length of the ecotone
show different patterns. Only two transects (Fig. 3b and e) show sup-
port of a very rapid, abrupt transition from one vegetation type to the
other, such as described by field botanists who comment that within
three paces one can step from the sandstone into the limestone (Euston-
Brown, 1999; Oliver, pers. comm.).

Slightly broader ecotones are seen in cases with well-defined bands
of mixing of limestone and sandstone on the probability graph (Fig. 3i
and j) where limestone soils and associated dominance by limestone
species is seen on higher plateaus between sandstone peaks. It has been
noted that shallow layers of neutral or acid sands can alter the com-
position of species from limestone vegetation to sandstone vegetation
(Rebelo et al., 2006).

Complex ecotones are where patches of one vegetation type are
located deep into the neighbouring vegetation type (Fig. 2), or with
convoluted (interdigitated) boundaries and mosaics (mixed transitions).
Outlying patches of sandstone quite far into blocks of predominantly
limestone vegetation is a known feature in the area (Euston-Brown,
1999) and some are mapped by the Vegetation Map of South Africa.
These and more are highlighted by the probability map, which also
indicates how distinct the patches are from surrounding vegetation
(darker hues represent higher vegetation class probabilities of sand-
stone in red and limestone in blue). Outlier patches of sandstone fynbos
probably occur on the “potholes” of acid (Clovelly and Constantia) soils
leached out of the surrounding limestone (Bredarsdorp coastal plain);
these potholes are reported to have abrupt edges (Rebelo et al., 2006).
An example of the reverse is seen in transect four (Fig. 3d, see the
eastern corner) where a patch of limestone occurs deep into the eastern
portion of the transect predominantly defined as sandstone. The lime-
stone vegetation occurs where there is a flatter slope at lower altitude
than the surrounding higher altitude, steeper sandstone vegetation.
Transect four highlights the utility of probability maps that can ac-
commodate fine-scale heterogeneity of landscapes and associated
changes in dominance of vegetation. The same transect (Fig. 3d) also
shows an interdigitated boundary in the centre of the transect. Inter-
digitated acid-alkaline boundaries might also be caused by leaching
along the roots of deep-rooted perennial limestone shrubs, which yields
fingers of leached acid soils into the alkaline patches (Rebelo et al.,
2006). Such boundaries may well show sharp transitions at the scale of
a metre with a narrow, simple ecotone width at a fine (or local) scale of
a few meters, but on the probability graph, binned at 100m, mixed
vegetation probabilities are seen, suggesting a wider, more complex
ecotone at a coarser (or landscape) scale.

The range of ecotones highlighted by the probability map can be
explained by the complex interplays between alkaline and acid soils in
the study area, as described above. In addition, acid proteioid species
are intolerant of alkaline soils (Newton et al., 1991). Proteioid species
that have adapted to alkaline soils are probably tolerant of acid soils,
but are outcompeted by acid-soil specialists (Newton et al., 1991).
These combined factors can be expected to yield the variety of ecotones
highlighted by the probability classification produced in this study.

For the development of spatially explicit conservation plans tar-
geted to impact decision-making (Killeen and Solo, 2008; Pressey et al.,

2003; Rouget et al., 2003), maps of ecotones are needed to (1) clearly
define the extent of biodiversity features such as vegetation or com-
munity types, (2) represent transition areas, which have been proposed
as ensuring the persistence of biodiversity features (Cowling et al.,
2003; Klein et al., 2009) and (3) map ecotonal areas, which may serve
as ecosystem processes (Klein et al., 2009; Rouget et al., 2006). Gen-
erally ecotone maps for input into conservation plans are developed as
buffers of vegetation boundaries (Lagabrielle et al., 2009; Rouget et al.,
2003) or as the boundary-line between binary classifications of re-
motely sensed images (Mochizuki et al., 2015; Tapia et al., 2014). The
limits of traditional polygon vegetation maps, which represent vege-
tation as discrete elements with sharp boundaries, and the limitations of
the use thereof in conservation plans was recognised as early as 1993 by
Scott and colleagues (Scott et al., 1993). The proposed methodology of
mapping vegetation probability works well to provide information on
ecotone location, width and character. It provides a conceptually si-
milar approach to Lingxue and colleagues (Lingxue et al., 2015)
without the need to first generate land use/land cover maps. It follows
the spirit of Duff and colleagues (Duff et al., 2014) who developed fuzzy
community types based on point species data, where each grid cell in
the study area can hold information for more than one unit (vegetation
class or community type) as well indicate the probability of the oc-
currence of each unit in that grid cell. We use a similar probabilistic
classification approach with remotely sensed data as input, which are
readily available over large areas and updated frequently, as input.
These probabilistic or fuzzy approaches allow for visualisations of
“core” areas of vegetation types as well as transitional areas. These can
be turned into binary classification by selecting the vegetation type
with the maximum probability value, by maximising the sum of sen-
sitivity and specificity (Liu et al., 2013), or by a user defined cut-off, in
each pixel. The latter could be turned into vector data. Consequently
probabilistic classifications of remotely sensed data can provide vege-
tation class information input to conservation plans as continuous
gridded data of vegetation probability; gridded binary data of the ve-
getation class with the maximum probability, or vector binary data.

Challenges to the approach come from bright features that can
confuse the classifier. These include natural bright features such as the
Soetanysberg's ridge of white ferricrete stone (Thwaites et al., 1988)
and unvegetated patches revealing the underlying light-coloured soils
in lowland areas in the south of the image. Areas that have possibly
been degraded by activities not defined by the transformation classes
used in the National Land Cover, together with roads and fire breaks
also cause small areas of spectral confusion.

Future work could look at using a moving window to assign core or
ecotone status to each central grid pixel (Lingxue et al., 2015) to pro-
duce a more consolidated map. Application of these methods over a
temporal sequence of years could help determine whether the ecotone
is constant over time, or dynamic with time, and determine relevant
environmental drivers, such as fire events.

5. Conclusions

Ecotones, or vegetation transitions, are important for pattern (beta
and gamma diversity, (Whittaker, 1960)) and function (genetic di-
versity, metapopulation dynamics, movement corridors (Risser, 1993)).
Environmental managers map vegetation types and associated ecotones
in order to identify ‘what occurs where’ (inventory function), and to
guide and inform environmental and conservation management ac-
tions, such as identification of appropriate types and intensity of land
use (zonation); recognise rare and endangered features for special
protection; and ensure representation of various “types” in protected
area networks. In order to achieve these mapping goals for environ-
mental management, methods are required to locate boundaries, and
characterise the breadth and strength of different ecotones. This will
facilitate the identification of core areas required for representation
goals, and ecotones for related functions.
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In the light of these mapping goals, this study demonstrates the use
of fuzzy probability classifiers on readily available remotely sensed data
to identify and map the location, width and character of ecotones
through the production of graphs and maps of vegetation, where pixels
can display the probability of neighbouring vegetation types. This ob-
viates the need for the choice of a single, most dominant vegetation
type, which sometimes leads to the oversimplification of the true si-
tuation in the field. These methods are able to capture sharp bound-
aries, or abrupt ecotones, which are seen on probability graphs where
probability lines of two neighbouring vegetation types cross with steep
slopes, i.e. where high probabilities of one vegetation rapidly drop to
low values and are replaced over a short geographic distance by high
probabilities of the neighbouring vegetation type. The associated
probability map shows a saturated colour (high probability of one ve-
getation) being replaced by a saturated colour (high probability of the
second vegetation). Gradual, broader ecotones are seen on probability
maps as areas of pale colours (low probabilities) as well as interspersion
of pixels with saturated colours of the two vegetation types (i.e. mosaics
of strongly classified pixels with high vegetation probabilities).
Associated probability graphs have vegetation probability lines that do
not cross with steep slopes. Distinct ecotones are represented on
probability graphs where high probabilities of one vegetation type drop
to medium levels, and medium levels of probabilities of the second
vegetation type are seen over the same geographical space, creating a
distinct band of mixing where after probabilities of the first vegetation
type drop-off and probabilities of the second vegetation type increase.
Probability graphs of mosaics have lines which cross repeatedly. This
concept methodology could be applied to various imagery for any
ecotone. It also builds on the call by Hufkens and co-workers (Hufkens
et al., 2009) for the use of two-dimensional data and approaches to
study ecotones.

Vector (polygon or line) vegetation maps that represent transitions
between vegetation types as single lines may battle to distinguish very
fine scale sharp transitions as different to convoluted abrupt boundaries
and mosaic transitions. For conservation plans, vegetation maps need to
be able to map core areas important for key species as well as the lo-
cation and extent of ecotones for ecosystem processes. The probability
maps can distinguish between core areas and ecotones.
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